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Abstract: In recent years, point cloud-based 3D object detection has seen tremendous success. Previ-
ous point-based methods use Set Abstraction (SA) to sample the key points and abstract their features,
which did not fully take density variation into consideration in point sampling and feature extrac-
tion. The SA module can be split into three parts: point sampling, grouping and feature extraction.
Previous sampling methods focus more on distances among points in Euclidean space or feature
space, ignoring the point density, thus making it more likely to sample points in Ground Truth (GT)
containing dense points. Furthermore, the feature extraction module takes the relative coordinates
and point features as input, while raw point coordinates can represent more informative attributes,
i.e., point density and direction angle. So, this paper proposes Density-aware Semantics-Augmented
Set Abstraction (DSASA) for solving the above two issues, which takes a deep look at the point
density in the sampling process and enhances point features using onefold raw point coordinates.
We conduct the experiments on the KITTI dataset and verify the superiority of DSASA.

Keywords: LiDAR; 3D object detection; autonomous driving; set abstraction; farthest point sampling

1. Introduction

Due to its numerous applications in fields such as robotics, virtual reality, and au-
tonomous vehicles, 3D object detection has drawn significant attention. LiDAR sensors
have been broadly employed in autonomous driving systems, which can capture the envi-
ronment surrounding the host vehicle. Compared to the camera, LiDAR can obtain precise
3D contours of objects, thereby enhancing the performance of 3D object detection.

Point cloud-based 3D object detection methods can be roughly classified into three
categories, namely point-based, voxel-based and hybrid-based detectors. Voxel-based
methods discretize points to regular grids and use sparse 3D convolution [1,2] to extract the
voxel feature. However, voxel-based methods cannot avoid quantization loss because of
voxelization. Point-based methods benefit from the pioneer PointNet series methods [3–5],
which directly operate on raw point clouds to obtain the point-level features. Hybrid-based
methods [6,7] fuse the aforementioned two means, making full use of the efficiency of
voxel-based methods and the highly accurate contextual information extracted by point-
based methods.

This paper only focuses on the point-based methods which do not introduce the
quantization loss. Multiple point-based methods [8–10] use PointNet++ [4] and its variants
as their backbone, where the SA module is the most important. The SA module can be
divided into three steps: sampling, grouping and feature extraction. The Farthest Point
Sampling (FPS) [4] is commonly used in the sampling process, aiming to sample key
points evenly distributed throughout the entire point clouds. Nevertheless, the FPS only
considers the distribution balance of the sampling points; thus, it cannot ensure that

Sensors 2023, 23, 5757. https://doi.org/10.3390/s23125757 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23125757
https://doi.org/10.3390/s23125757
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2277-8871
https://orcid.org/0000-0002-7701-8511
https://orcid.org/0000-0002-2285-3851
https://doi.org/10.3390/s23125757
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23125757?type=check_update&version=1


Sensors 2023, 23, 5757 2 of 19

the sampling points are related to the objects. Previous methods tend to sample more
foreground points to increase the recall rate [9–11]. Despite the considerable success of
these sampling techniques, they cannot avoid the issue of the sampling density imbalance
among the foreground objects. For example, they may sample more points in objects with
dense points and sample fewer points in objects with sparse points. This leads to sampling
variances among foreground points with various density. It is worth noting that objects
with dense points often involve sufficient contextual information, so it is unnecessary to
sample more points compared to distant or occluded objects, which may have much fewer
points. This problem can be alleviated by combining the distance in Euclidean space and
feature space. However, this paper argues that the explicit inclusion of density variance is
more straightforward. In this paper, we propose a new sampling strategy called Density-
Semantics-aware Farthest Point Sampling (DS-FPS), which takes the point-level confidence
score and density into account.

In previous work, the SA module primarily focuses on the high-level features of
points, only encoding the low-level relative coordinates. However, raw coordinates of the
points contain valuable information that expresses spatial position relations. Therefore,
we propose the Raw Coordinate Enhancement (RCE) module to further capture the local
context with minimal increase in computing resource. To sum up, our contributions are
as follows:

1. We propose the DSASA framework, which includes the DS-FPS and the RCE module
to balance the foreground points sampling and enhance the point features.

2. We conduct experiments to verify that the DS-FPS can alleviate sampling imbal-
ance, and the RCE module can improve performance with negligible increases in
computing resources.

3. The evaluation conducted on KITTI [12] 3D benchmarks shows that DSASA out-
performs other single-staged point-based detectors under the same experimental
environment in the outdoor scenarios.

2. Related Work
2.1. Point Cloud-Based 3D Detectors

Point cloud-based 3D object detection can be loosely divided into three groups, such
as voxel-based detectors, point-based detectors and hybrid-based detectors.

Voxel-based 3D Detectors
Voxel-based 3D detectors [2,13,14] discretize 3D space into regular 3D grids, which

can be processed by 3D convolution. VoxelNet [13] is the pioneer work that applies 3D
convolution to the point cloud in an end-to-end fashion. However, due to the sparsity of the
point cloud, common 3D convolution may mainly operate on the empty 3D grid, wasting
the computing resources. SECOND [2] applies sparse 3D convolution and submanifold
3D convolution [1] to the 3D object detection, utilizing the GPU hash table to accelerate
the training and inference process. To further reduce the inference time, PointPillars [14]
compress the height dimension to create the pseudo-image feature map, making it possible
to apply efficient 2D convolution. Votr [15], VoxSeT [16] and CT3D [17] introduce the
creative Transformer [18] to voxel-based methods for enhancing the feature interaction.
SST [19] proposes the region grouping for region attention which avoids the widely used
down-sampling operation in voxel-based methods, thus maintaining large receptive fields
all the way.

