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Abstract: Breast cancer patients undergoing neoadjuvant chemotherapy (NAC) require precise and
accurate evaluation of treatment response. Residual cancer burden (RCB) is a prognostic tool widely
used to estimate survival outcomes in breast cancer. In this study, we introduced a machine-learning-
based optical biosensor called the Opti-scan probe to assess residual cancer burden in breast cancer
patients undergoing NAC. The Opti-scan probe data were acquired from 15 patients (mean age:
61.8 years) before and after each cycle of NAC. Using regression analysis with k-fold cross-validation,
we calculated the optical properties of healthy and unhealthy breast tissues. The ML predictive
model was trained on the optical parameter values and breast cancer imaging features obtained from
the Opti-scan probe data to calculate RCB values. The results show that the ML model achieved a
high accuracy of 0.98 in predicting RCB number/class based on the changes in optical properties
measured by the Opti-scan probe. These findings suggest that our ML-based Opti-scan probe has
considerable potential as a valuable tool for the assessment of breast cancer response after NAC and
to guide treatment decisions. Therefore, it could be a promising, non-invasive, and accurate method
for monitoring breast cancer patient’s response to NAC.
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1. Introduction

Breast cancer is a common disease that causes significant morbidity and mortality
worldwide, with an estimated 43,250 women expected to have died from breast cancer in
the US in 2022 [1]. Neoadjuvant chemotherapy (NAC) is a standard treatment for locally
advanced and inoperable breast cancer [2]. However, measuring tumor response to NAC is
challenging, and no gold standard exists for assessing tumor response before surgery [3].
Pathological complete response (pCR) is often used as a marker of chemosensitivity and
survival outcomes [4,5]. Still, it does not provide precise information on the amount of
residual tumor [6,7], making it difficult to predict overall survival [8] accurately.

The residual cancer burden (RCB) method is a pathological approach that quantifies
the residual disease in the breast or regional lymph nodes after chemotherapy [9]. RCB
provides a standard for classification of the extent of residual disease based on a computed
RCB index that uses the tumor bed area (TBA), the extent of in situ disease (IS) and invasive
cancer (IC), and the number of involved lymph nodes (LNs) [9]. RCB is scored on a scale
of 0–3, with RCB-0 (RCB score = 0) corresponding to pCR, RCB-I (0 < RCB score ≤ 1.36),
RCB-II (1.36 < RCB score ≤ 3.28), and RCB-III (RCB score > 3.28) [10]. However, RCB
has been highly validated as reproducible and prognostic, small cohorts limit its accurate
prognosis in breast cancer subtypes [7].
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Near-infrared (NIR) biosensing devices, such as diffuse optical tomography (DOT),
have shown promise for breast cancer detection and monitoring. These techniques utilize
the unique optical properties of biological tissue to detect biomarkers and molecular
changes associated with cancer lesions. NIR-DOT is a non-invasive, easy-to-use point-of-
care bedside tool [10] that can potentially measure responses to NAC for clinical decision-
making and prognostication [11], providing critical indicators of treatment response, such
as tumor hemoglobin distributions [12] and metabolism [13]. For example, researchers used
NIR-DOT with ultrasound localization to image heterogeneous hemoglobin distribution
in large breast cancers [14]. In contrast, others introduced a compact ultrasound-guided
NIR-DOT system for non-invasive imaging of breast cancer [15] and used both MRI and
diffuse optical tomography to improve breast cancer detection [13]. However, accurately
predicting optical parameters from conventional NIR-DOT imaging techniques can be
challenging due to nonlinear photon scattering and fewer known measurements than
unknowns [16].

