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Abstract: Rolling noise is a significant contributor to railway noise. Wheel and rail roughness
are decisive for the emitted noise level. An optical measurement method installed on a moving
train is suitable for closer monitoring of the rail surface condition. A measurement setup based
on the chord method requires the sensors to be positioned in a straight line along the direction of
measurement and in a stable lateral position. Measurements should always be performed within the
shiny and uncorroded running surface, even when there are lateral movements of the train. In this
study, concepts for the detection of the running surface and the compensation of lateral movements
are investigated in a laboratory setting. The setup consists of a vertical lathe with a ring-shaped
workpiece that incorporates an implemented artificial running surface. The detection of the running
surface based on laser triangulation sensors and a laser profilometer is investigated. It is shown that
the running surface can be detected using a laser profilometer that measures the intensity of the
reflected laser light. It is possible to detect the lateral position and the width of the running surface.
A linear positioning system is proposed to adjust the lateral position of the sensors based on the
running surface detection of the laser profilometer. When the lateral position of the measuring sensor
is disturbed by a movement with a wavelength of 18.85 m, the linear positioning system can keep
the laser triangulation sensor inside the running surface for 98.44% of the measured data points at a
velocity of approximately 7.5 km h−1. The mean positioning error is 1.40 mm. By implementing the
proposed system on the train, future studies can be conducted to examine the lateral position of the
running surface as a function of the various operational parameters of the train.

Keywords: railway rolling noise; rail profiles; acoustic roughness; condition monitoring; chord
method; laser triangulation; laser profilometer

1. Introduction

Railway noise can harm human health. Pyko et al. [1] and Vienneau et al. [2] found a
correlation between long-term noise exposure and increased incidence of cardiovascular dis-
eases. Rolling noise is dominant in the velocity range between 60 km h−1 and 300 km h−1,
as described by Müller et al. [3]. Thompson [4] determined the correlation between the
roughness of the wheel, the rail, and the generated rolling noise. Rolling noise can be
reduced by acoustic rail grinding, as described by Kuffa et al. [5]. Grassie [6] expressed the
need for measurements to monitor the quality of the grinding process. The condition of the
network must be monitored to achieve optimal rail maintenance. Numerous methods have
been developed to measure the longitudinal rail profile and the acoustic roughness of rails.
Cordier et al. [7] distinguished between direct and indirect measuring methods. Direct
methods measure the longitudinal rail profile, e.g., by using a tactile measurement. Grassie
et al. [8] developed the Corrugation Analysis Trolley (CAT) device to measure rail irregular-
ities. Tanaka et al. [9] developed a hand-pushed trolley to perform direct measurements of
the rail roughness using laser distance sensors based on the chord method. Instead of using
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laser distance sensors, a laser profilometer can be applied in the longitudinal direction as
described by Teng et al. [10]. Laser profilometers were applied in the transverse direction
by Boronahin et al. [11] to measure the rail profile. An automated trolley was presented by
Jeong et al. [12]. Indirect measuring methods measure parameters that are indicative of the
rail roughness. Hauck et al. [13] described the measurement of rolling noise to determine
the rail condition concerning acoustic emissions. Kuijpers et al. [14] determined rail rough-
ness levels from measured rolling noise and mentioned the need for calibration, which
depends on track properties. Alternatively, axle-bearing accelerations are measured to
determine the roughness levels of the rail. Bongini et al. [15] calibrated the High-Speed Rail
Corrugation Analyzer (HSRCA) system using a CAT trolley and mentioned the dependence
of the system on the measuring speed as well as on the dynamic properties of the track.
Carrigan et al. [16] presented a method to remove the influences of wheel roughness on the
measurement result. Unlike indirect measuring methods, direct measurements cannot be
performed at line speed with currently available measurement devices. The advantages of
direct and indirect measurements could be combined by performing optical measurements
of the rail roughness from a moving train. Mauz et al. [17] evaluated an optical approach
based on the chord method to measure rail roughness directly under laboratory conditions.
Vertical disturbances of the train and environmental influences were simulated. Lateral
movements of the train were not considered, and the measurements were performed on
one fixed lateral position above the rail. Mauz et al. [18] applied the measurement concept
on a test train. The measurement system was mounted to the train bogie. A fixed lateral
measuring position could not be maintained due to lateral movements of the train, such
as hunting motion or the passing of switches. In addition to the lateral movements of the
rail vehicle, a displacement of the running surface (shiny and uncorroded part of the rail),
which transverses to the direction of travel along the track, can be observed. The chord
method is based on the measurement on a fixed line and is preferably performed on the
rail head centerline or at least within the running surface, since this is the area where the
rolling contact occurs. EN 15610 [19] defines the number and position of the measuring
lines for the calculation of the acoustic roughness and a direct measurement method. The
width of the running surface and its position on the rail head surface can vary along the
rail. The rail surface, divided into laterally shifted measuring lines, is shown in Figure 1.
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Figure 1. Top view of a rail head with measurement lines within the running surface as defined in
EN 15610 [19]. wr: width of the reference surface.

The reference surface corresponds to the area of minimum width within the running
surface over the selected measuring length. Depending on its width wr, EN 15610 [19]
defines the following lateral measuring positions:

• wr ≤ 20 mm: The longitudinal profile is measured in the center of the reference surface
(on the centerline).

• 20 mm < wr ≤ 30 mm: The longitudinal profile is measured on three lines. Two
additional lines are at a 5 mm lateral distance to the centerline.
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• wr > 30 mm: The longitudinal profile is measured on three lines. The additional
measurement lines are placed at a 10 mm lateral distance to the centerline.

Measuring lines should be kept within a tolerance of ±1 mm.
Chen et al. [20] measured the longitudinal rail profile on the centerline and compen-

sated for lateral movements by detecting the laser points of the measurement line with a
camera system. The system could be operated up to a speed of 6 km h−1 with a maximum
positioning error of 0.6 mm. Chen et al. [21] further developed the concept and used two
laser lines to transverse the driving direction for the optical support of the camera due
to illumination conditions. The positioning error in this application was 0.4 mm. Chen
et al. [21] established a maximum driving speed of 9 km h−1.

The objective of this work is to detect the running surface and compensate for lateral
train deflections using optical sensors. A laser profilometer and four laser triangula-
tion distance sensors are available to detect the running surface. The following topics
are addressed:

• Concepts for the compensation, respectively addressing the lateral movements of the
optical rail roughness measurement system, are presented;

• Whether the stated sensor types are suitable for the detection of differences in surface
conditions and the running surface is examined. The case of a rail with a running
surface and corroded edges is assumed for all investigations;

• Lateral deflection is artificially added, and a lateral compensation system is tested on
a test bench under laboratory conditions.