Point-based 3D Detectors
Another stream is the point-based 3D detectors which directly operate on a raw point

cloud. Profiting from the pioneer PointNet series methods [3–5], point-based methods rely
on the SA module to down-sample point clouds and abstract down-sampled point features.
PointRCNN [8] uses the SA module to down-sample the points and obtain their semantic
features; then, it utilizes the Feature Propagation (FP) layer to propagate the subset features
to the universe set. With the semantic features of points as input, the detection head
generates predictions in the canonical coordinates system. The FPS in the vanilla SA



Sensors 2023, 23, 5757 3 of 19

module only takes into account the points distribution, whereas it cannot guarantee the
sampled points to be beneficial to the prediction generation. Hence, Yang et al. [9] propose
3DSSD, which replaces the partial vanilla FPS with the novel Feature-based FPS (F-FPS),
which conforms to the assumption that features of background points are similar and
features of foreground points in different instances vary a lot. Using 3DSSD implicitly leads
the model to sampling more foreground points, while SASA [10] and IA-SSD [11] explicitly
use a foreground prediction module, guiding the model to sample more foreground points,
which further increases the instance recall. In addition to the PointNet series methods,
Graph Neural Network (GNN) is also an alternative in point-based methods. Point-
GNN [20] constructs the graph on the voxel-down-sampled point cloud and employs GNN
on the local neighborhood to iteratively update the vertex features. BADet [21] does not
construct the graph on raw point clouds, but it focuses on the high-level Region-of-Interest
(RoI) semantic features. Due to relatively slow FPS, point-based detectors take longer to
infer, yet a direct operation on a raw point cloud preserves the point cloud structure.

Hybrid-based 3D Detectors
It is straightforward to mutually conduct transformation between voxel features and

point features. For instance, voxel features can be obtained through aggregation operations
(e.g., max-pooling, average-pooling) on the points in each voxel. Point features can be
obtained via the interpolation of neighboring voxel features. Many researchers fuse voxel-
based and point-based methods into a single architecture, which makes full use of the
efficiency of voxel-based methods and the precise local structure maintenance of point-
based methods. PV-RCNN [6] uses FPS to sample key points, and it aggregates point
features, voxel features and Bird’s Eye View (BEV) features to form more representative
key point features in the first stage. In the second stage, proposals are split into regular
grids. With the help of a small quantity of key points, grid points can capture wider
receptive fields, thus helping refine the proposal. M3DETR [22] uses the Transformer [18]
to model the correlation among different types of features, which varies from the simple
concatenation in PV-RCNN [6]. PV-RCNN++ [7] further narrows down the searching
space, making it more efficient. The hybrid-based methods take advantages of both voxel-
based and point-based methods for 3D point-cloud feature learning while at the expense
of computation.

The proposed DSASA is a point-based 3D object detector, as point-based methods are
capable of preserving more geometric features and achieving a better balance between per-
formance and efficiency when compared to voxel-based methods and hybrid-based methods.

2.2. Point Sampling in Point Cloud Processing

The FPS in PointNet++ [4] is the most commonly used method in point cloud down-
sampling. It iteratively samples the point which has the largest distance with the already
sampled points set. The vanilla FPS focuses on the distance in the Euclidean space, which
cannot guarantee the instance recall. However, not all points are equal in point clouds [11],
even distribution is not optimal for point cloud processing, leading to more sampling
methods coming into being. It is important to note that 3DSSD [9] assumes that background
points share similar features and foreground point features differ from each other. Based on
this assumption, 3DSSD proposes F-FPS, which tends to have a better cover of foreground
points. Merely sampling foreground points is not conducive to the classification due to
the imbalance between foreground and background points, so SSD samples half of the
points using FPS and samples the rest using F-FPS to balance the amount. The method
employed in 3DSSD is implicit, while SASA [10] and IA-SSD use more forthright means
that use Semantic-aware FPS (S-FPS) and simply sample points with a top K confidence
score to make the model explicitly collect more foreground points.

However, the above sampling methods do not take into account the density variances
among instances, thus leading to near instances which have enough information to sam-
pling more points and distant instances which have insufficient information to sampling
less points. To alleviate this issue, we encode the point density as the weight of a distance
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metric, namely DS-FPS. The comparisons of FPS, F-FPS, S-FPS and DS-FPS are depicted in
Figure 1.

count=1

count=2

count=1

count=6

count=4

count=3

count=4

count=1

(a) (b)

(d)(c)

Sampled Points

BBox of GT

Raw Points

LiDAR

Figure 1. Points sampled by different sampling strategies. The sampled points are colored by red
and enlarged for clarity. The black points in the bottom of each subdiagram denote the LiDAR
position. The rectangles in each subdiagram denote the Bounding Box (BBox) of the GT. The number
of sampled foreground points is annotated in each GT. (a) points sampled by vanilla FPS. The sampled
points are evenly distributed in the sampling space (b) points sampled by F-FPS. F-FPS samples more
foreground points than FPS. (c) points sampled by S-FPS. S-FPS samples more foreground points
than F-FPS. (d) points sampled by DS-FPS. DS-FPS samples more foreground points than F-FPS and
the sampling process is more balanced than S-FPS among instances with various density.
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2.3. Point Density in 3D Object Detection

