
Citation: Yu, S.; Park, Y. Robust and

Efficient Authentication and

Group–Proof Scheme Using Physical

Unclonable Functions for Wearable

Computing. Sensors 2023, 23, 5747.

https://doi.org/10.3390/s23125747

Academic Editors: Chao-Yang Lee,

Neng-Chung Wang and

Ming-Fong Tsai

Received: 29 May 2023

Revised: 15 June 2023

Accepted: 19 June 2023

Published: 20 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Robust and Efficient Authentication and Group–Proof Scheme
Using Physical Unclonable Functions for Wearable Computing
Sungjin Yu 1,2 and Youngho Park 2,*

1 Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea; sj.yu@etri.re.kr
2 School of Electronics and Electrical Engineering, Kyungpook National University,

Daegu 41566, Republic of Korea
* Correspondence: parkyh@knu.ac.kr

Abstract: Wearable computing has garnered a lot of attention due to its various advantages, including
automatic recognition and categorization of human actions from sensor data. However, wearable
computing environments can be fragile to cyber security attacks since adversaries attempt to block,
delete, or intercept the exchanged information via insecure communication channels. In addition
to cyber security attacks, wearable sensor devices cannot resist physical threats since they are
batched in unattended circumstances. Furthermore, existing schemes are not suited for resource-
constrained wearable sensor devices with regard to communication and computational costs and are
inefficient regarding the verification of multiple sensor devices simultaneously. Thus, we designed
an efficient and robust authentication and group–proof scheme using physical unclonable functions
(PUFs) for wearable computing, denoted as AGPS-PUFs, to provide high-security and cost-effective
efficiency compared to the previous schemes. We evaluated the security of the AGPS-PUF using a
formal security analysis, including the ROR Oracle model and AVISPA. We carried out the testbed
experiments using MIRACL on Raspberry PI4 and then presented a comparative analysis of the
performance between the AGPS-PUF scheme and the previous schemes. Consequently, the AGPS-
PUF offers superior security and efficiency than existing schemes and can be applied to practical
wearable computing environments.

Keywords: physical unclonable function (PUF); privacy-preserving; authentication; group proof;
wearable computing

1. Introduction

With the development of “mobile and 5G communication” technologies, wearable
computing is emerging as a new ubiquitous technology within the Internet of Things (IoT)
and it has garnered a lot of attention from both scientific and academic communities [1–3].
The wearable devices are integrated into various types of accessories and clothing and
provide useful application services in various fields, including “military, healthcare, and
industry”. In particular, sustainable wearable computing technology offers innovative
healthcare opportunities, which give new methods to medical professionals to treat pa-
tients. For instance, wearable computing-based healthcare systems reduce healthcare costs
and provide various medical services, including “monitoring, medical consultation, and
emergency treatment” [4].

In these environments, wearable devices collect medical data, including “asthma
level, blood pressure, electrocardiogram, body temperature” from the patients, and then
transmit the corresponding data to the paired mobile terminal. The mobile terminal
transmits the received data to the trusted cloud server, and authorized medical professionals
remotely connect to the trusted cloud server and precisely monitor, analyze, and diagnose
the health data of patients stored within the server. However, despite the numerous
advantages of wearable computing, there are several difficulties and challenges that need to

Sensors 2023, 23, 5747. https://doi.org/10.3390/s23125747 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23125747
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3245-781X
https://orcid.org/0000-0002-0406-6547
https://doi.org/10.3390/s23125747
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23125747?type=check_update&version=1

Sensors 2023, 23, 5747 2 of 26

be addressed [5]. In wearable computing environments, serious security and privacy issues
may arise since the messages are transmitted via an insecure channel [6]. If the collected data
from the wearable devices are exposed, an adversary can obtain the sensitive information
of legitimate patients and may attempt potential cyber security attacks. Hence, adversaries
can bring many unexpected threats and jeopardize the patients’ lives by transmitting
false medical diagnoses, such as “treatments and medications”. In addition to cyber
security attacks, wearable devices cannot prevent physical threats since they are deployed
in hostile and unattended circumstances. Furthermore, considering the resource limitations
of wearable devices, it is suitable to adopt lightweight cryptographic primitives, such
as “hash functions and symmetric key cryptography that require low computation and
communication costs [7]”. In wearable computing environments, it is essential to identify
whether data collected from multiple wearable devices belong to the same authorized
user. Thus, a lightweight privacy-preserving authentication and group–proof scheme is
indispensable to ensure simultaneous identification and secure communication in wearable
computing environments.