2. Materials and Methods
2.1. Concepts

Different concepts for the detection of the running surface and compensation of the
lateral movements of the train are presented. The available selection of sensors (laser trian-
gulation and laser profilometer) offers several concepts for the compensation, respectively
addressing the lateral movements of the optical rail roughness measurement system:

(1) Fixed Installations: Approaches that only include non-moving sensors on a fixed
lateral measuring position have an advantage in that no actuators are required. Since no
moving parts are needed, less complex designs of the device are possible.

a. Four Profilometers: Instead of four laser triangulation sensors, four profilometers
can be installed, which project lines onto the rail surface transverse to the direction
of travel. The arrangement of the laser profilometers is shown in Figure 2.
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Figure 2. Top view of a rail head with four successive laser profilometers measuring the longitudinal
profile as defined in concept 1 a.

In the case of a lateral offset of the train, a part of the line would always provide a
measured sample within the running surface, assuming that the amplitude of the deflection
is smaller than half the length of the projected line. The final longitudinal rail profile can be
determined based on four sensor signals using the chord method. Additionally, the position
and width of the running surface could be acquired if it is possible to determine these
parameters from the measured data. When implementing this concept, the low sampling
frequencies and the small measuring range with increasing sampling frequency are limiting
factors. EN 15610 [19] requires a maximum longitudinal sampling distance of 1 mm. For
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a driving speed of 108 km h−1, a sampling frequency of 30 kHz would be required. The
maximum sampling frequency of the available profilometer (Micro-Epsilon scanCONTROL
3060–50/BL) can reach 10 kHz if the measuring range is sufficiently reduced. This limits the
maximum driving speed to 36 km h−1 before violating the requirement of EN 15610 [19].
Additionally, the maximum sampling frequency and the maximum driving speed are
further reduced to 1294 Hz and 4.66 km h−1, respectively, if the measuring range is adjusted
to 10 mm. This is the minimum necessary range for measurements of the longitudinal
rail profile.

b. Twelve Laser Triangulation Sensors (Three Measurement Lines): The measuring
concept of Mauz et al. [18] measures the longitudinal profile on a single measuring
line. Four consecutive laser triangulation sensors measuring the longitudinal profile
at the identical lateral position are referred to as one measurement line. To stay within
the running surface, the longitudinal profile can be measured on three lines, as shown
in Figure 3, placed at different lateral positions instead of only one measuring line.
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Figure 3. Top view of a rail head with three laterally shifted measurement lines, each consisting of four
successive laser triangulation sensors measuring the longitudinal profile, as defined in concept 1 b.

If the lateral distance between the lines is large enough, at least one line could be
located within the running surface, assuming that the running surface width is sufficient.
The measurement setup consisting of four laser triangulation sensors per measurement
line would thus have to be extended to three lines and a total of twelve sensors. Since no
cross-sectional profile can be recorded, consequently, it is not possible to determine the
exact position of the running surface or its width.

(2) Lateral Position Adjustment: Compared to concept 1 b (Figure 3), the longitudinal
profile is measured on one adjustable measuring line consisting of four consecutive sensors.
Instead of twelve, only four laser triangulation sensors are required. The measurement
setup is shifted laterally according to the position of the running surface. Additional
moving parts and actuators are required. The clearance of linear guides and the oscillation
behavior can lead to additional disturbances in the measurement result.

a. One Profilometer and Four Laser Triangulation Sensors: A profilometer deter-
mines the position of the running surface. Four laser triangulation sensors measure
the longitudinal profile on a measuring line which is positioned on the running
surface using actuators.

b. Three Laser Triangulation Sensors and Four Laser Triangulation Sensors (One
Measurement Line): Three laterally offset laser triangulation sensors indicate whether
their line is on the running surface or not. Four laser triangulation sensors measure
the longitudinal profile on a measuring line which is moved laterally using actuators.
The signals of the three laterally offset sensors are used to determine the direction
in which the laser sensors must be moved. This approach does not allow for the
determination of the exact location of the running surface or its width since the
surface state can only be detected in the discretized form at three lateral positions.

In the following, concept 2 a, that is, lateral position adjustment based on the detection
of the running surface with a profilometer in combination with one measurement line
of laser triangulation sensors, is investigated. The laser profilometer provides an oppor-
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tunity to measure the width and lateral position of the running surface. The adjustable
measuring line provides the possibility to set the lateral position on the centerline of the
running surface.

2.2. Experimental Setup

The test setup is shown schematically in Figure 4. A SEDIN 1525 vertical lathe serves
as the basis for the experimental setup. The rotation of the ring-shaped workpiece can be
used to simulate a train passing over a rail. The width w of the surface of the ring-shaped
rail is 45 mm. The height h of the ring clamped on the rotary table is approximately 25 cm.
The average diameter dR of the ring-shaped rail measures approx. 2 m. Measurements are
conducted at a ring rotational speed vR of 20 min−1, which corresponds to a driving speed of
∼ 7.5 km h−1. Sensors can be mounted on the sensor column decoupled from the machine
structure to minimize vibration. Surface condition detection tests (Section 2.3) are each
performed with a single sensor (laser triangulation sensor or laser profilometer) mounted
on the sensor column. All other tests are performed using attachments to the lateral
deflection system. The machine arm of the vertical lathe provides the connection for the
lateral deflection system. The lateral deflection system emulates the lateral displacements
of the running surface relative to the train. The compensation setup is used to test different
concepts related to the handling of lateral deflections.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 28 
 

 

triangulation sensors measure the longitudinal profile on a measuring line 
which is moved laterally using actuators. The signals of the three laterally 
offset sensors are used to determine the direction in which the laser sensors 
must be moved. This approach does not allow for the determination of the 
exact location of the running surface or its width since the surface state can 
only be detected in the discretized form at three lateral positions. 

In the following, concept 2 a, that is, lateral position adjustment based on the detec-
tion of the running surface with a profilometer in combination with one measurement line 
of laser triangulation sensors, is investigated. The laser profilometer provides an oppor-
tunity to measure the width and lateral position of the running surface. The adjustable 
measuring line provides the possibility to set the lateral position on the centerline of the 
running surface. 