One of the reasons that a point cloud cannot be processed as an image is the density
variances, so it is significant to take point density into consideration. Previous studies
in this area have been inadequate. PDV [23] is a pioneer 3D detector which encodes the
point density into the point feature. There are two alternatives to encode the point density
in PDV: one is Kernel Density Estimation (KDE) [24,25], and the other is simply using
the logarithm of the points amount in the neighborhood. Pyramid-RCNN proposed the
Density-Aware Radius Prediction module, which uses the point density to determine the
focusing range of RoIs dynamically.

Considering the limited research on density-based methods and the significance of the
density attribute, we integrate the density attribute into the FPS and the feature extraction
process, resulting in improved performance.

2.4. Learning From Raw Points Coordinates

In the feature extraction stage of the SA module, previous work [8–10] concentrates
on high-level semantic features. Raw point coordinates are only used in the model input
and the calculation of relative coordinates. However, coordinates are the original feature
of points which contain rich information such as direction angle and density. PDV [23]
utilizes KDE [24,25] to encode the point density of the local region, which depends on
the coordinates and concatenates it with high-level semantic features for the next module
input. PointPillars [14] encodes the pillar center and relative coordinates by the raw
points position.

To enhance the utilization of raw point coordinates, we introduce the RCE module,
which takes only raw point coordinates as input and transforms them into more informative
attributes. This leads to improved performance without imposing significant computing
resource requirements.

3. Methods

In this section, we first overview the vanilla SA module in Section 3.1. Then, we
introduce the architecture of DSASA in Section 3.2 and describe DS-FPS and RCE in detail.

3.1. Preliminary

The vanilla SA module can be split into three parts: (i) sampling, (ii) grouping and (iii)
feature extraction, which is shown in Figure 2.

3.1.1. Sampling

FPS is the most commonly used sampling method, which guarantees the sampling
points are evenly distributed in 3D space. Many researchers refine the sampling strategy for
more reasonable points distribution. FPS and its variants can be generalized as Algorithm 1.
Previous sampling methods only vary in the Sample function, dist array and Update
function. We take Distance-based FPS (D-FPS), namely vanilla FPS [4], F-FPS [9] and
S-FPS [10], as examples and compare them from the above three perspectives.

D-FPS The Sampling function in Point-RCNN [8] and PointNet++ [4] involves ran-
domly selecting a point in the point cloud, which is often the first one saved in data in
practice. The dist array can be calculated by distk = dk, where dk is the kth point’s minimal
distance with the sampled set in Euclidean space. The Update function can be denoted as
Equation (1)

dj = min(dj, ‖xj − xki
‖2), j ∈ {1, . . . , N} (1)

where ki is the index of the sampled point in this iteration, N is the total point number in
this iteration, and ‖ · ‖2 means the Euclidean norm.
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input sampling grouping feature extraction

ReLU

output

Linear

BN

Concatenation

Maxpooling

Sampled Points

Query Points

Grouping Radius

Raw Points

points sampled by various radius

repeat n times

Figure 2. The overview of the SA module. The SA module first down-samples points; then, it uses
different query radius to group points and feature extraction module repeats MLP (linear layer,
BatchNorm (BN) layer and ReLU) for n times to better abstract the feature. A single MaxPooling
layer is followed by the concatenation of multi-scale point features to obtain the final sampled
points feature.

F-FPS The Sampling function and dist array in F-FPS [9] are the same as in D-FPS. The
only changed Update function can be formulated as Equation (2)

dj = min(dj, µ‖xj − xki
‖2 + ‖ f j − fki

‖2), j ∈ {1, . . . , N} (2)

where µ is the balance factor to balance the feature distance and the coordinate distance.
S-FPS SASA [10] conducts point segmentation to encourage the model to sample more

foreground points. The first sampled points can be determined by confidence scores rather
than random sampling. The Sampling method in S-FPS can be determined by argmax
function as illustrated in Equation (3).

Sampling(Input) = argmax(S) (3)

where S is the confidence score set of the input points. The dist array can be formulated as
the confidence weighted distance as illustrated in Equation (4).

distk = pγ
k ∗ dk (4)

where pk is the kth point confidence score and γ is the balance factor. The Update function
is consistent with D-FPS.
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Algorithm 1 Generalized Farthest Point Sampling

Input:
(required):
coordinates X = {x1, . . . , xn} ∈ RN×3

(optional):
features F = { f1, . . . , fn} ∈ RN×d

foreground scores S = {s1, . . . , sn} ∈ RN×1

Output:
sampled key point set K = {k1, . . . , kn} ∈ RM×3

1: initialize an empty sampling point set K;
2: initialize a distance array d of length N with all +∞;
3: initialize a visit array v of length N with all zeros;
4: for i = 1 to M do
5: if i = 1 then
6: ki = Sample(Input)
7: else
8: D = {distk|vk = 0}
9: ki = arg max(D)

10: end if
11: add ki to K, vki

= 1
12: for j = 1 to N do
13: Update(dj)
14: end for
15: end for

3.1.2. Grouping

Due to the maldistribution of the point cloud, researchers often use a ball query to
group the neighboring points rather than K-Nearest Neighborhood (KNN). To obtain
multi-scale features, previous work [8–10] uses a different ball radius to group points and
aggregates features through concatenation. In the SASA [10] source code and MMDetec-
tion3d repository [26], they use a dilated ball query to group the point features. The input of
the grouping module includes the coordinates of current stage points P = {p1, . . . , pN} ∈
RN×3, the features of current stage points F = { f1, . . . , fN} ∈ RN×d and the coordinates
of sampled points C = {c1, . . . , cN} ∈ RM×3. We therefore compare the vanilla ball query
and the dilated ball query.