To address this challenge, ongoing research is being conducted at Simon Fraser Uni-
versity (SFU) to develop a proprietary near-infrared optical breast-scanning (Opti-Scan (US
Patent: US20220409058—HANDHELD PROBE AND SYSTEM FOR IMAGING HUMAN
TISSUE)) probe to detect breast cancer. The Opti-Scan probe collects backscattering light
intensity from the breast surface to identify abnormalities [10]. Four generations of the
probe have been designed and successfully tested for cross-sectional imaging. The first
generation introduced in 2014 utilized eLEDs with a multiwavelength pointed-beam illumi-
nation source, and subsequent developments led to the 2016 generation, which underwent
clinical trials on patients with known breast cancer, demonstrating high accuracy at the
Jim Pattison Outpatient Care and Surgery Centre (JPOCSC) [10]. The current Opti-Scan
probe was developed to further enhance the probe’s performance, incorporating improve-
ments in the linear CCD sensor, light intensity control, noise reduction, and data collection
process. In addition, the imaging system of the previous version, which was based on
the diffusion equation (DE) and had some limitations, was improved by introducing the
modified diffusion equation (MDE). This improved imaging system accurately determines
absorption values and provides clearer images of various breast phantoms [17] and breast
tissues [18]. However, since the MDE was slow in real-time imaging, a machine learning
(ML) algorithm was developed to predict scattering coefficients of breast tissues [19], and
an ML ensemble method was used to classify liquid phantoms into healthy and unhealthy
classes [20]. The absorption coefficient needs to be measured to enable image reconstruction
and accurate calculation of RCB. Therefore, in collaboration with BC Cancer (BCCA) in
Abbotsford, we developed a new method that utilizes a machine learning algorithm to
estimate the absorption coefficients, potentially improving the accuracy of the Opti-Scan
probe. This method was tested on fifteen breast cancer patients undergoing neoadjuvant
chemotherapy (NAC) and monitored periodically by the probe. The ML model accurately
differentiated between cancerous and non-cancerous tissues, demonstrating the probe’s
potential as a non-invasive diagnostic biosensor for breast cancer detection.

The RCB index/class is predicted according to calculations of the area under the
curve of residual disease based on changes in each patient’s optical properties. This
approach shows promise in accurately classifying patients based on their response to
treatment and predicting their prognosis. Utilizing the Opti-Scan probe with the RCB
index/class prediction methods shows promise as a more comprehensive and non-invasive
method for monitoring breast cancer treatment efficacy and improving patient outcomes.
However, further studies with larger patient cohorts are needed to validate these findings
and determine the clinical utility of this approach.
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2. Materials and Methods
2.1. NIR Opti-Scan Probe for Breast Tissue Imaging and Cancer Detection

The NIR Opti-Scan probe (Figure 1) is a portable device designed for optical imaging
of breast tissues. It is a non-invasive imaging modality that utilizes the near-infrared (NIR)
region of the electromagnetic spectrum, where biological tissues’ absorption and scattering
properties are relatively low, allowing for deeper tissue penetration and imaging [17].
The probe consists of a charge-coupled device (CCD) with 2048 active pixels and a 14 µm
pixel pitch, providing an effective imaging area of 28.672 mm (2048 × 14 µm). Two
encapsulated light-emitting diodes (eLEDs) are mounted 15 mm away from the two sides
of the CCD detector to provide symmetrical light illumination. Each eLED can illuminate
light with selectable wavelengths of 690, 750, 800, and 850 nm in the NIR region [21].
These specific wavelengths were selected based on the large difference between extinction
coefficients in the four primary components in breast tissue, including oxyhemoglobin
(HbO2), deoxyhemoglobin (Hb), fat, and water (H2O) [22]. Previous studies have shown
that the absorption coefficients of these components depend on the wavelength [12,23].
Thus, the selected wavelengths allow for optimal sensitivity to the breast tissue composition.
For more details about the probe specifications, please refer to Table 1.
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Figure 1. Overview of the Opti-Scan probe and system: (a) front-end view of the probe, showing
the light sources and linear CCD; (b) diagram illustrating the CCD sensor and LED arrangement in
the head of the probe; (c) photograph of the Opti-Scan probe connected to a laptop running custom
software and a schematic diagram of the sensory system, highlighting the different components.
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During imaging, reflectance versus the distance to the light source is collected by the
CCD and acquired by a computer simultaneously. The software interface communicates
with the probe via USB 2.0 and contains a graphical user interface (GUI) for the operator’s
ease of use. The GUI comprises a series of tabs and data graphs for various operations,
including manual and periodic light source selection, CCD integration time setting, and
data collection mode [21].