2.2. Experimental Setup 
The test setup is shown schematically in Figure 4. A SEDIN 1525 vertical lathe serves 

as the basis for the experimental setup. The rotation of the ring-shaped workpiece can be 
used to simulate a train passing over a rail. The width 𝑤 of the surface of the ring-shaped 
rail is 45 mm. The height ℎ of the ring clamped on the rotary table is approximately 25 cm. The average diameter 𝑑ோ of the ring-shaped rail measures approx. 2 m. Measure-
ments are conducted at a ring rotational speed 𝑣ோ of 20 minିଵ, which corresponds to a 
driving speed of ~ 7.5 km hିଵ. Sensors can be mounted on the sensor column decoupled 
from the machine structure to minimize vibration. Surface condition detection tests (Sec-
tion 2.3) are each performed with a single sensor (laser triangulation sensor or laser pro-
filometer) mounted on the sensor column. All other tests are performed using attachments 
to the lateral deflection system. The machine arm of the vertical lathe provides the con-
nection for the lateral deflection system. The lateral deflection system emulates the lateral 
displacements of the running surface relative to the train. The compensation setup is used 
to test different concepts related to the handling of lateral deflections. 

 
Figure 4. Schematic illustration of the testbench for validation of compensation approaches based 
on the setup described by Kuffa et al. [5]. 𝑤: width of the ring; ℎ: height of the ring; 𝑑ோ: average 
diameter of the ring; 𝑣ோ: rotational speed of the ring; 𝑑ௌ: measurement distance of the respective 
sensor. 

The circumferential direction of the ring is labeled as longitudinal (x-axis). Move-
ments and positions that transverse to the longitudinal direction are referred to as lateral 

Figure 4. Schematic illustration of the testbench for validation of compensation approaches based on
the setup described by Kuffa et al. [5]. w: width of the ring; h: height of the ring; dR: average diameter
of the ring; vR: rotational speed of the ring; dS: measurement distance of the respective sensor.

The circumferential direction of the ring is labeled as longitudinal (x-axis). Movements
and positions that transverse to the longitudinal direction are referred to as lateral (y-axis).
The lateral deflection system and the compensation setup attached to it are shown in
Figure 5.

The deflection system is actuated using a Microstep (MICROSTEP GmbH Schrittmo-
toren, Steuerungen, Bewegungssysteme, Sömmerda, Germany) GKS 56/200/9-4334 stepper
motor. The applied amplitudes and frequencies of the lateral deflection are presented in
Section 2.4. The lateral movement, actuated by a toothed belt, is guided by a system
consisting of rails and slides. The moving sensor is actuated by an igus (igus GmbH,
Cologne, Germany) ZLN-40 linear unit, including a stepper motor, to compensate for
lateral deflection. The linear unit is controlled using a National Instruments (National
Instruments Corporation, Austin, TX, USA) cRIO 9045 and an NI 9472 module. Measure-
ments are performed with a Micro-Epsilon (Micro-Epsilon Messtechnik GmbH & Co. KG,
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Ortenburg, Germany) scanCONTROL 3060-50/BL laser profilometer (blue laser light) and
a Micro-Epsilon optoNCDT 2300–10 LL laser triangulation sensor. The measuring distances
and measuring ranges of the sensors are specified in Table 1.
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setup. The setup includes one laser profilometer, one moving laser triangulation sensor, and three
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the moving sensor can adjust its lateral position to follow the running surface using a linear guide
and a stepper motor.

Table 1. Overview of the measuring distances and measuring ranges of the Micro-Epsilon sensors
installed. dS: measurement distance of the sensor (mid-range); aS: measuring range of the sensor.

Sensor dS [mm] aS [mm]

scanCONTROL 3060–50/BL 125 40

optoNCDT 2300–10 LL 35 10

The laser profilometer is mounted at a distance dP of 125 mm from the rail surface,
which corresponds to the middle of its measuring range of 40 mm. The line consisting of
2048 measuring points projected in transverse direction has a length of 51 mm at the selected
measuring distance. The profilometer has a linearity deviation of 3 µm. The distance and
intensity of the light reflected to the receptor element are measured and transmitted via
Ethernet. The intensity is measured as a value between 0 and 1023, representing minimum
and maximum. A Micro-Epsilon optoNCDT 2300–10 LL laser triangulation sensor is used
to measure the longitudinal profile or to detect the running surface. The sensor is mounted
at a distance dT of 35 mm from the ring surface, which corresponds to the middle of its
measuring range of 10 mm. The measurement resolution is 0.15 µm. The analog distance
signal is recorded using an NI 9222 module while the digital intensity signal is transmitted
via Ethernet. The intensity is measured as a value between 0% and 100%.

2.3. Surface Condition Detection

To detect the smooth and shiny rail surface called the running surface using laser
distance sensors, it is first necessary to determine the measurement variable relevant for
the differentiation of surface conditions. A laser triangulation sensor offers two reasonable
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measurement variables for this purpose: the distance to the workpiece and the intensity
of the light spot reflected to the receptor element. The respective sensors are mounted
at measurement distances stated in Table 1. The setup is installed on the sensor column
to exclude the influence of machine vibrations. The ground ring surface is artificially
corroded as an imitation of a recently ground rail head with already corroded surface areas.
Artificial corrosion is generated by applying a hydrogen peroxide-salt solution three times,
accelerating the corrosion process. The partially corroded surface of the ring is shown in
Figure 6.
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Figure 6. The ring surface applied for experimental analysis of surface condition detection. The
ring is divided into four segments, each with a unique corrosion pattern. 1—metallic, 2—corroded,
3 —longitudinal split, 4—alternation.

The quarter segment with a metallic surface represents a measurement inside the run-
ning surface while the quarter segment with a corroded surface represents a measurement
outside the running surface. The quarter segment in which the ring surface is divided
longitudinally between the corroded and metallic areas represents a measurement in the
edge area of the running surface. The sudden change between the running surface and
the corroded area of the rail surface is represented by the alternation of corroded and
metallic surface parts within the last quarter segment. The laser profilometer projects a
line transverse to the direction of travel while the laser triangulation sensor measures on
the centerline of the ring surface. The laser triangulation sensor measures distance and
intensity with a sampling frequency fS of 20 kHz. With a ring speed of 20 min−1, the
longitudinal data point distance dxS becomes 0.105 mm. The laser profilometer measures
distance and intensity at a sampling frequency fp of 450 Hz and an exposure time of 0.4 ms.
This results in a longitudinal data point distance dxP of 4.654 mm. Each experiment is
repeated three times.