Recently, Guo et al. [8] presented an “anonymous authenticated key agreement and
group–proof protocol for wearable computing” to provide secure communication and
simultaneous identification. Guo et al. claimed that their scheme was protected against
physical/cyber security attacks, including “physical wearable device capture, imperson-
ation, and forgery” attacks, and guaranteed “secure mutual authentication and untraceabil-
ity”. Unfortunately, we prove that Guo et al.’s scheme was not protected against security
attacks, such as “session key disclosure, man-in-the-middle (MITM), and impersonation”
attacks, and it does not offer several security properties, including “untraceability and
mutual authentication”. Hence, we present a “new efficient and robust authentication and
group–proof scheme using physical unclonable functions (PUF) for wearable computing”,
denoted as AGPS-PUFs, to address the security issues of Guo et al.’s scheme [8].

1.1. Motivations

The main purpose of this paper is to identify and improve the security problems
of Guo et al.’s scheme based on the threat model presented by them. This paper proves
that their protocol [8] is not protected against lethal security attacks and does not offer
sensitive security features in wearable computing environments. Guo et al. [8] designed
a high-security-supported cryptographic and efficient group–proof scheme for wearable
computing. However, they should have examined their protocol from the point of view
that we analyzed and proved. This fact motivated us to design a “new efficient and robust
authentication and group–proof scheme using PUF for wearable computing”. This scheme
is resilient to lethal security attacks and drawbacks that exist in wearable computing
environments while guaranteeing security functionalities.

1.2. Research Contributions

This section introduces the main contribution of the AGPS-PUF.

• The AGPS-PUF is specifically designed to improve the security vulnerabilities of Guo
et al.’s scheme and offers reliable authentication and maintenance for wearable com-
puting. The AGPS-PUF carries out mutual authentication between a mobile user and
wearable devices through a trusted entity known as the cloud server. The PUF enables
wearable devices to resist tampering, including physical security attacks.

• We propose the protocol and demonstrate its effectiveness and security strengths
via informal and formal security analyses. We exploited the well-known “AVISPA
simulation” [9] and “ROR Oracle model” [10].

• We prove that the AGPS-PUF offers efficient performance in terms of security func-
tionalities and overheads, as compared to previous schemes explored in the literature.

Sensors 2023, 23, 5747 3 of 26

1.3. Paper Outlines

The rest of the paper is organized as follows. Section 2 presents the related works for
wearable computing environments. Section 3 introduces the preliminaries. In Sections 4 and 5,
we review Guo et al.’s scheme [8] and then prove the security shortcomings of Guo et al.’s
scheme. Section 6 designs a “new PUF-based privacy-preserving authentication and group–
proof scheme for wearable computing” to resolve the security problems of Guo et al.’s
scheme. Section 7 analyzes the security of the AGPS-PUF when performing formal and
informal security analyses. Section 8 introduces the testbed experiments for cryptographic
operations using MIRACL crypto SDK. Section 9 analyzes the performance comparison of
the AGPS-PUF with related schemes. Finally, Section 10 summarizes the future works and
conclusions of this paper.

2. Related Works

Over the last few years, many authentication and key agreement (AKA) schemes
have been presented for wearable computing to ensure privacy for legitimate users [11–13].
The public key cryptosystem (PKC)-based AKA schemes consist of three mechanisms:
“traditional PKC scheme [14], identity-based PKC scheme [15], and certificateless PKC
scheme [16]”. The traditional PKC scheme faces problems in managing user certificates
and needs high computing capabilities, so it is not applicable to wearable computing envi-
ronments with constrained resources. Identity-based PKC schemes deal with the difficulty
of certificate management; however, they are presented for server–client environments.
The certificateless PKC scheme enhances the key escrow problem of the identity-based
PKC scheme and prevents certificate management and delivery problems from the tradi-
tional PKC scheme [17]. However, these existing PKC-based AKA schemes [14–16] are not
suitable for wearable computing environments because they utilize PKC, such as elliptic
curve cryptography (ECC) and bilinear pairing, which require high communication and
computation overheads.