The image reconstruction algorithm is a crucial NIR handheld Opti-Scan probe com-
ponent. The algorithm involves the collection of raw data obtained from 2048 pixels in
the CCD array, which are acquired from the surface of the tissue. These raw data are then
processed using a series of computational steps to reconstruct an image of the tissue’s
internal optical properties. To reduce noise in the raw data, the reflectance data are aver-
aged from 16 contiguous pixels, resulting in 128 points of raw reflectance data. Then, the
tissue’s optical properties, including absorption and scattering coefficients, are determined
by fitting the experimental reflectance obtained by the CCD to the theoretical reflectance
values calculated by the modified diffusion equation (MDE) solution. Finally, the opti-
cal parameters calculated for each position in the tissue are converted to cross-sectional
optical images.

Table 1. Specifications of the NIR handheld Opti-Scan probe.

Parameter Value

Imaging technology Near-infrared optical imaging
Detector type Linear CCD

Detector resolution 2048 pixels
Image resolution 128 × 128 pixels

Imaging area 28,672 mm (2048 × 14 µm)
Pixel pitch 14 µm

Detector sensitivity 1800 (V/Lx.S) @ 660 nm
Light source Encapsulated light-emitting diodes (eLEDs)
Wavelengths 2 × (690, 750, 800, and 850 nm)

Distance from CCD 15 mm
Max. frame rate 24

Power consumption 100 mA @ 5V
Radiated power 20 mA

The Opti-Scan probe’s potential for non-invasive and accurate imaging of biological
tissues, particularly for breast cancer diagnosis and monitoring, has been demonstrated
in various studies. One such study presented a reconstructed 2D image based on the
absorption parameters for a physical phantom with a spherical abnormality of size 4.5 mm
in the center, as shown in Figure 2 [17]. In another recent study [18], the Opti-Scan
probe’s MDE imaging was used to measure the optical properties of 15 breast cancer
patients accurately. The probe used different slices of images to map each patient’s blood
concentrations to optical 3D imaging reconcentration, as shown in Figure 3a. The 3D
optical images of a patient were captured using 12 slices at 690 nm, and a 3D volume model
of the tumor was created using MATLAB rendering capabilities, as shown in Figure 3b.
These findings highlight the Opti-Scan probe’s potential for precise breast cancer detection
and monitoring.
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Figure 3. Reconstructed 3D optical image of a patient’s tumor using 12 slices at 690 nm: (a) recon-
structed image using the Opti-Scan probe’s MDE imaging; (b) 3D volume model of the tumor created
using MATLAB rendering capabilities, with gaps between the adjacent slices interpolated [18].

2.2. Study Desing and Scanning Procedure

This preliminary study included fifteen female patients (mean age: 61.8 years) diag-
nosed with early breast cancer and eligible for neoadjuvant intravenous systemic therapy at
BC Cancer Abbotsford. The patients received six to eight cycles of treatments, and optical
scans were performed separately for each patient before and after each treatment cycle to
evaluate the tumor’s response to treatment. Two trained Ph.D. students conducted the
optical scans, following a standardized scanning procedure established by the scanning
team. The procedure included the determination of the reference location, the optimal
direction of the scan, the probe’s location and orientation, the number of slices required to
capture the whole tumor, and the interval distance between each slice (see Figure 4). The
optical scans were performed on both the cancerous lesions and the healthy regions of the
contralateral breast, with the reference selected based on the approximate location of the
tumor underneath the skin.
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Figure 4. Tumor localization scanning procedure. This figure shows the tumor localization scanning,
including the determination of the reference location, optimal scan direction, probe placement, and
number of slices needed.

To evaluate the accuracy of the optical measurements, three metrics were compared:
pathology, palpation (PALP), and ultrasound (US). Pathological information about each
tumor was obtained through a needle biopsy, which served as the gold standard for
tumor size measurement. The oncologist assessed the tumor size and texture by palpation
during each visit to determine the treatment progress. The patients received ultrasound
screening before, during, and after the treatment cycle to evaluate the tumor’s response
to treatment. Table 2 presents the tumor size (cm) before and after treatment measured
with palpation and ultrasound for a subset of 3 of 15 enrolled patients. As an example, the
ultrasound measurement of patient 13′s tumor size during the pretreatment screening was
5.0 × 5.1 × 4.1 cm (length × width × depth).