2.4. Running Surface Detection and Lateral Compensation Approach

The setup shown in Figure 5 is applied for the running surface detection and lateral
compensation investigations. It consists of the lateral deflection system and the sensors
attached to the machine arm. An artificial running surface is created on the ground and
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smooth ring surface. The surface condition is comparable to a rail that was ground a few
days ago and already has corroded edge areas. The running surface does not include
impurities, small accumulations of corrosion, or indentations. The setup including the
entire ring and its prepared surface is shown in Figure A1. The tactile surface roughness
of an imprint of the ring surface that is 100 mm in length is measured using a Taylor
Hobson Talysurf. The roughness Ra is determined for an evaluation length of 12.5 mm and
with cutoff lengths ls of 8 µm and lc of 2.5 mm. The ground ring surface before and after
application of the corroded edge areas is shown in Figure 7.
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Figure 7. (A) The ground ring surface before application of artificially corroded edge areas. w: Width
of the ring. (B) The ground ring surface after application of corroded edge areas as an imitation of a
recently ground rail head with already corroded edge areas and therefore a visible running surface.
wRS: width of the running surface; ymin: left boundary of the running surface; ymax: right boundary
of the running surface.

The width of the artificial running surface wRS measures approx. 10 − 12 mm. The
laser profilometer measures the intensity with a sampling frequency fP of 300 Hz and an
exposure time of 0.5 ms. This results in a longitudinal data point distance dxP of 6.981 mm.
Each laser triangulation sensor measures distance and intensity with a sampling frequency
fS of 20 kHz. With a ring speed of 20 min−1, the longitudinal data point distance dxS
becomes 0.105 mm. The fixed sensors measure on lines with a lateral distance of 10 mm
to each other. The movable sensor can be positioned laterally over the entire ring width
according to a command signal yS for the lateral position.

A lateral disturbance movement is introduced using the lateral deflection system.
The system is deflected by amplitude aL of ± 10.5 mm, starting from the middle of the
ring. A lateral disturbance movement is applied by a triangle wave movement with lateral
wavelengths λL in the range between ∼ 20 m and ∼ 100 m. The frequency fL of the lateral
deflection is obtained using the ring velocity vR:

fL =
vR
λL

(1)

The parameters of the lateral disturbance movement applied by the lateral deflection
system are indicated in Table 2.
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Table 2. The parameters of the triangle wave movement, with which the lateral movement of the
train is simulated. fL: frequency of the lateral disturbance movement; λL: wavelength of the lateral
disturbance movement; aL: amplitude of lateral disturbance movement.

Experiment fL [Hz] λL [m] aL [mm]

1 0.02 97.70 10.5
2 0.03 78.07 10.5
3 0.04 58.74 10.5
4 0.05 38.93 10.5
5 0.11 18.85 10.5

A target position ys for the moving sensor is calculated from the measured transverse
intensity profile (transverse to the direction of travel) of the laser profilometer. The bright,
reflective, and dry surface of the running surface causes a visible intensity maximum. An
illustrative example of an intensity profile is shown in Figure 8.
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Figure 8. The schematic intensity cross-profile of the laser profilometer and the discretized intensity
cross-profile represented as blocks. ∆yB: block width of the discretized intensity cross-profile;
yBi : lateral position of the i-th block, Imax: maximum intensity of the cross-profile; Itol : threshold
intensity for the determination of the running surface; ymin: left boundary of the running surface;
ymax: right boundary of the running surface; wRS: width of the running surface.

To provide the most stable running surface detection possible, the intensity profile
is pre-filtered using a median filter with a rank of 100. To prevent individual peaks from
influencing the target position yS excessively, the intensity profile is divided into blocks.
Each block has a width ∆yB of 2 mm and is assigned a central position yBi . The mean
intensity is determined for each block. The maximum of these block intensities Imax is
evaluated based on all blocks. To define the width of the running surface, the block
with maximum intensity cannot only be considered. A range must be defined, in which
blocks are assigned to the running surface. Starting from the maximum intensity Imax, the
threshold value Itol was calculated with a tolerance t of 5%:

Itol = Imax · (1 − t) = 0.95 · Imax (2)
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If the condition is fulfilled that a block intensity Ii is within the range Itol < Ii < Imax
and the blocks are adjacent to each other, they are assigned to the running surface. N
represents the total number of blocks within the running surface. The minimum value for
yBi from N blocks corresponds to the boundary of the running surface ymin. The boundary
ymax results from ymin and the number of blocks N:

ymax = ymin + N · ∆yB (3)

The values of the boundaries ymin and ymax of the running surface determine the
running surface width wRS:

wRS = ymax − ymin (4)

The command signal y0 corresponding to the centerline of the lateral position is
calculated as:

y0 = ymin +
wRS

2
(5)

The target position yC of the controller differs slightly from the command signal y0
since the maximum step size of the moving sensor is limited to 8 mm.

3. Results
3.1. Surface Condition Detection

A single laser triangulation sensor was applied to detect different surface conditions.
No distinctive differences between various surface conditions were obtained from the
measured longitudinal profile. Differences can be found for the simultaneously measured
intensity of the light spot reflected to the receptor element. The measured longitudinal
profile and corresponding intensities are shown in Figure 9.
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Figure 9. The longitudinal profile of the ring surface measured using a single laser triangulation
sensor. The individual data points are colored according to their measured intensity. The ring
is divided into four segments, each with a unique corrosion pattern. 1—metallic, 2—corroded,
3—longitudinal split, 4—alternation.
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Differences between different surface states are visually recognizable for alternation
between corroded and non-corroded surfaces within the fourth segment of the ring. For
further segments, a difference is more difficult to identify visually, and the statistical
characteristics of the measured intensity are to be considered. The statistical parameters of
the measured intensity for the different ring segments are summarized in Table 3.

Table 3. Descriptive analysis of the intensity of the ring measured using a laser triangulation sensor.
The ring is divided into four segments, each with a unique corrosion pattern.