The design of a lightweight AKA scheme for wearable computing environments has
garnered a lot of attention due to the efficiency problem of the PKC-based AKA scheme
and constrained resources for IoT and sensor devices. The lightweight AKA scheme has
two main features: “password-based two-factor AKA scheme or password and biometric-
based three-factor AKA scheme”. These AKA schemes utilize lightweight cryptographic
primitives, including the “one-way hash function, XOR operation, and symmetric key
cryptography”. Recently, numerous lightweight AKA schemes [18–20] were designed for
wearable computing environments to provide useful services with lightweight properties.
Li et al. [21] proposed a “secure AKA scheme with user anonymity and lightweight for
healthcare applications” in wireless medical sensor networks (WMSN). Unfortunately,
Das et al. [22] demonstrated that Li et al.’s scheme [21] is insecure to “privileged insider and
sensor node capture” attacks and fails to ensure “user anonymity”. Wu et al. [23] presented
an “enhanced two-factor assisted AKA scheme in WMSN environments”. Wu et al. [23]
claimed that their protocol is resilient to lethal security attacks and offers the necessary
security features. Unfortunately, Srinivas et al. [24] proved that their scheme [23] is not
resistant to lethal security attacks, such as “stolen smart card, offline password guessing,
user impersonation, and denial of service (DoS)” attacks. Srinivas et al. [24] proposed an
“efficient and reliable AKA scheme for healthcare services with WMSN” to address the
security weaknesses of Wu et al.’s scheme [23]. Amin et al. [25] designed a “lightweight
and anonymous two-factor based AKA scheme” to provide secure patient data in pa-
tient monitoring systems for WMSN. Unfortunately, Ali et al. [26] analyzed Amin et al.’s
scheme [25] and found that it does not prevent “known-session key temporary information,
user impersonation, and offline password guessing” attacks. Ali et al. [26] presented an
“enhanced biometric-based three-factor AKA scheme for healthcare monitoring in WMSN”
to resolve the security shortcomings of Amin et al.’s scheme [25]. Gupta et al. [27] designed
a “lightweight AKA scheme for wearable devices with user anonymity”. Gupta et al.’s
scheme [27] has high scalability because the wearable sensing device registration phase

Sensors 2023, 23, 5747 4 of 26

does not need a secure channel. However, Hajian et al. [28] proved that Gupta et al.’s
scheme [27] is not resistant to lethal security attacks, including “compromise sensing device,
desynchronization, and privileged insider” attacks. Hajian et al. [28] proposed a “scalable
and lightweight three-factor based AKA scheme with user-friendly and anonymous for
wearable sensing devices” to improve the security problems of Gupta et al.’s scheme [27].
However, Yu et al. [29] pointed out that their protocol [28] is still not resistant to “mo-
bile device stolen”, “session key disclosure, MITM, impersonation” attacks and does not
guarantee “mutual authentication”. Unfortunately, these lightweight AKA schemes for
wearable computing do not identify whether the collected data from multiple wearable
devices belong to the same authorized user.

Guo et al. [8] designed an “anonymous and lightweight AKA and group–proof scheme
for wearable computing”, which can verify that multiple wearable devices belong to the
same user. Guo et al. [8] claimed that their protocol ensures secure data transmission
between each entity and is resilient to lethal security attacks. However, based on the threat
model presented by them, we have proven that Guo et al.’s scheme [8] is vulnerable to
lethal security threats, such as “impersonation, MITM, and session key disclosure” at-
tacks, and does not offer several security properties, such as “untraceability and mutual
authentication”. In addition to cyber security attacks, wearable devices may be fragile
to physical threats since they are batched in insecure circumstances. Therefore, we pro-
pose an “efficient and robust authentication and group-proof scheme using the PUF for
wearable computing” to supplement the security functionalities and address the security
shortcomings of Guo et al.’s scheme [8].

3. Preliminaries

The following provides an overview of the preliminaries.

3.1. Threat Model

We introduce the adversary capabilities based on the “Dolev-Yao (DY) model” [30,31].