Table 2. Patient characteristics and treatment progress: tumor size (cm) before and after treatment
measured with palpation (PALP) and ultrasound (US). Note: “NP” indicates “not palpable” and
“NA” indicates “not available.

Patient Tool
Tumor Size (cm)

Pretreatment Post-
Treatment 1

Post-
Treatment 2

Post-
Treatment 3

Post-
Treatment 4

Post-
Treatment 5

Post-
Treatment 6 Post-Chemo

12 PALP 2.5 × 2.5 3 × 3 NP NP NP NP NP NA

US 3.2 × 1.3 × 2.0 NA NA NA NA NA NA NA

13 PALP 10 × 9 7 × 8 5 × 6 3.5 × 3.5 2.5 × 2 2.5 × 2 NP NA

US 5.0 × 5.1 × 4.1 NA NA NA NA 3.2 × 1.4 × 1.7 NA NA

26 PALP 8 × 10
3 4 × 3 NA 5 × 5.5 3 NA 5.5 × 5.5 NA

US 3.8 × 3.9 × 2.3
1.9 × 1.7 × 1.9 NA NA NA 1.0 × 1.3 × 0.9

1.0 × 1.0 × 0.5 NA NA 0.9 × 1.0 × 0.7
0.4 × 0.4 × 0.5
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2.3. Machine Learning Models for Breast Optical Properties and Residual Cancer Burden

In this study, we aimed to use an innovative approach to measure pathological residual
cancer burden (pRCB) values, considering the complexity of pRCB measurements. We
utilized the Opti-Scan probe to measure optical RCB values, referring to them as optical
residual cancer burden (oRCB). By estimating breast tissue’s optical properties, including
absorption and scattering coefficients, we established the correlation between pRCB and
oRCB values. The absorption coefficients were measured using reflectance data obtained
from the probe, serving as the basis for determining the optical RCB value and predicting
corresponding pathological RCB values. To accurately calculate optical properties based on
reflectance measurements, were utilized machine learning (ML) techniques.

Review of Current ML Methods for Breast Optical Properties and Residual Cancer Burden

This section reviews several ML models used to estimate breast optical properties and
residual cancer burden. Conventional image reconstruction algorithms estimate optical
tissue property distributions ( x̂∗) by minimizing the regularized objective function in
Equation (1) [24]:

x̂∗ = argmin
{

1
2
||F(x̂)− y||22 + λR(x̂)

}
(1)

where λ is the regularization hyperparameter, and R (·) is a regularization term, usually
the standard Tikhonov regularization (R(x) = λ||x||2). These model-based algorithms are
computationally expensive, limiting their practicality and real-time applications [25].

Recently, machine learning applications have shown the potential to improve the
accuracy of reconstructed images and solve inverse scattering problems [26]. For example,
Feng et al. [27] proposed a multilayer perceptron (MLP) feedforward neural network for
2D-DOT image reconstruction, but its performance was reduced significantly for limited-
angle acquisition. Yoo et al. [28] designed a convolutional neural network for 3D-DOT
inverse scattering problems to determine the nonlinearity of the inverse scattering problem.
Machine learning algorithms have also been used to estimate residual cancer burden (RCB).
Ref. [29] highlights the potential of machine learning with multiparametric MRI (mpMRI)
to predict the complete pathological response (pCR) to neoadjuvant chemotherapy (NAC)
in breast cancer patients. In another study [30], deep-learning-derived volumes of locally
advanced breast cancer on MRI showed comparable performance to functional tumor
volume in predicting residual disease after chemotherapy (AUC = 0.76). These findings
suggest the potential of deep-learning-based segmentation for accurate assessment of tumor
load and residual cancer burden in breast cancer patients. A related study [31] investigated
artificial intelligence-based segmentation of residual tumor burden after neoadjuvant
therapy as an objective and reproducible solution for tumor response scoring. Despite
various ML models for residual breast measurement using MRI and other technologies,
there remains a need to evaluate breast optical properties and residual cancer burden,
specifically through diffuse optical tomography (DOT) technologies. To address this need,
our study was focused on leveraging highly accurate ML algorithms and optimizing the
performance of the Opti-Scan probe for accurate estimation of breast optical properties and
residual cancer burden.