Segment and Surface
Condition

Mean
[%]

Standard Deviation
[%]

Minimum
[%]

Maximum
[%]

1—Metallic 83.74 3.21 76.74 90.91
2—Corroded 79.09 1.00 76.64 83.19

3—Longitudinally Split 78.14 0.65 74.58 82.40
4—Alternation 81.15 3.36 77.13 90.81

In the following, the intensity is measured with the laser profilometer along a line
transverse to the direction of travel. The measured intensities for the different segments of
the ring and the varying surface conditions are shown in Figure 10.
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Figure 10. Intensity measurement of the ring taken using the laser profilometer. The ring is divided
into four segments, each with a unique corrosion pattern. 1—metallic, 2—corroded, 3—longitudinal
split, 4—alternation.

The measured intensity is represented in RGB color space. A clear qualitative distinc-
tion can be made between corroded and non-corroded surfaces. The longitudinally split
segment is correctly resolved, and optical differentiation in the lateral direction is possible.
Narrow alternations between corroded and non-corroded surfaces are distinguishable
(alternation segment).
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3.2. Running Surface Detection

In the subsequent section, the surface with an artificial running surface shown in
Figure 7 is considered. The artificial running surface is qualitatively distinguishable from
the corroded edge areas using the intensity measurements of the laser profilometer. The
measured intensities are shown in Figure 11.
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Figure 11. Surface profile measurement of the ring surface with an artificial running surface carried out
using the laser profilometer. The individual data points are colored according to the measured intensity.

The quantitative analysis of the intensities is performed by evaluating eight profile
cross-sections in the circumferential direction of the ring. The intensity profile transverse to
the direction of travel for eight different positions along the ring is shown in Figure 12.
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Figure 12. Cross-profile intensity measurements taken using the laser profilometer at eight different
longitudinal positions of the ring.

The intensity is expressed numerically in values between 0 (minimum intensity) and
1023 (maximum intensity). A stable plateau of maximum intensity can be determined,
indicating the running surface as it is shown in Figure 12. The intensity of the plateau
assumes a value of 889 for all eight measured cross-sections at different longitudinal
positions x1...8. The left boundary of the running surface ymin varies between −7.094 mm at
longitudinal position x4 and −5.404 mm at longitudinal position x3. The right boundary of
the running surface ymax varies between 3.292 mm at longitudinal position x5 and 6.987 mm
at longitudinal position x2. The measured intensities show another local maximum in the
corroded edge area starting from the lateral position of approx. 10 mm. The highest peak
assumes a value of 720 at a lateral position of 19.116 mm and longitudinal position x4. The
lowest peak assumes a value of 407 at a lateral position of 14.283 mm and longitudinal
position x2. The peaks beyond the right boundary of the running surface are caused when
there is less coverage of the ground surface of the corroded layers. If the running surface
width is determined from the transverse profile of the intensity according to the process
described in Section 2.4, the average width of the running surface is 12.22 mm. The standard
deviation measures 1.10 mm.

The intensity plateau must be visible if the laser profilometer is not positioned centrally
above the running surface. Intensity profiles can be measured at the identical longitudinal
position with different lateral deflections of −10.5 mm (left position), 0 mm (central posi-
tion), and +10.5 mm (right position). The measured intensity profiles for different lateral
deflections are shown in Figure 13.



Sensors 2023, 23, 5764 14 of 26Sensors 2023, 23, x FOR PEER REVIEW 15 of 28 
 

 

 
Figure 13. Cross-profile intensity measurements taken using the laser profilometer at three different 
lateral positions (±10. 5 mm and central position) at the same longitudinal position of the ring. 

The intensity plateau of the running surface is preserved at the left and right lateral 
positions compared to the central position. In the deflected positions, the plateau seems 
slightly flattened at the edges, as shown in Figure 13. The number of acquired data points 
is reduced for the deflected positions. At the central position, 1696 data points are ac-
quired. If the position is shifted to the left, 1362 data points are acquired; moreover, if 
the position is shifted to the right, 1555 data points are acquired. The measured intensi-
ties show a local peak beyond the right boundary of the running surface, as shown in 
Figure 12. The measurement recorded at a deflection to the right attenuates the peak. A 
peak value of 415 is acquired in the central position. The peak value increases to 512 for 
a deflection to the left position. Altered reflection conditions due to the deflection cause 
the amplification or attenuation of peaks. 

Different exposure times influence the measured cross-profile of the intensity of the 
artificial running surface. Figure 14 shows the measured cross-profile of the intensity at 
the same longitudinal position with exposure times 0.1 ms, 0.3 ms, 0.5 ms, 0.8 ms, and 1 ms. 

Figure 13. Cross-profile intensity measurements taken using the laser profilometer at three different
lateral positions (±10.5 mm and central position) at the same longitudinal position of the ring.

The intensity plateau of the running surface is preserved at the left and right lateral
positions compared to the central position. In the deflected positions, the plateau seems
slightly flattened at the edges, as shown in Figure 13. The number of acquired data points
is reduced for the deflected positions. At the central position, 1696 data points are acquired.
If the position is shifted to the left, 1362 data points are acquired; moreover, if the position
is shifted to the right, 1555 data points are acquired. The measured intensities show a
local peak beyond the right boundary of the running surface, as shown in Figure 12. The
measurement recorded at a deflection to the right attenuates the peak. A peak value of 415
is acquired in the central position. The peak value increases to 512 for a deflection to the
left position. Altered reflection conditions due to the deflection cause the amplification or
attenuation of peaks.

Different exposure times influence the measured cross-profile of the intensity of the
artificial running surface. Figure 14 shows the measured cross-profile of the intensity at the
same longitudinal position with exposure times 0.1 ms, 0.3 ms, 0.5 ms, 0.8 ms, and 1 ms.

The plateau of the intensity of the artificial running surface (compared to measure-
ments with 0.5 ms) is not preserved for an exposure time of 0.1 ms. The running surface
width is determined from the transverse profile of the intensity according to the process
described in Section 2.4. The determined running surface width increases from 4.18 mm
at 0.1 ms to 12.35 mm at 0.5 ms and 15.53 mm at 1 ms. For exposure times of 0.8 ms and
1 ms, the differences in intensity levels between the running surface and the corroded edge
areas are smaller. The mean intensity values over the entire profile range increase from
514.72 at 0.5 ms to 673.22 at 0.8 ms and 744.66 at 1 ms. The number of measured data points
decreases with decreasing exposure time. The intensity cross-profile for an exposure time of
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0.1 ms shows visible gaps, as shown in Figure 14. For an exposure time of 0.1 ms, 603 data
points are acquired; however, for an exposure time of 1 ms, 1751 data points are acquired.
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Figure 14. Cross-profile intensity measurements taken using the laser profilometer at the identical
longitudinal position of the ring and different exposure times.