Vanilla Ball Query The first step of the ball query is to determine the grouping points
index of sampled points, which can be formulated as below.

g_idxsi
k = {j|‖pj − ci‖ 6 radiusk, j = 1, . . . , N, i = 1, . . . , M, k = 1, . . . , K} ∈ Rnsample (5)

where N and M are the input points number and sampled points number of this SA module,
radiusk is the kth ball query radius, and ci is the ith sampled point coordinate. pj is the jth
input points coordinate. nsample denotes the number of neighboring points required to be
grouped. If the number of neighboring points is fewer than nample, we pad by repeating
the existing points. Otherwise, if the number of neighboring points is more than nample,
we random sample nsample points.

Dilated Ball Query The sole difference between the vanilla and dilated ball query is
the grouping radius. In the dilated ball query, the grouping ranges have no intersection;
the kth grouped points indexes can be formulated as Equation (6)

g_idxsi
k = {j|radiusk−1 6 ‖pj − ci‖ 6 radiusk, j = 1, . . . , N, i = 1, . . . , M, k = 1, . . . , K} ∈ Rnsample (6)

The variables are identical to Equation (5), and it is worth noting that radius0 is set
to zero as default. Once we obtain the kth group points index, the following steps are
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consistent in both ball query methods. We can group the points features to obtain the ith
ball group feature in the kth level as demonstrated in Equation (7).

g_ f eaturei
k ={Concat( f j)|j ∈ g_idxsi

k} ∈ Rnsample×d (7)

where d is the dimension of input point features, and Concat means the concatenation
operation. Afterwards, we can use concatenation to obtain the multi-scale sampled point
features as demonstrated in Equation (8).

si = {Concat(g_ f eaturei
k)|k = 1, . . . , K} ∈ Rnsample×(kd) (8)

The sampled point features will be further fed to the feature extraction module.

3.1.3. Feature Extraction

To further extract point features, it is common practice to use the Multi-Layer Percep-
tron (MLP) to capture more refined sampled point features and use the pooling operation
to aggregate the sampled point features, which is formulated as below.

si = Pooling(MLP(si)) ∈ RD (9)

where D is the dimension of the output point features.

3.2. Density-Aware Semantics-Augmented Set Abstraction

We make two main modifications to the vanilla SA module, that is the DS-FPS and the
RCE module, and we follow SASA to use the dilated ball query. The overall architecture is
depicted in Figure 3. We will present the above two modules in Sections 3.2.1 and 3.2.2

3.2.1. Density-Aware Semantic Farthest Point Sampling

To encode point density in FPS, there are two issues need to be handled: first, how to
represent point density; secondly, how to explicitly add point density to FPS.

How to represent point density? As described in Section 2.3, KDE and a simple
logarithm function can be used to represent the point density. We choose the later for
simplicity. Using the logarithm function, point density can be represented as below.

density =

log(
K

∑
i=1

counti), i f dilated

log(countK), otherwise

(10)

where log is the base-10 logarithm function, and counti means the point number in the ith
query space. K is the amount of query space. i f dilated means if the type of ball query type
is a dilated ball query.

How to add point density to FPS? As is described in Section 3.1.1, sampling methods
differ in the Sample function, dist array and Update function. We keep the Sample function
and Update function the same as SASA [10]. For the dist array, we expect the points with
low density to have farther distance, so we utilize the negative value of the sigmoid function
to encode the weight, reflecting the inverse relationship between density and distance.

distk = pγ
k ∗ dk ∗ (1− sigmoid(density))λ (11)

where sigmoid is the Sigmoid function, and density is the same as that defined in Equation (10).
In Equation (11), we plus one to let the density weight lie between 0 and 1. γ and λ are the
balance factors to balance the confidence weight and the density weight.
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exist  except the 
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exist  except the 
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Figure 3. The framework of our DSASA. We repeat Density-aware Semantics-Augmented Set
Abstraction three times. The first SA module only use FPS for sampling due to the inaccurate
semantic feature in the early stage. The black points are points which are not sampled for the next
stage. The blue points are sampled by D-FPS, the red points are sampled by DS-FPS, and the green
point in the vote layer is the GT center which the points sampled by DS-FPS need to shift to. We
feed the density and point level confidence score to DS-FPS to obtain a more balanced sampling
distribution. The Relative Position in Query Ball (RPQB), Relative Direction Angle (RDA) and the
point density are the extra input to the feature extraction module, which is detailed in Section 3.2.1.

3.2.2. Raw Coordinate Enhancement

There are many useful attributes that need to be discovered based on points coordi-
nates. We denote the ball center as (x1, y1, z1) and one of the neighboring points in the ball
as (x2, y2, z2) in this section.