2.4. Proposed ML Model for Breast Optical Properties and Residual Cancer Burden

In this study, we aimed to predict optical properties in breast tissue using regression
analysis. The training dataset (D) consisted of 640 phantom data collected using various
breast phantoms, each with 128 different reflectance, scattering, and absorption values.
These phantoms simulate breast tissue with varying absorption levels, which can mimic the
optical properties of normal and cancerous breast tissue. The absorption coefficients were
measured using the MDE [17], which utilizes the modified diffusion equation to measure
the optical properties of phantoms.
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The test dataset (T) contains 15 sets of testing data, each comprising 128 data re-
flectance values collected by the probe for each patient, denoted as X1, X2, . . . , X128. The
ML-optical model aims to train the training dataset based on phantom data and predict the
corresponding unknown absorption coefficients (Y1, Y2, . . . , Y128) of normal and cancerous
breast tissue based on the reflectance values obtained from the breast phantoms.

To estimate the optical properties, we employed a predictive model (F) that uses
k-fold cross-validation, where the training set was split into k smaller subsets. Given the
exponential nature of the reflectance curve in the patient data, polynomial regression was
selected as the appropriate method. To determine the optimal polynomial degree, we fit
polynomials of varying degrees to the training data and compared their performance on
the testing data.

We employed the gradient descent algorithm during the training process and specified
two important hyperparameters: the learning rate and the iteration count. The learning
rate controlled the step size for each iteration, and we set it to 0.5 in this study. The iteration
count determined the number of times the model updated the weights and biases, and we
performed 10,000 iterations to ensure convergence and optimize the model’s performance.
We monitored the convergence by calculating the cost function at each iteration. We
visualized the results by plotting the cost against the number of iterations, demonstrating
the successful training of the polynomial regression model with a degree of 4.

To assess the accuracy of our model, we evaluated two metrics on the testing data: the
mean square error (MSE) and the R2 score. The MSE was calculated to quantify the average
squared difference between the predicted and actual absorption coefficients, yielding an
impressive value of 0.011%. Additionally, the R2 score, which measures the proportion of
the variance in the target variable explained by the model, demonstrated an accuracy of 90%.
These metrics provided valuable insights into the model’s performance in capturing the
optical coefficients for normal and cancerous breasts across patients, slices, and treatments
using eLED1 and eLED2.

Figure 5 depicts the path of light through breast tissue; two light paths from eLED1
and eLED2 converge at (X1, Y1) to measure the absorption coefficient as a superposition
of the coefficients of both eLED. Figure 6a displays absorption curves for healthy and
unhealthy breast tissue by combining estimated absorption properties obtained by each
eLED. The oRCB values were subsequently derived by subtracting absorption values from
cancerous breast tissue from corresponding normal tissue values for all patients, slices, and
treatments. The area under the curve (AUC) of residual disease was computed from the
absorption difference (i.e., error) between healthy and unhealthy tissue values for all slices
in each treatment, as illustrated in Figure 6b.

This dataset and methodology formed the foundation for developing and evaluating
the machine learning (ML) model. The ML model uses reflectance data to predict the optical
properties of breast tissue, which, in turn, allows for the estimation of optical residual
cancer burden. The oRCB values are correlated with the pRCB index. To calculate the
oRCB values for fifteen patients, we compared the AUC values of residual disease for
each treatment. Then, we divided the smallest value (usually for the last treatment) by the
largest value (usually for pretreatment).

Furthermore, another regression analysis was employed to determine the unknown
pRCB values based on available values. The new training dataset consisted of eight oRCB
values and their eight corresponding known RCB values obtained from the BC Cancer
Agency. This training dataset was used to develop a regression model. The test dataset,
which we used to evaluate the model’s performance, consisted of seven oRCB values as
input and seven corresponding unknown RCB values as outputs. We could predict the
unknown pRCB values for each of the seven cases by applying the regression model to the
test data.
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3. Results: Machine-Learning-Based Method for Breast Tissue Optical Property
Determination and Treatment Response Monitoring
3.1. Optical Property Determination

In this section, we present our study’s results in using a machine learning (ML)
predictive model to determine the optical properties of healthy and unhealthy breast
tissues. Figure 7 shows the absorption curves for each patient’s healthy and unhealthy
breasts, represented by the black and red curves. The black curves were used as a baseline
to detect changes in optical parameters. The red curve should fit the black curve when
there is no tumor. However, deviations indicate changes in the optical properties due to
the tumor’s presence.
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3.1.1. Patient 12

For patient 12, the ML model indicated that slice #4 had the highest absorption
concentrations, consistent with palpation (palpation reported slice #4 as the reference). The
noticeable changes in optical properties observed in slices #3 to #5 are clear evidence of the
presence of the tumor.