3.3. Lateral Compensation

The measured tactile roughness Ra close to the centerline of the ring is 3.68 µm. For
the edge areas, the roughness Ra without corrosion is 2.80 µm for the area towards the
outside of the ring and 2.88 µm towards the inside of the ring. The width of the running
surface wRS is determined based on the procedure described in Section 2.4. The determined
widths that depend on the different lateral deflection movements are stated in Table 4.

Table 4. The mean running surface width wRS and standard deviation for different lateral deflection
movements determined from laser profilometer measurements.

Experiment fL [Hz] λL [m] Mean wRS [mm] Standard Deviation wRS[mm]

Undisturbed - - 9.31 1.68
1 0.02 97.70 9.16 1.54
2 0.03 78.07 9.15 1.54
3 0.04 58.74 9.15 1.51
4 0.05 38.93 9.25 1.54
5 0.11 18.85 9.14 1.51

The mean width of the running surface across all programs is 9.19 mm with a mean
standard deviation of 1.55 mm. The lateral position of the centerline is calculated based on
the positions of the edges ymin and ymax of the running surface. The centerline is used to
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control the position of the moving sensor yE. Figure 15 shows the measurement at a length
of 100 m and at the shortest wavelength of the lateral triangle wave deflection motion with
a wavelength λL of 18.85 m.
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Figure 15. Illustration of determined running surface boundaries from laser profilometer intensities
and the actual lateral position of the laser displacement sensor while the compensation setup is
moving laterally with an amplitude of 10.5 mm and a wavelength of 18.85 m for a length of 100 m.
ymin: left running surface boundary; ymin, f : left running surface boundary (filtered); ymax: right
running surface boundary; ymax, f : right running surface boundary (filtered); yE: actual lateral
position of the measuring laser displacement sensor (encoder).

The positions of the edges of the running surface filtered using a Savgol filter are
shown additionally as ymin, f and ymax, f . The measurements that were 100 m in length at
longer wavelengths are shown in Figures A2, A3, A5, and A7 in Appendix B. Visually, a
phase shift between the edges of the running surface and the position of the moving sensor
yE is identifiable, where the sensor is mostly positioned inside the running surface. Table 5
shows the percentages of all data points that are outside of the running surface or exceed
an edge position.

Table 5. The percentage of data points at which the position of the moving sensor yE is less than ymin

or greater than ymax.

Experiment fL [Hz] λL [m] yE>ymax
[%]

yE<ymin
[%]

Undisturbed - - 0.02 0.02
1 0.02 97.70 0.43 0.08
2 0.03 78.07 0.40 0.00
3 0.04 58.74 0.50 0.00
4 0.05 38.93 0.35 0.10
5 0.11 18.85 1.20 0.36
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Without lateral deflections, 0.04% of the data points are positioned outside the running
surface. For lateral disturbance movements in the wavelength range of 78.07 m and 97.70 m,
0.40% and 0.51% of the data points are positioned outside the running surface. For the
shortest wavelength of 18.85 m, an increase to 1.56% can be observed. The boundary
ymin is undershot between 0.00% and 0.36% of the data points. The boundary ymax is
exceeded between 0.02% and 1.20% of the data points. Figure 16 shows a detailed view for
one ring rotation of the measured lateral positions of the running surface edges and the
lateral position of the moving sensor at the shortest wavelength of the lateral triangle wave
deflection motion, with a wavelength λL of 18.85 m.
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Figure 16. Illustration of the determined running surface boundaries from laser profilometer in-
tensities, the theoretical set point, the practical set point, and the actual lateral position of the laser
displacement sensor, while the compensation setup is moving laterally with an amplitude of 10.5 mm
and a wavelength of 18.85 m for one ring rotation. ymin: left running surface boundary; ymin, f : left
running surface boundary (filtered); ymax: right running surface boundary; ymax, f : right running
surface boundary (filtered); y0: theoretical set point from profilometer intensities; yC: actual set point;
yE: actual lateral position of the measuring laser displacement sensor (encoder).

Additionally, the centerline y0 of the running surface and the controller target position
yC are shown. The measurements for one ring rotation at longer wavelengths are shown
in Figures A2, A4, A6, and A8 in Appendix B. Deviations can be seen visually between
the actual position yE and the targeted centerline y0. The deviations of the actual position
of the moving sensor yE from the position of the theoretical centerline y0 of the running
surface and the corresponding standard deviation are provided in Table 6.

If the average deviation is averaged over all lateral deflections, the average positioning
deviation is 1.24 mm.
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Table 6. The average deviation of the actual position of the sensor yE and the position of the centerline
y0 in the middle of the running surface as a function of the different deflection programs.

Experiment fL [Hz] λL [m]
Mean

|yE−y0|
[mm]

Standard Deviation |yE−y0|
[mm]

Undisturbed - - 0.87 0.69
1 0.02 97.70 1.21 0.90
2 0.03 78.07 1.28 0.93
3 0.04 58.74 1.31 0.97
4 0.05 38.93 1.39 0.97
5 0.11 18.85 1.40 1.09

4. Discussion
4.1. Surface Condition Detection and Running Surface Detection

The individual laser triangulation sensors are only suitable to a limited extent for
distinguishing between corroded and non-corroded surfaces. No distinction can be derived
solely from distance measurements. The intensity measurements allow for a distinction to
be made via the statistical characteristic values of a defined data segment. The standard
deviation of the intensity for a metallic surface has a value of 3.21%, while this value drops
to 1.00% for a corroded surface. The laser power is quickly regulated to a target value
by the device. The segment of alternation implies rapid changes in the surface condition,
which can be detected. A distinction can already be visually derived from Figure 9 for the
alternation segment. The standard deviation has a value of 3.36%. The laser triangulation
sensor is only suitable to a limited extent for detecting the running surface or for the
detection of fast-changing surface conditions. Since only the intensity at a discrete lateral
position can be measured, no statement about the exact position of the running surface or
the width of the running surface can be determined.