Relative position in the query ball Inspired by the notion of proposal ambiguity
put forward in LiDAR-RCNN [27], we posit that the relative position within the query
ball is crucial in providing the model with additional information about the local context.
As illustrated in Figure 4, it is imperative to guide the model in discerning the grouping
boundaries effectively. The method of using the normalized relative position in the ball
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query is effective. Therefore, we encode the relative position within the query ball as
described in Equations (12) and (13).

ro f f set = rout − rin (12)

rel_pos = ((x2 − x1 − rin)/ro f f set, (y2 − y1 − rin)/ro f f set, (z2 − z1 − rin)/ro f f set) (13)

where rin and rout are the smaller and the larger query radius in dilated ball query, respectively.

r0=0.25

(a) (b)

r1=0.4

(0.2, 0.25, 0.25) (0.5., 0.625, 0.625)

Figure 4. The importance of the distance to the query boundary. The red point is the center of the
query ball. The black points are the queried points. The red dotted line means the radius of the query
ball. The black dotted line means the circumference. (a) We use the fixed radius r0 to query points,
and the points are densely located in the ball. (b) We use a larger radius r1 to query points, and
the points are mainly located in the ball with radius r0. They are two different circumstances, but
in the vanilla SA module, it will generate the same feature. So, we normalize the relative position
based on the radius, e.g., the relative coordinates (0.2, 0.25, 0.25) are converted to ((0.2−0)/(0.4−0),
(0.25−0)/(0.4−0), (0.25−0)/(0.4−0)), that is (0.5, 0.625, 0.625).

Relative direction angle The relative direction angle of the neighboring points can be
encoded by the relative coordinates as below.

dist1 =
√
(x2 − x1)2 + (y2 − y1)2 (14)

dist2 =
√
(y2 − y1)2 + (z2 − z1)2 (15)

dist3 =
√
(z2 − z1)2 + (x2 − x1)2 (16)

θ1 = atan2(z2 − z1, dist1) (17)

θ2 = atan2(x2 − x1, dist2) (18)

θ3 = atan2(y2 − y1, dist3) (19)

dirrel = (sin(θ1), cos(θ1), sin(θ2), cos(θ2), sin(θ3), cos(θ3)) (20)
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where atan2 is the inverse tangent function. The illustration of θ1 is depicted in Figure 5.
Although relative direction angles are implicitly contained in relative coordinates, we argue
that the explicitly encoding is a more reasonable approach, which helps the network focus
on the direction relation.

Figure 5. The illustration of relative direction angle. The original point is the center of the query ball.
We can use the atan2 function to obtain θ1.

Density Inspired by PDV [23], we encode the logarithm amount of neighboring points
as density, which helps network realize the distribution of the neighborhood.

Combined with the above three attributes, we add 10 channels to enhance the
point features.

4. Experiments

We call our model DSASA. DSASA is evaluated on the challenging 3D object detection
benchmark of the KITTI dataset.

4.1. Datasets

The KITTI dataset is a widely used benchmark in 3D object detection. It contains
7481 LiDAR point clouds as well as finely calibrated 3D bounding boxes for training and
7518 samples for testing. Following SECOND [2], we split training samples into a training
set with 3712 samples and a validation set with 3769 samples; then, we use this partition to
find the optimal hyper-parameters. To obtain the final results, which need to be submitted
to the KITTI test server, we followed PV-RCNN [6] where 80% of the training samples are
used for training, and the remaining 20% are used for validation.

4.2. Implementation Details

Most of the architecture is the same as SASA [10]. We replace SASA with our proposed
DSASA. It is worth noting that SASA [10] trains on four GPUs with a batchsize of four per
GPU. However, due to the limited training resources, we train with a batchsize of eight on
a single RTX4090. The learning rate and other hyper-parameters are the same as SASA. We
set λ in Equation (11) to 1.0. The reason for choosing 1.0 is detailed in Section 4.4.

4.3. Main Results

Table 1 presents the performance of 3D object detection specifically for the Car class
on the KITTI test server. Due to the limited GPU resources and the random testing set
partition, we cannot fully reproduce the results mentioned in SASA [10]. So we keep other
training configuration the same as SASA except for batchsize and testing set partition, then
set the model trained with batchsize 8 on single RTX4090 as the baseline, and DSASA is
better than the baseline and other single stage point-based methods. The qualitative results
are depicted in Figure 6.
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Table 1. Results on the car class of the KITTI test set. The evaluation metric is the AP calculated on
40 recall points. The best results in each category are shown in bold.