3.1.2. Patient 13

For patient 13, the model indicated that slice #7 (or #8) reflected the highest absorption
concentrations. The largest optical changes reflecting the tumor were observed in slices #5
to #9.

3.1.3. Patient 26

For patient 26, the absorption curve in slice 1 was large, likely due to the nipple effect.
This patient had two tumors, and palpation reported slice #3 as the reference. The model
found a tumor on the right side of slice #3, representing a higher concentration of the larger
tumor, but the smaller tumor was not reflected in this slice. Slice #6 showed the largest
total changes in optical properties since it showed both tumors’ optical properties.
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Figure 7. Absorption curves at 690 nm were generated by ML for patients (a) 12, (b) 13, and (c) 26
during pretreatment screening. Black curves: healthy breast tissue. Red curves: unhealthy tissue
affected by the tumor. Deviations from the black curve signal change in optical properties due to
tumor presence.

3.2. Treatment Response Monitoring and Residual Cancer Burden (RCB)

In this section, we present the results of the ML model for treatment response moni-
toring and prediction of residual cancer burden in breast tissues. Figure 8 shows the AUC
of residual disease for all slices and treatments for selected patients, providing valuable
information about patient response to treatments.
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Figure 8. ML-based treatment response monitoring for all slices and treatments at a wavelength of
690 nm in patients (a) 12, (b) 13, and (c) 26, showing the absorption differences (total errors) between
healthy and unhealthy tissue values and providing valuable information about patient’s response
to treatments.

3.2.1. Patient 12

As shown in Table 2, the tumor volume decreased and became not-palpable (NP) after
the second post-treatment scan, indicating a complete response (pRCB# = 0). The ML model
confirmed the reduction in tumor size after the second post-treatment scan and further
validated the continued reduction, indicating a complete treatment response (pRCB# = 0).

3.2.2. Patient 13

Patient 13 received seven cycles of NAC, and the tumor volume decreased gradu-
ally (pRCB# = 0), also confirmed by the ML model. The model indicates that patient
13 responded completely to the chemotherapy drugs without any residual cancer burden
(pRCB# = 0).

3.2.3. Patient 26

Patient 26 had multiple tumors in her right breast, some shrank during chemotherapy,
but others remained after the treatment. Despite undergoing six treatment cycles, residual
tumors were observed in post-treatment scans. As shown in Table 2, the tumor volume
decreased initially on the post-chemotherapy scan, but the subsequent scans showed
incomplete elimination of the tumor. The ML model confirmed the presence of residual
disease after neoadjuvant chemotherapy.

Table 3 shows the estimated AUC of residual disease for the healthy and unhealthy
sides of three patients across all slices and treatments and their corresponding errors. The
oRCB values were calculated as the proportion of the area containing cancer by comparing
the AUC values of residual disease for each treatment and dividing the smallest value
(usually for the last treatment) by the largest value (usually for pretreatment).

Table 4 displays the known pRCB values and classes, with “NA” representing the
unknown values we aimed to calculate using Opti-Scan. The information provided in
Table 3, including the errors for treatments, is also shown in Table 4 for all patients, allowing
us to estimate the oRCB for all 15 patients. Negative oRCB values were replaced with
zero since they are not biologically plausible. Then, the unknown pRCB values for fifteen
patients were predicted using AUC of residual disease values and oRCB values, with
patient 18 excluded due to the lack of data. Table 4 also indicates the predicted pRCB values
and the corresponding classes using cut points at 0, 1.36, and 3.28.
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Table 3. Estimated AUC of residual disease for healthy and unhealthy sides of patients 12, 13, and 26
for all slices and treatments, along with corresponding errors.