The laser profilometer offers the advantage that an entire laser line can be projected
onto the surface transverse to the direction of travel; thus, the intensity can be measured
on the entire width of the rail head simultaneously. The qualitative analysis shows that
the different surface conditions can be detected using the intensity measurements obtained
using the laser profilometer. An identifiable high intensity plateau (value of approx. 889
on a scale from 0 to 1023) is evident, representing the artificial running surface. Lateral
displacements of the laser profilometer influence the intensity profile. A flattening of the
profile occurs, as well as the attenuation and amplification of peaks in the corroded edge
areas. A local intensity peak is measured beyond the right boundary of the running surface
due to the irregular thickness of the corroded edge layers. A value of 415 is measured
for the central position. The measured intensity increases by 97 for a deflection to the left
position. The discrepancy is caused by varying reflection conditions, which are imposed by
lateral deflection and correlate with the number of acquired data points. For the central
position, 1696 data points are acquired; however, for the left position, it is reduced by 334
data points. The exposure time must be set manually and constantly for the measurement.
This parameter has a significant influence on the result. The entire intensity plateau is
no longer detectable at an exposure time of 0.1 ms. Not enough light is reflected to the
receptor element. The number of acquired data points at an exposure time of 0.1 ms is
reduced by approx. 65.6% compared to a measurement at an exposure time of 1 ms. If the
exposure time is increased, the differences between the running surface and the edge areas
increasingly disappear. This can be observed in the average of the intensity profile. The
average intensity is 514.72 at an exposure time of 0.5 ms. It increases to 744.66 at an exposure
time of 1 ms. This corresponds to an increase of 44.7%. The detected width of the running
surface increases with exposure time. At an exposure time of 1 ms, the width increases
by 25.8% compared to an exposure time of 0.5 ms. It is possible to calculate not only the
position of the running surface but also its width wRS. If the width of the running surface is
calculated based on the method proposed in Section 2.4 and eight measurements while the
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ring is not rotating, the width of the running surface becomes, approximately, 12.22 mm. If
the width of the running surface is determined automatically based on a transverse profile
subdivided into blocks to identify an intensity plateau as stable as possible, an average
value of 9.31 mm is obtained without a lateral disturbance movement. The different values
arise due to the subdivision of the profile into blocks with a width of 2 mm. Blocks are
only assigned to the running surface if their average intensity is within the defined range
Itol < Ii < Imax. The blocks at the boundaries possess a lower average intensity Ii and are,
consequently, not assigned to the running surface. The automatic methodology, therefore,
determines a more conservative estimate of the running surface width. Lateral disturbances
have no relevant influence on the determined width of the running surface. The determined
widths are in the range between 9.14 mm and 9.25 mm, with standard deviations between
1.51 mm and 1.54 mm.

The width of the projected line is crucial for the quality of the running surface detection,
especially considering lateral deflections. If the setup is deflected by 10.5 mm to the left or
right, the intensity plateau flattens slightly at the edges. If the lateral deflection is increased
further, the plateau collapses entirely. Parts of the emitted light are then no longer detected
on the receptor element and are reflected into the surrounding area. When installing the
profilometer on the train, care must be taken that it projects a line onto the rail head that
is wide enough to measure at larger lateral deflections. A projected line width of at least
100 mm could be required for a UIC 60 rail head with a width of 72 mm. This problem
is overlapped by vertical disturbance movements caused by the suspension of the train
(primary suspension when installed on the bogie frame). The width of the projected line
changes with the measuring distance. Thus, the line width is 44.3 mm at a measuring
distance of 105 mm. At the reference distance of 125 mm, the line width is 51 mm. At a
measuring distance of 145 mm, the width of the projected line is 57.8 mm. The reference
distance of 125 mm can only be kept constant for laboratory tests. The influence of the
curvature of the rail head surface on the intensity measurement has to be verified by tests
on the train.

4.2. Lateral Compensation

Only 0.04% of the measured data points are outside the running surface for mea-
surements without lateral disturbances. Lateral disturbances with wavelengths between
38.93 m and 97.70 m increase the error rate to approx. 0.50%. For a smaller wavelength
of 18.85 m, 1.56% of the measured data points are positioned outside the running surface.
A phase shift of the moving sensor compared to the controller target signal is visible in
Figures 15 and 16. It can be assumed that the technical limits of the installed components
and the implemented controller are being reached at this point. For example, the maximum
step size of the controller signal is limited. Consequently, the positioning error with respect
to the centerline of the running surface shows an increase for lateral disturbance motions
with shorter wavelengths. The positioning error increases from 1.21 mm at a wavelength of
97.70 m to 1.40 mm at a wavelength of 18.85 m. The positioning accuracy is affected by the
selection of the block size ∆yB. The target signal is derived from the central position of the
respective block. The smaller the block length selected, the more precise the positioning
can be. On the other hand, the positioning becomes increasingly unstable since individual
outliers in the profile influence the determined maximum value and thus the target signal.

It must be considered that, during the measurement on the train, additional external
disturbances such as humidity and vibrations are to be expected. The actuator system
would have to be designed to be sufficiently robust and stiff to avoid the disturbance
of the measurement results. The laser profilometer must be positioned in front of the
measurement setup in the direction of travel to achieve minimum delay time between
running surface detection and the positioning of the sensors above the running surface.
It is recommended to install two laser profilometers to cover both driving directions. In
the laboratory test series, a visible running surface with already clearly corroded edge
areas is assumed. In the rail network, freshly ground or recently ground rail heads can
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be encountered. Additionally, the running surface may be subject to impurities, small
accumulations of corrosion, or indentations in the rail network, which may additionally
influence the measurement. In this case, it is useful to include the simultaneously measured
transverse profile of the rail head for positioning.

The maximum possible sampling frequency of the profilometer is not only limited
by the measuring range to be achieved but also by the performance of the setup. The
current laboratory setup can achieve a maximum sampling frequency of 300 Hz because
of the amount of data to be processed. At a speed of 7.5 km h−1, this corresponds to a
longitudinal distance of 6.98 mm between the measured intensity profiles.

5. Conclusions

Measurements of the acoustic rail roughness must be performed within the running
surface despite the lateral disturbing movements of the train. Various concepts have been
presented based on combinations of the available sensors to acquire the width and the
lateral position of the running surface. A single laser triangulation sensor is only suitable to
a limited extent for distinguishing different surface states based on the measured intensity.
For a metallic surface, the standard deviation of the intensity was 3.21%, whereas the
value for the corroded surface was 1.00%. A laser profilometer could clearly distinguish
between the corroded surfaces of the edge areas and the non-corroded surface, called the
running surface, based on the measured intensity. A stable plateau with an intensity of 889
(on a scale between 0 and 1023) was measured for the running surface. For the corroded
edge areas, intensities considerably below the plateau of 889 were measured and varied
in their quality of coverage of the corrosion layer. Consequently, the concept of a moving
measurement line consisting of four laser triangulation sensors and a laser profilometer was
evaluated experimentally. Both the width and the lateral position of the running surface
could be determined. The setup achieved a maximum mean positioning error of 1.40 mm
with respect to the target signal (centerline of the running surface) at a driving speed of
7.5 km h−1 and a lateral disturbance movement with a wavelength of 18.85 m. Moreover,
98.44% of the measured data points are located inside the running surface.