Method Car (IoU = 0.7)
Easy Mod. Hard

RGB+LiDAR

MV3D [28] 74.97 63.63 54.00
F-PointNet [29] 82.19 69.79 60.59

Focals Conv-F [30] 90.55 82.28 77.59
VirConv-T [31] 92.54 86.25 81.24

LiDAR only

Voxel-based
VoxelNet [13] 77.47 65.11 57.73
SECOND [2] 83.34 72.55 65.82

PointPillars [14] 82.58 74.31 68.99
SA-SSD [32] 88.75 79.9 74.16

Voxel-RCNN [33] 90.90 81.62 77.06
VoxSeT [16] 88.53 82.06 77.46

Hybrid-based
PV-RCNN [6] 90.25 81.43 76.82

PV-RCNN++ [7] 90.14 81.88 77.15

Point-based
PointRCNN [8] 86.96 75.64 70.70

3DSSD [9] 88.36 79.57 74.55
IA-SSD [11] 88.87 80.32 75.10

SASA (reproduced) [10] 87.79 81.21 76.52
DSASA (ours) 88.64 81.72 76.73

4.4. Ablation Study

Car detection performance on validation set As presented in Table 2, we choose the
established outdoor 3D detectors, 3DSSD and PointRCNN, which already contain the
SA module, as our baselines. Independently, we incorporate SASA and our proposed
method, DSASA, with these baselines and evaluate their performance on the validation set.
Our methods demonstrate superior performance compared to the baselines, even when
combined with SASA, under the same experimental conditions. Figure 7 showcases the
qualitative results.

Table 2. Results on the car class of the KITTI validation set. The evaluation metric is the AP calculated
on 40 recall points. The best performance is shown in bold.

Method Car (IoU = 0.7) Delay (ms)Easy Mod. Hard

PointRCNN 91.57 82.24 80.45 57
PointRCNN+SASA (reproduced) 92.14 83.10 80.71 48

PointRCNN+DSASA 92.05 84.05 82.55 50
3DSSD 91.54 83.46 82.18 36

3DSSD+SASA (reproduced) 91.89 85.32 82.52 36
3DSSD+DSASA 92.54 85.91 83.12 37
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Figure 6. Results of 3D car detection on the KITTI test set. The predictions are labeled by red
bounding boxes.

Multi-classes detection performance on validation set As shown in Table 3, we con-
duct a similar experimental setup as in Table 2, with the exception that the models classify
three classes. In the single-class detection model, we directly predict the dimensions of the
instances. In the multi-class detection model, we modify the detection head to classify three
classes and predict the dimension offset between the predictions and the mean size of each
class in the KITTI dataset. The qualitative results are depicted in Figure 8. As demonstrated
in Table 3, DSASA achieves improved performance especially in detecting small objects.
This can be attributed to the fact that small objects typically exhibit lower density, and
DSASA effectively addresses this by sampling more points within such objects.

Table 3. Results on the 3 class of the KITTI validation set. The evaluation metric is the AP calculated
on 40 recall points. The best performances are shown in bold.

Method Car (IoU = 0.7) Ped. (IoU = 0.5) Cyc. (IoU = 0.5)
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointRCNN 91.92 80.84 78.47 67.00 58.48 51.21 93.37 75.16 70.67
PointRCNN+SASA (reproduced) 92.13 82.76 80.39 68.34 60.48 51.92 92.30 74.13 69.71

PointRCNN+DSASA 92.25 82.93 80.60 71.22 63.19 55.62 94.12 76.29 71.79
3DSSD 91.47 83.00 81.88 57.10 52.24 48.83 89.90 71.78 68.09

3DSSD+SASA (reproduced) 92.02 85.32 82.55 63.28 57.98 53.45 92.20 74.37 69.74
3DSSD+DSASA 92.18 85.32 82.71 67.21 59.38 52.19 92.93 75.08 70.46
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Figure 7. Results of 3D car detection on the KITTI validation set. The GTs are annotated by green
bounding boxes and the predictions are labeled by red bounding boxes.

Figure 8. Results of multi-class 3D detection on the KITTI validation set. The GTs are annotated by
green bounding boxes and the predictions are labeled by red bounding boxes.

Effects of density balance factor We compare DS-FPS with different balance factors
λ in Figure 9. The extremely small or large number will interrupt the final results, so we set
λ to be 1.0.
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Figure 9. Performance with different balance factor λ.

Effects of Different attributes encoded in RCE We set DSASA without the RCE
module as our baseline and compare the performance using various attributes in Table 4.
We not only conduct experiments on the three attributes mentioned in Section 3.2.2 but also
take the Absolute Direction Angle (ADA) into account, which can be formulated as below,
where RPQB means Relative Position in Query Ball, RDA means the Relative Direction
Angle, Density means the point density and ADA means the Absolute Direction Angle.

abs_dist1 =
√

x2
2 + y2

2 (21)

abs_dist2 =
√

y2
2 + z2

2 (22)

abs_dist3 =
√

z2
2 + x2

2 (23)

abs_θ1 = atan2(z2, abs_dist1) (24)

abs_θ2 = atan2(x2, abs_dist2) (25)

abs_θ3 = atan2(y2, abs_dist3) (26)

dirabs = (sin(abs_θ1), cos(abs_θ1), sin(abs_θ2), cos(abs_θ2), sin(abs_θ3), cos(abs_θ3)) (27)
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Table 4. Performance with different attributes encoded in RCE. The best performances are shown
in bold.

Method Car (IoU = 0.7)
Easy Mod. Hard

Baseline (DSASA without RCE) 92.23 85.53 83.00
Baseline+RPQB 92.13 85.57 82.92
Baseline+RDA 92.14 85.77 83.02

Baseline+Density 92.20 85.68 82.80
Baseline+ADA 91.54 85.65 82.83

Baseline+RPQB+RDA+Density 92.54 85.91 83.12
Baseline+RPQB+ADA+Density 91.72 85.69 82.77

First, we add a single attribute to the RCE module to test its validity. Next, we combine
three attributes together to examine their collective effectiveness. We intentionally exclude
the combination of ADA and RDA, since ADA and RDA both pertain to direction angles,
and we aim to avoid redundant attributes. Simply adding a single attribute can boost the
performance, and combining RPQB, RDA and Density boosts the most. We think that the
Absolute Direction Angle is similar among points in the same bounding box, so it is not as
distinctive as the other three attributes.