• An adversary (henceforth denoted as A) can “resend, eavesdrop, block, and delete”
the exchanged messages over an insecure channel.

• A can steal the mobile device (MD) and the wearable device (WD) of the legitimate
user. However, A cannot simultaneously capture the MD and WD of the legitimate
user. The cloud server and registration center are trusted authorities and cannot be
compromised by A.

• A can extract the secret information stored in the captured MD or WD by performing
the “power-analysis attacks” [32] and “physical capture attacks” [33].

3.2. PUF

The PUF [34,35] is a physical circuit that manufactures an output of a physical mi-
crostructure. The PUF does not store a private key in the smart device and it is extremely
difficult to clone the circuit. The PUF utilizes an input/output bit string pair, denoted
as the challenge/response pair. Even if various challenges occur in the PUF circuit, each
has a unique output response. The PUF preserves smart devices in IoMT-enabled TMIS
environments from side-channel and tampering threats. The PUF is expressed through a
process denoted as R = PUF(C), where C and R are the challenge/response. The following
are several properties of the PUF.

• The PUF is easy to implement and evaluate.
• The PUF relies on the system’s physical microstructure.
• Any attempt to tamper with a smart device that contains the PUF will update the

behavior of the PUF and, thus, destroy it [36].

Figure 1 shows a “PUF-based key generator procedure”. As shown in Figure 1, the PUF
generates strong extractors for a private secret key based on various functions, including
“encode, decode, and key derivation” functions. Thus, the PUF makes it impossible for

Sensors 2023, 23, 5747 5 of 26

attackers to perform lethal physical threats. Moreover, these properties combine to make a
“good solution for the robust and efficient authentication of lightweight devices in wearable
computing environments”.

Figure 1. Key generator mechanism of the PUF.

3.3. System Model

This section introduces an overview of the system model (see Figure 2) of this paper.
The system model for wearable computing is composed of four entities: registration center,
cloud server, mobile users, and wearable devices.

Nurse

Doctor

Pharmacist

Cloud Server

Registration center

Smart Glasses

Smart Watch

Smart Pants

Smart Socks

Smart Shirt
Smart Belt

Bluetooth
Smart Phone

Figure 2. System model for wearable computing.

• Registration center: This entity is a trusted authority that registers wearable de-
vices and mobile users in a secure channel. Moreover, the registration center sets
the secret credentials of each wearable device before being batched in wearable
computing environments.

Sensors 2023, 23, 5747 6 of 26

• Cloud server: This entity is also a trusted authority. The cloud server stores and shares
the health data of legitimate patients and has computational and storage capabilities
to manage patients’ health data.

• Mobile users: They have a mobile terminal and wear wearable devices to analyze
the health status of the patients. The mobile terminal receives health data from
the wearable devices, and then sends the received data to the cloud server through
wireless communications. Moreover, remote authorized users access the cloud server
to analyze the patients’ data and provide accurate medical diagnoses based on the
stored physiological data.

• Wearable device: Wearable devices track and collect health data from corresponding
body parts of patients. Then, the collected data are transmitted to the paired mobile
terminal via Bluetooth.

4. Review of Guo et al.’s Scheme

This section introduces the reviews of Guo et al.’s scheme [8]. Table 1 shows the
notations utilized in this article.

Table 1. Notations.

Symbol Meaning
Ui ith user

WDj jth wearable device

CS Cloud server

RC Registration center

IDU , IDWD, IDCS, IDRC Real identity of Ui, WDj, CS, and RC

PWi Password of Ui

Cx
U , Rx

U Challenge/response of Ui

Cx
WD, Rx

WD Challenge/response of WDj

Ri, RNi, ni, Random nonce

TIDU , TIDWD, Temporary identity of Ui and WDj

∆Ti Maximum transmission delay

Ti and TSi Timestamp

MK A master private key of CS

SKCS−U A session key for Ui and CS

SKWD−U A session key for Ui and WDj

EncK(·)/DecK(·) Encryption/decryption

h(·) Hash function

⊕ XOR function

|| Concatenation

4.1. System Setup Phase

In this section, RC denotes the secret credentials of each WDj.

SP-1: RC select s a master private key MK for CS.

SP-2: RC chooses a unique identity IDWD for each WDj and computes the pseudo-identity
PIDWD = h(IDWD||MK). After that, RC generates a temporary identity TIDWD for
each WDj.