Patient AOC Pretreatment
Post-

Treatment
1

Post-
Treatment

2

Post-
Treatment

3

Post-
Treatment

4

Post-
Treatment

5

Post-
Treatment

6

12

Unhealthy 1680.1 1669.2 1679.3 1667.2 1649.3 1652.1 NA

Healthy 1657.1 1657.1 1657.1 1657.1 1657.1 1657.1 NA

Error 22.96 12.04 22.17 9.98 0.00 0.00 NA

13

Unhealthy 1902.9 1929.2 1896.1 1869.0 1844.2 1833.2 1821.5

Healthy 1838.4 1838.4 1838.4 1838.4 1838.4 1838.4 1838.4

Error 64.56 90.88 57.77 30.63 5.89 0.00 0.00

26

Unhealthy 1633.6 1627.3 NA NA NA NA 1627.2

Healthy 1603.7 1593.0 NA NA NA NA 1605.7

Error 39.97 34.34 NA NA NA NA 21.46

Table 4. Prediction of unknown pathological residual cancer burden (pRCB) values and classes using
optical residual cancer burden (oRCB).

Patient Known
pRCB Value

Known
pRCB Class Treatment Unhealthy Healthy Error Predicted

oRCB
Predicted
Unknown

pRCB Value

Predicted
Unknown

pRCB Class

10 3.93 RCB-III
Pre-t 1914.8 1839.3 75.45

53.54 NA NA
Post-t7 1882.9 1842.4 40.40

12 0.00 RCB-0
Pre-t 1680.1 1657.1 22.96

0.00 NA NA
Post-t5 1652.1 1657.1 0.00

13 0.00 RCB-0
Pre-t 1902.9 1838.4 64.56

0.00 NA NA
Post-t6 1821.5 1838.4 0

14 2.51 RCB-II
Pre-t 1657.7 1614.1 43.64

37.37 NA NA
Post-t7 1630.4 1614.1 16.31

15 2.18 RCB-II
Pre-t 1707.1 1601.6 105.51

25.75 NA NA
Post-t7 1630 1602.8 27.176

16 NA NA
Pre-t 2144.2 1983.3 160.95

81.34 5.88 RCB-III
Post-t3 2122.5 1991.6 130.92

17 NA NA
Post-t1 2035 1981.5 53.463

8.75 0.67 RCB-I
Post-t7 1995.6 1990.9 4.679

18 Lack of Data

19 1.6 RCB-II
Pre-t 1860.5 1815.4 45.15

22.7 NA NA
Post-t5 1825.6 1815.4 10.25

21 NA NA
Post-t4 1603.5 1588.8 14.69

54.15 3.93 RCB-III
Post-t7 1615.5 1607.6 7.96

22 NA NA
Post-t1 2034.5 1995.8 38.72

23.47 1.73 RCB-II
Post-t6 2014.5 2005.4 9.09

26 NA NA
Post-t1 1627.3 1594.0 33.34

64.37 4.66 RCB-III
Post-t6 1627.2 1605.7 21.46

29 0.00 RCB-0
Post-t2 2074.2 2073.3 0.89

0.00 NA NA
PC 2028 2054.8 0.00

30 NA NA
Pre-t 2018.2 1983.3 34.91

2.67 0.23 RCB-I
Post-t5 1976.6 1975.7 0.93

31 NA NA
Pre-t 2025.3 1999.3 25.99

0.00 0.00 RCB-0
Post-t5 2001.1 2015.3 0.00
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For model training, the dataset consisted of known oRCB values as features and
corresponding known pRCB values as targets. Regression analysis was used to predict the
unknown pRCB values based on the corresponding known oRCB values.

Table 5 compares the oRCB and the predicted pRCB values for the selected patients,
considering the initial unknown pRCB and predicted values. The table also provides
the corresponding lower and upper confidence intervals, indicating the certainty range
associated with the predicted pRCB values.

Figure 9 presents the prediction of pRCB values using oRCB values. Panel (a) shows
the estimated oRCB values for patients with known pRCB values, while panel (b) presents
the predicted pRCB values for patients with an unknown pRCB index. The scatter plot
displays the relationship between the oRCB and pRCB values. The blue dots represent
the oRCB values, while the red dots represent the predicted pRCB values. The solid red
line represents the linear regression model’s predictions. The light gray area indicates
the confidence intervals for the predicted pRCB values, providing a range of certainty
associated with the predictions. The model achieved an accuracy of 98.301%, as measured
by the coefficient of determination (R2), indicating a strong correlation between the oRCB
and predicted pRCB values. Additionally, the model’s mean squared error (MSE) is 2.775%,
representing the average squared difference between the actual and predicted pRCB values.