Verify the validation of RCE We have a doubt as to whether the attributes in RCE
are really useful or the boost is due to the more learnable parameters introduced by MLP.
So, we conduct the experiments with two strategies. One is that we insert linear layer, BN
layer and ReLU in the beginning of feature extraction stage, which learns 10 channels (six
in RDA, three in RPQB and one in Density) from coordinates. Then, we concatenate the
generated features with input features to form features with C + 10 channels, where C is
the channel number of the input features, which is fed into the following MLPs. Another
strategy adds more learnable parameters to the model. It utilizes an MLP to convert the
channels from C + 3 to C + 13 and sends the output features to the following modules.
However, these two strategies did not boost more than the RCE module in Table 5, so we
are convinced that the performance increase has little relation with the extra learnable
parameters but rather affects the meticulous design. We denote the first strategy as Small
MLP and the second as Large MLP.

Table 5. Performance with different attributes encoded in RCE. The best performances are shown
in bold.

Method Car (IoU = 0.7)
Easy Mod. Hard

RCE 92.54 85.91 83.12
Small MLP 91.64 85.66 82.97
Large MLP 91.89 85.47 82.61

Sampling means and variances The proposed DS-FPS aims to balance the sampling
process among multiple instances, so we study the average point number sampled in GT
and the standard deviation (Std) among the foreground point amount. The mean and Std
can be calculated as below.

Mean = (
N

∑
i=0

cnti)/N (28)

Std = sqrt(
N

∑
i=0

(cnti −Mean)2) (29)

where N is the total GT number, and cnti is the point number in the ith GT. As described in
Table 6, the DS-FPS samples more points than F-FPS and shows less variance than S-FPS.
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Table 6. Mean and Std of different sampling methods.

Stage Mean Std

F-FPS Second SA 9.23 6.42
Third SA 4.23 3.12

S-FPS Second SA 23.31 20.89
Third SA 20.37 18.29

DS-FPS Second SA 17.89 15.00
Third SA 16.67 13.84

Computing burden introduced by DSASA As shown in Table 2, the PointRCNN +
DSASA takes 2 ms more than PointRCNN + SASA, and 3DSSD + DSASA takes 1 ms
more than 3DSSD + SASA. We assume that 1 ms and 2 ms are negligible in detection,
since the LiDAR frequency is often 20 Hz, so we verify that DSASA can boost the detection
performance with little cost.

5. Conclusions

In this article, we propose DSASA. The previous SA module either takes more atten-
tion to the even point sampling or purges the model to sample more foreground points.
DSASA considers both point density and confidence scores, aiming to achieve a more
balanced sampling process. In the second SA module, DS-FPS in DSASA samples 94%
more foreground points than F-FPS, and the Std in the sampling process is reduced by
30% compared to S-FPS. Furthermore, the proposed RCE module in DSASA utilizes raw
coordinates to extract valuable information, resulting in improved performance with only
a 1 ms increase in inference time.

However, the proposed DS-FPS is based on FPS series methods, which have a time
complexity of O(n2) and are not efficient for large-scale point clouds. On the other hand,
simply choosing points with top K foreground scores can provide faster processing speed,
but it relies heavily on foreground segmentation performance. In the future, it is worth
studying how to strike a balance between performance and efficiency in sampling methods.
Additionally, although the cascaded ball query expands the receptive field, its range is still
limited, so using Transformer to obtain the global receptive fields is a better choice. We
only use a single dataset for verification, which makes it less convictive. We will conduct
more experiments on diverse datasets to demonstrate the feasibility in our following work.
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Abbreviations
The following abbreviations are used in this manuscript:

DSASA Density-Aware Semantics-Augmented Set Abstraction
SA Set Abstraction
FPS Farthest Point Sampling
DS-FPS Density-Semantics-Aware Farthest Point Sampling
S-FPS Semantic-aware FPS
RCE Raw Coordinate Enhancement
FP Feature Propagation
D-FPS Distance-Based FPS
F-FPS Feature-Based FPS
GNN Graph Neural Network
KDE Kernel Density Estimation
KNN K-Nearest Neighborhood
MLP Multi-Layer Perceptron
RDA Relative Direction Angle
ADA Absolute Direction Angle
RPQB Relative Position in Query Ball
BBox Bounding Box
Std Standard Deviation
GT Ground Truth
BEV Bird’s-Eye View

References
1. Graham, B.; Van der Maaten, L. Submanifold sparse convolutional networks. arXiv 2017, arXiv:1706.01307.
2. Yan, Y.; Mao, Y.; Li, B. Second: Sparsely embedded convolutional detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
3. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.
4. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf.

Process. Syst. 2017, 30, 5099–5108.
5. Qian, G.; Li, Y.; Peng, H.; Mai, J.; Hammoud, H.; Elhoseiny, M.; Ghanem, B. Pointnext: Revisiting pointnet++ with improved

training and scaling strategies. Adv. Neural Inf. Process. Syst. 2022, 35, 23192–23204.
6. Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 10529–10538.