Sensors 2023, 23, 5747 7 of 26

SP-3: RC stores {IDWD, TIDold
j = null, TIDnew

j = TIDWD} in CS’s secure database and
then stores {PIDWD, TIDWD, h(·)} in the memory of WDj.

4.2. User Registration Phase

In this phase, Ui registers with RC and obtains certain secret information to utilize
later for authentication.

URP-1: Ui selects IDU and PWi at MDi and WDj. After that, MDi generates a random
number RNi and computes HIDU = h(IDU ||RNi) and HPWi = h(PWi||RNi). Then,
MDi sends {HIDU , HPWi} to RC over a secure channel.

URP-2: RC selects a temporary identity TIDU and a random number ri. After that,
RC calculates Auth∗ = h(HIDU ||HPWi||ri), Ai = ri ⊕ h(HIDU ⊕ HPWi), Bi =
h(TIDU ||ri||MK), Ci = ri⊕ h(TIDU ||MK). Finally, RC stores {TIDold

j = null, TIDnew
j

= TIDWD, Ci} in CS’s secure database and then sends {Auth∗, TIDU , Ai, Bi} to MDi
over a secure channel.

URP-3: MDi computes HAuth = h(Auth∗||HPWi ⊕ RNi), Di = RNi ⊕ Ai, Ei = Bi ⊕
h(TIDU ⊕ HPWi ⊕ RNi), and Fi = RNi ⊕ h(IDU ||PWi). Finally, MDi stores
{TIDU , HAuth, Di, Ei, Fi, h(·)} in its memory.

4.3. Login and Authentication Phase

In this phase, all participants authenticate each other and establish a common session key.

LAP-1: Ui first inputs IDU and PWi into MDi. After that, MDi computes RNi = Fi ⊕
h(IDU ||PWi), HID∗i = h(IDU ||RNi), HPW∗i = h(PWi||RNi), R∗i = Ai ⊕ h(HID∗i ⊕
HPW∗i) = Di ⊕ RNi ⊕ h(HID∗i ⊕ HPW∗i), Auth∗ = h(HID∗i ||HPW∗i ||R∗i), and

HAuth∗ = h(Auth∗ ⊕ HPW∗i ⊕ RNi), and checks HAuth∗ ?
= HAuth. If it matches,

MDi generates a random nonce n1 and a current timestamp T1 and then transmits
Msg1 = {n1, T1} to WDj over an insecure channel.

LAP-2: WDj verifies the freshness of |T2 − T1| ≤ ∆Ti, where T2 is the current times-
tamp and ∆T1 is the maximum transmission delay for the message to be trans-
mitted between MDi and WDj. If they match, WDj selects n2 and computes M1 =
h(TIDWD||PIDWD) ⊕ n2 to transmit the secret parameters securely, and M2 =
h(M1||T2||n1||n2) to verify the authorized entity. After that, WDj transmits Msg2 =
{M1, M2, TIDWD, T2} to MDi.

LAP-3: MDi checks the freshness of |T3 − T2| ≤ ∆Ti. If the condition is met, MDi selects
n3 and computes Bi = Ei ⊕ h(TIDU ⊕ HPWi ⊕ RNi), M3 = n3 ⊕ h(TIDU ||ri||T3) to
transmit the random nonce securely, M4 = h(TIDU ||Bi||n3||T3) to verify the autho-
rized entity, M5 = h(TIDU ||TIDWD)⊕ n1 to transmit the secret parameters securely,
and M6 = h(TIDU ||TIDWD||M2||M4||n3||T3) to verify the authorized entity, and
sends Msg3 = {M1, M2, M3, M4, M5, M6, TIDU , TIDWD, T2, T3} to CS over an inse-
cure channel.