The system must be validated on the train at line speed, considering the external
disturbances that occur. Various forms of the running surface must be considered. In the
future, the installation of the proposed running surface detection concept could provide
information about different positions of the running surface on the rail head. Relations
between operational parameters such as vehicle types, etc., and the position of the running
surface could be systematically investigated. The detection of the lateral position of the
running surface enables the application of an optical measuring system for the systematic
detection of the rail roughness and thus an improvement in the rail network’s condition.
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Appendix A

This section contains supplementary figures to the main part. The experimental setup
including the entire ring with artificial running surface is shown in Figure A1.
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Appendix B

This section contains supplementary illustrations to describe the edges of the running
surface and the position of the moving sensor. In the following, various plots of measure-
ments with a length of 100 m and one ring rotation, respectively, while the compensation
setup is moving laterally with wavelengths 97.70 m, 78.07 m, 58.74 m, and 38.93 m, are
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moving laterally with an amplitude of 10.5 mm  and a wavelength of 97.70 m  for a length of 100 m. 𝑦௠௜௡: left running surface boundary; 𝑦௠௜௡,௙: left running surface boundary (filtered); 𝑦௠௔௫: 
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Figure A3. Illustration of the determined running surface boundaries from laser profilometer inten-
sities, the theoretical set point, the practical set point, and the actual lateral position of the laser 
displacement sensor while the compensation setup is moving laterally with an amplitude of 10.5 mm and a wavelength of 97.70 m for one ring rotation. 𝑦௠௜௡: left running surface boundary; 𝑦௠௜௡,௙: left running surface boundary (filtered); 𝑦௠௔௫: right running surface boundary; 𝑦௠௔௫,௙: right 

Figure A2. Illustration of determined running surface boundaries from laser profilometer intensities
and the actual lateral position of the laser displacement sensor while the compensation setup is
moving laterally with an amplitude of 10.5 mm and a wavelength of 97.70 m for a length of 100 m.
ymin: left running surface boundary; ymin, f : left running surface boundary (filtered); ymax: right
running surface boundary; ymax, f : right running surface boundary (filtered); yE: actual lateral
position of the measuring laser displacement sensor (encoder).
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Figure A3. Illustration of the determined running surface boundaries from laser profilometer in-
tensities, the theoretical set point, the practical set point, and the actual lateral position of the laser
displacement sensor while the compensation setup is moving laterally with an amplitude of 10.5 mm
and a wavelength of 97.70 m for one ring rotation. ymin: left running surface boundary; ymin, f : left
running surface boundary (filtered); ymax: right running surface boundary; ymax, f : right running
surface boundary (filtered); y0: theoretical set point from profilometer intensities, yC: actual set point,
yE: actual lateral position of the measuring laser displacement sensor (encoder).
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Figure A4. Illustration of determined running surface boundaries from laser profilometer intensities
and the actual lateral position of the laser displacement sensor while the compensation setup is
moving laterally with an amplitude of 10.5 mm and a wavelength of 78.07 m for a length of 100 m.
ymin: left running surface boundary; ymin, f : left running surface boundary (filtered); ymax: right
running surface boundary; ymax, f : right running surface boundary (filtered); yE: actual lateral
position of the measuring laser displacement sensor (encoder).
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tensities, the theoretical set point, the practical set point, and the actual lateral position of the laser
displacement sensor while the compensation setup is moving laterally with an amplitude of 10.5 mm
and a wavelength of 78.07 m for one ring rotation. ymin: left running surface boundary; ymin, f : left
running surface boundary (filtered); ymax: right running surface boundary; ymax, f : right running
surface boundary (filtered); y0: theoretical set point from profilometer intensities, yC: actual set point,
yE: actual lateral position of the measuring laser displacement sensor (encoder).
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Figure A6. Illustration of determined running surface boundaries from laser profilometer intensities
and the actual lateral position of the laser displacement sensor while the compensation setup is
moving laterally with an amplitude of 10.5 mm and a wavelength of 58.74 m for a length of 100 m.
ymin: left running surface boundary; ymin, f : left running surface boundary (filtered); ymax: right
running surface boundary; ymax, f : right running surface boundary (filtered); yE: actual lateral
position of the measuring laser displacement sensor (encoder).
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Figure A7. Illustration of the determined running surface boundaries from laser profilometer in-
tensities, the theoretical set point, the practical set point, and the actual lateral position of the laser
displacement sensor while the compensation setup is moving laterally with an amplitude of 10.5 mm
and a wavelength of 58.74 m for one ring rotation. ymin: left running surface boundary; ymin, f : left
running surface boundary (filtered); ymax: right running surface boundary; ymax, f : right running
surface boundary (filtered); y0: theoretical set point from profilometer intensities, yC: actual set point,
yE: actual lateral position of the measuring laser displacement sensor (encoder).
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Figure A8. Illustration of determined running surface boundaries from laser profilometer intensities
and the actual lateral position of the laser displacement sensor while the compensation setup is
moving laterally with an amplitude of 10.5 mm and a wavelength of 38.93 m for a length of 100 m.
ymin: left running surface boundary; ymin, f : left running surface boundary (filtered); ymax: right
running surface boundary; ymax, f : right running surface boundary (filtered); yE: actual lateral
position of the measuring laser displacement sensor (encoder).
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Figure A9. Illustration of the determined running surface boundaries from laser profilometer inten-
sities, the theoretical set point, the practical set point, and the actual lateral position of the laser 
displacement sensor while the compensation setup is moving laterally with an amplitude of 10.5 mm and a wavelength of 38.93 m for one ring rotation. 𝑦௠௜௡: left running surface boundary; 𝑦௠௜௡,௙: left running surface boundary (filtered); 𝑦௠௔௫: right running surface boundary; 𝑦௠௔௫,௙: right 
running surface boundary (filtered); 𝑦଴: theoretical set point from profilometer intensities, 𝑦஼ : ac-
tual set point, 𝑦ா: actual lateral position of the measuring laser displacement sensor (encoder). 
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