Table 5. Comparison of oRCB and predicted pRCB values with their corresponding lower and upper
confidence intervals for selected patients.

Patient oRCB
Value

pRCB
Value

Lower Confidence
Interval

Upper Confidence
Interval

16 81.34 5.88 3.70 8.06

17 8.75 0.67 −1.51 2.85

21 54.15 3.93 1.75 6.11

22 23.47 1.73 −0.45 3.91

26 64.37 4.66 2.49 6.84

30 2.67 0.23 −1.94 2.41

31 0.00 0.00 −2.13 2.22
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Figure 9. Prediction of unknown pathological RCB values using optical RCB values: (a) the estimated
oRCB values for patients with known pRCB values; (b) the pRCB values predicted for patients with
unknown pRCB values. The light gray area indicates the confidence intervals for the predicted
pRCB values.



Sensors 2023, 23, 5761 16 of 18

The oRCB values for all fifteen patients were consistent with the corresponding pRCB
values, indicating the effectiveness of the ML model in predicting treatment response. The
absorption differences (i.e., total errors) between healthy and unhealthy tissue values for all
slices in each treatment concentration change inside a tumor provided valuable information
about patient response to treatments. These results demonstrate the potential of ML-based
methods to predict residual cancer burden and monitor treatment response in breast tissue.

4. Discussion

The results of this study indicate that the ML model is a reliable and effective tool for
the determination of the optical properties of breast tissue. Our findings suggest that the
ML-generated optical properties can be used to obtain optical images, which may aid in
diagnosing breast cancer. However, further studies are needed to investigate the clinical
utility of our ML model for breast cancer diagnosis.

In terms of treatment response monitoring, the ML method showed potential in
detecting gradual tumor volume reduction and confirming complete treatment response in
patients 12 and 13. However, limitations were observed in patient 26, for whom the ML
method was not able to detect remaining tumors after treatment completion. Combining
the ML and MDE [17] methods may enable more accurate treatment response monitoring
in breast tissue.

Furthermore, the predicted pRCB values were found to be highly accurate, with an
accuracy of 0.98%, which is an important clinical implication of this study. The ML model
can provide a more objective and quantitative assessment of treatment response, allowing
for earlier identification of non-responders and potential adjustments to the treatment plan.

Although the findings of this study are promising, it is important to note that the
training dataset size was relatively small and limited to breast phantoms, with only fifteen
patients tested. Therefore, further studies with larger dataset sizes and diverse patient
populations are needed to validate the findings. Additionally, while we used a regression
analysis algorithm in this study, evaluating the performance of other ML algorithms, such
as transfer learning and ensemble learning, in this context would be beneficial.

Overall, the results of this study suggest that ML has the potential to improve the ac-
curacy and objectivity of breast cancer treatment response monitoring and RCB estimation.
However, further studies are needed to confirm these findings and evaluate the clinical
utility of the ML model for breast cancer diagnosis and treatment.

5. Conclusions

In conclusion, using the Opti-scan probe, this study demonstrates the successful
application of machine learning methods to assess residual cancer burden (RCB) in breast
cancer patients undergoing neoadjuvant chemotherapy (NAC). The use of regression
analysis and cross-validation allowed for the calculation of the optical properties of healthy
and unhealthy breast tissues. The ML model trained on the optical parameter values and
breast cancer imaging features obtained from the Opti-scan probe data achieved a high
accuracy of 0.98 in predicting RCB number/class based on changes in optical properties.
These findings suggest that the Opti-scan probe has considerable potential as a valuable
non-invasive tool for monitoring breast cancer patients’ response to NAC and guiding
treatment decisions. In future work, we plan to design machine-learning models based on
patients’ optical data to recreate optical blood concentration images. Overall, this study
provides a strong foundation for further investigation into using machine-learning-based
NIR biosensors for assessing residual cancer burden in breast cancer patients.
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