LAP-4: CS verifies the freshness of |T4 − T3| ≤ ∆Ti. If it matches, CS retrieves TIDU in the
database. There are three scenarios for TIDU . The first scenario is TIDold

i = TIDU ,
indicating that CS and Ui did not correctly update the temporary identity of Ui in the
previous session. The second scenario is TIDnew

i = TIDU , indicating that CS and Ui
correctly updated the temporary identity of Ui in the previous session. In the third
scenario, there is no matching of TIDU in the CS database, and the authentication
phase is terminated. For the first two scenarios, CS obtains {Ci}, corresponding
to TIDU in its database. After that, CS computes r∗i = Ci ⊕ h(TIDU ||MK), B∗i =
h(TIDU ||r∗i ||MK), n∗3 = M3 ⊕ h(TIDU ||r∗i ||T3), M∗4 = h(TIDU ||B∗i ||n∗3 ||T3), and

M∗6 = h(TIDU ||TIDWD||M2||M∗4 ||n∗3 ||T3), and verifies M∗4
?
= M4 and M∗6

?
= M6. If

they are not equal, the authentication phase is terminated. Otherwise, CS successfully

Sensors 2023, 23, 5747 8 of 26

authenticates Ui and then updates the temporary identity of Ui. For the second
scenario, Ui’s new temporary identity remains unchanged for the time being and is
updated later in the session.

LAP-5: CS retrieves TIDWD in its database. Similar to LAP-4, there are three scenarios:
TIDold

j = TIDWD, TIDnew
j = TIDWD, or TIDWD cannot be found in the CS database.

In the first two scenarios, CS obtains {IDWD}, corresponding to TIDWD in its database,
and then computes PIDWD = h(IDWD||MK), n∗2 = h(TIDWD||PIDWD)⊕M1, n∗1 =

h(TIDU ⊕ TIDWD) ⊕ M5, and M∗2 = h(M1||T2||n∗1 ||n∗2), and checks M∗2
?
= M2. If

it matches, CS successfully authenticates WDj. Then, CS updates the temporary
identity of WDj as it updates Ui’s temporary identity.

LAP-6: CS selects n4 and timestamp T4. After that, CS computes M7 = Bi ⊕ T4 =
h(TIDU ||ri||MK)⊕ T4 to transmit the secret parameters securely, M8 = n4⊕ h(TIDU ||ri ||n3||T4)

to transmit the secret parameters securely, SKCS−U = h(TIDU ||M7||n3||n4||T3||T4),
M9 = h(M4||M8||SKCS−U ||T3||T4) to verify the authorized entity,
SKWD−U = h(TIDU ||TIDWD ||h(IDWD ||MK)||n2||n4||T4), M10 = h(M4||M8||SKWD−U ||T3||T4)to ver-
ify the authorized entity, and M11 = SKWD−U ⊕ h(Bi||n1||n3||n4||T3||T4). CS selects
the new temporary identities TIDnew

i and TIDnew
j for Ui and WDj, and then changes

(TIDold
i = TIDU , TIDnew

i = TIDnew
i) and (TIDold

j = TIDWD, TIDnew
j = TIDnew

j)

in its database. Then, CS calculates TID∗i = TIDnew
i ⊕ h(TIDU ||n4||SKCS−U) and

TID∗j = TIDnew
j ⊕ h(TIDWD||n4||SKWD−U) and transmits Msg4 = {M8, M9, M10,

M11, TID∗i , TID∗j , T4} to MDi over an insecure channel.

LAP-7: MDi verifies the freshness of |T5−T4| ≤ ∆Ti. If it matches, Ui calculates n4 = M8⊕
h(TIDU ||n3||T4), M∗7 = B∗i ⊕ T4 = Ei ⊕ h(TIDU ⊕ HPWi ⊕ RNi) ⊕ T4, SK∗CS−U =
h(TIDU ||M∗7 ||n3||n4||T3||T4), SK∗WD−U = M11 ⊕ h(Bi||n1||n3||n4||T3||T4),
M∗9 = h(M4||M8||SK∗CS−U ||T3||T4), and M∗10 = h(M4||M8||SK∗WD−U ||T3||T4), and

then checks whether M∗9
?
= M9 and M∗10

?
= M10. If they are valid, MDi authenticates

CS. After that, MDi stores the session keys, SK∗CS−U and SK∗WD−U , and the new
temporary identity, TIDnew

i = TID∗i ⊕ h(TIDU ||n4||SK∗CS−U).