7. Shi, S.; Jiang, L.; Deng, J.; Wang, Z.; Guo, C.; Shi, J.; Wang, X.; Li, H. PV-RCNN++: Point-voxel feature set abstraction with local
vector representation for 3D object detection. Int. J. Comput. Vis. 2023, 131, 531–551. [CrossRef]

8. Shi, S.; Wang, X.; Li, H. Pointrcnn: 3d object proposal generation and detection from point cloud. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 770–779.

9. Yang, Z.; Sun, Y.; Liu, S.; Jia, J. 3dssd: Point-based 3d single stage object detector. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11040–11048.

10. Chen, C.; Chen, Z.; Zhang, J.; Tao, D. Sasa: Semantics-augmented set abstraction for point-based 3d object detection. In
Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 36, pp. 221–229.

11. Zhang, Y.; Hu, Q.; Xu, G.; Ma, Y.; Wan, J.; Guo, Y. Not all points are equal: Learning highly efficient point-based detectors for 3d
lidar point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA,
USA, 18–24 June 2022; pp. 18953–18962.

12. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

13. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.

14. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point clouds.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 12697–12705.

15. Mao, J.; Xue, Y.; Niu, M.; Bai, H.; Feng, J.; Liang, X.; Xu, H.; Xu, C. Voxel transformer for 3d object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 3164–3173.

http://doi.org/10.3390/s18103337
http://www.ncbi.nlm.nih.gov/pubmed/30301196
http://dx.doi.org/10.1007/s11263-022-01710-9


Sensors 2023, 23, 5757 19 of 19

16. He, C.; Li, R.; Li, S.; Zhang, L. Voxel set transformer: A set-to-set approach to 3d object detection from point clouds. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 8417–8427.

17. Sheng, H.; Cai, S.; Liu, Y.; Deng, B.; Huang, J.; Hua, X.S.; Zhao, M.J. Improving 3d object detection with channel-wise transformer.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021;
pp. 2743–2752.

18. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008.

19. Fan, L.; Pang, Z.; Zhang, T.; Wang, Y.X.; Zhao, H.; Wang, F.; Wang, N.; Zhang, Z. Embracing single stride 3d object detector with
sparse transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA,
USA, 18–24 June 2022; pp. 8458–8468.

20. Shi, W.; Rajkumar, R. Point-gnn: Graph neural network for 3d object detection in a point cloud. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1711–1719.

21. Qian, R.; Lai, X.; Li, X. BADet: Boundary-aware 3D object detection from point clouds. Pattern Recognit. 2022, 125, 108524.
[CrossRef]

22. Guan, T.; Wang, J.; Lan, S.; Chandra, R.; Wu, Z.; Davis, L.; Manocha, D. M3detr: Multi-representation, multi-scale, mutual-relation
3d object detection with transformers. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
Waikoloa, HI, USA, 3–8 January 2022; pp. 772–782.

23. Hu, J.S.; Kuai, T.; Waslander, S.L. Point density-aware voxels for lidar 3d object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 8469–8478.

24. Parzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33, 1065–1076. [CrossRef]
25. Rosenblatt, M. Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 1956, 27, 832–837. [CrossRef]
26. Contributors, M. MMDetection3D: OpenMMLab Next-Generation Platform for General 3D Object Detection. 2020. Available

online: https://github.com/open-mmlab/mmdetection3d (accessed on 1 September 2022).
27. Li, Z.; Wang, F.; Wang, N. Lidar r-cnn: An efficient and universal 3d object detector. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 7546–7555.
28. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3d object detection network for autonomous driving. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1907–1915.
29. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum pointnets for 3d object detection from rgb-d data. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 918–927.
30. Chen, Y.; Li, Y.; Zhang, X.; Sun, J.; Jia, J. Focal sparse convolutional networks for 3d object detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5428–5437.
31. Wu, H.; Wen, C.; Shi, S.; Li, X.; Wang, C. Virtual Sparse Convolution for Multimodal 3D Object Detection. arXiv 2023,

arXiv:2303.02314.
32. He, C.; Zeng, H.; Huang, J.; Hua, X.S.; Zhang, L. Structure aware single-stage 3d object detection from point cloud. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11873–11882.
33. Deng, J.; Shi, S.; Li, P.; Zhou, W.; Zhang, Y.; Li, H. Voxel r-cnn: Towards high performance voxel-based 3d object detection. In

Proceedings of the AAAI Conference on Artificial Intelligence, Online, 4–7 February 2021; Volume 35, pp. 1201–1209.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.patcog.2022.108524
http://dx.doi.org/10.1214/aoms/1177704472
http://dx.doi.org/10.1214/aoms/1177728190
https://github.com/open-mmlab/mmdetection3d

	Introduction
	Related Work
	Point Cloud-Based 3D Detectors
	Point Sampling in Point Cloud Processing
	Point Density in 3D Object Detection
	Learning From Raw Points Coordinates

	Methods
	Preliminary
	Sampling
	Grouping
	Feature Extraction

	Density-Aware Semantics-Augmented Set Abstraction
	Density-Aware Semantic Farthest Point Sampling
	Raw Coordinate Enhancement


	Experiments
	Datasets
	Implementation Details
	Main Results
	Ablation Study

	Conclusions
	References