LAP-8: MDi selects n5 and computes M12 = n4 ⊕ h(TIDWD||n1||T4) to transmit the secret
parameters securely, M13 = n5 ⊕ h(TIDWD||n1||T5) to transmit the secret parameters
securely, M14 = h(TIDU ||SKWD−U ||n5||T5) to verify the authorized entity, and then
transmits Msg5 = {TIDU , TID∗j , M12, M13, M14, T4, T5} to WDj.

LAP-9: WDj verifies the freshness |T6 − T5| ≤ ∆Ti. If it matches, WDj computes n4 =
M12 ⊕ h(TIDWD||n1||T4), n5 = M13 ⊕ h(TIDWD||n1||T5), SK∗WD−U = h(TIDU ||
TIDWD||h(IDWD||MK)||n2||n4||T4), and M∗14 = h(TIDU ||SKWD−U ||n5||T5), and then

checks whether M∗14
?
= M14. If it matches, WDj authenticates Ui successfully. Fi-

nally, WDj stores a session key SK∗WD−U and a new temporary identity TID∗j =

TIDnew
j ⊕ h(TIDWD||n4||SK∗WD−U).

5. Security Flaws of Guo et al.’s Scheme

In this section, we prove that Guo et al.’s scheme [8] is not protected against the lethal
security threats and cannot offer several security functionalities.

5.1. Impersonation Attack

According to Section 3.1, A can extract the secret credentials {PIDWD, TIDWD} stored
in WDj. Moreover,A can intercept, block, modify, replay, and delete the exchanged messages
over an insecure channel. In this attack,A attempts to impersonate a legitimate entity.

• Step 1: A first calculates n2 = M1⊕ h(TIDWD||PIDWD) and a new random nonce nA
2 .

After that, A computes MA
1 = h(TIDWD||PIDWD) ⊕ nA

2 and MA
2 = h(MA

1 ||T2||n1||nA
2).

After that, A transmits the message {MA
1 , MA

2 , TIDWD, T2} to CS via MDi.

Sensors 2023, 23, 5747 9 of 26

• Step 2: After receiving the message, CS retrieves TIDWD in its database and then ob-
tains {IDWD}, corresponding to TIDWD in its database. Then, CS calculates PIDWD =
h(IDWD||MK), nA∗

2 = h(TIDWD||PIDWD) ⊕ MA
1 , n∗1 = h(TIDU ⊕ TIDWD) ⊕ M5,

and MA∗
2 = h(MA

1 ||T2||n∗1 ||nA∗
2), and checks MA∗

2
?
= MA

2 . If it matches, CS authenti-
cates A, successfully.

• Step 3: CS generates a random nonce n4 and timestamp T4. After that, CS computes
M7 = Bi ⊕ T4 = h(TIDU ||ri||MK)⊕ T4, M8 = n4 ⊕ h(TIDU ||ri||n3||T4), SKCS−U =
h(TIDU ||M7||n3||n4||T3||T4), M9 = h(M4||M8||SKCS−U ||T3||T4), SKA

WD−U = h(TIDU

||TIDWD||h(IDWD||MK)||nA
2 ||n4||T4), MA

10 = h(M4||M8||SKA
WD−U ||T3||T4), and

MA
11 = SKA

WD−U ⊕ h(Bi||n1||n3||n4||T3||T4). CS selects the new temporary identities,
TIDnew

i and TIDnew
j for Ui and WDj, and then changes (TIDold

i = TIDU , TIDnew
i =

TIDnew
i), and (TIDold

j = TIDWD, TIDnew
j = TIDnew

j) in its database. Then, CS calcu-

lates TID∗i = TIDnew
i ⊕ h(TIDU ||n4||SKCS−U) and TIDA∗

j = TIDnew
j ⊕ h(TIDWD

||n4||SKA
WD−U) and transmits {M8, M9, MA

10, MA
11, TID∗i , TIDA∗

j , T4} to MDi over an
open channel.

• Step 4: Upon receiving the message, MDi verifies the freshness of |T5− T4| ≤ ∆Ti. If it
matches, Ui calculates n4 = M8 ⊕ h(TIDU ||n3||T4), M∗7 = B∗i ⊕ T4 = Ei ⊕ h(TIDU ⊕
HPWi ⊕ RNi) ⊕ T4, SK∗CS−U = h(TIDU ||M∗7 ||n3||n4||T3||T4), SKA∗

WD−U = MA
11 ⊕

h(Bi||n1||n3||n4||T3||T4), M∗9 = h(M4||M8||SK∗CS−U ||T3||T4), and MA∗
10 = h(M4||M8||

SKA∗
WD−U ||T3||T4), and then checks whether M∗9

?
= M9 and MA∗

10
?
= MA

10. If they are
valid, MDi authenticates CS. After that, MDi stores the session keys SK∗CS−U and
SKA∗

WD−U and the new temporary identity TIDnew
i = TID∗i ⊕ h(TIDU ||n4||SK∗CS−U).

• Step 5: Then, MDi selects n5 and computes M12 = n4 ⊕ h(TIDWD||n1||T4), M13 =

n5⊕ h(TIDWD||n1||T5), MA
14 = h(TIDU ||SKA

WD−U ||n5||T5), and then transmits {TIDU ,
TIDA∗

j , M12, M13, MA
14, T4, T5} to WDj.

• Step 6: After eavesdropping on the message, {TIDU , TIDA∗
j , M12, M13, MA

14, T4, T5}, A
calculates n4 = M12 ⊕ h(TIDWD||n1||T4), n5 = M13 ⊕ h(TIDWD||n1||T5), SKA∗

WD−U =

h(TIDU ||TIDWD||h(IDWD||MK)||nA
2 ||n4||T4), and MA∗

14 = h(TIDU ||SKA
WD−U ||n5||T5). Note

that h(IDWD||MK), included in the session key, is the same as PIDWD. Finally, A
stores a session key SKA∗

WD−U and a new temporary identity TIDA∗
j = TIDnew

j ⊕
h(TIDWD||n4||SKA∗

WD−U).

Consequently, their scheme is not resistant to impersonation attacks since A can
impersonate the legitimate WDj.

5.2. MITM Attack

Based on the threat model, A can extract the secret parameters {PIDWD, TIDWD}
stored in WDj. Furthermore, A can block, intercept, modify, replay, and delete the trans-
mitted messages via an open channel.

• Step 1: After eavesdropping on the message {n1, T1} via a public channel, A first
calculates n2 = M1 ⊕ h(TIDWD||PIDWD) and M2 = h(M1||T2||n1||n2). After that, A
transmits {M1, M2, TIDWD, T2}.

• Step 2: After eavesdropping on the message {TIDU , TID∗j , M12, M13, M14, T4, T5}
via a public channel, A computes n4 = M12 ⊕ h(TIDWD||n1||T4) and n5 = M13 ⊕
h(TIDWD||n1||T5).

• Step 3: A calculates a session key SK∗WD−U = h(TIDU ||TIDWD||h(IDWD||MK)||n2||
n4||T4), where h(IDWD||MK), included in the session key, is the same as PIDWD.
Finally, A successfully calculates M∗14 = h(TIDU ||SKWD−U ||n5||T5) and then verifies

M∗14
?
= M14. Hence, their scheme is not protected against this attack.

Sensors 2023, 23, 5747 10 of 26

5.3. Session Key Disclosure Attack

Based on Section 5.2, A extracts n4 = M12 ⊕ h(TIDWD||n1||T4) and n5 = M13 ⊕
h(TIDWD||n1||T5), and then computes a session key SK∗WD−U = h(TIDU ||TIDWD||h(IDWD
||MK)||n2||n4||T4) successfully. As a result, A can successfully obtain a common session
key SK∗WD−U between legitimate Ui and WDj. Thus, Guo et al.’s scheme is insecure to
this attack.

5.4. Mutual Authentication

In Guo et al.’s scheme, they claimed to provide mutual authentication between the en-
tities. Unfortunately, according to Sections 5.2 and 5.3,A can successfully generate the sensi-
tive messages, M10 = h(M4||M8||SKWD−U ||T3||T4) and M14 = h(TIDU ||SKA

WD−U ||n5||T5),
for mutual authentication. Thus, Guo et al.’s scheme cannot guarantee secure mutual au-
thentication between the legitimate Ui and WDj.

5.5. Untraceability

Guo et al. claimed that their protocol achieved untraceability. However, according to
Sections 5.2 and 5.3, A calculates the random nonces n4 = M12 ⊕ h(TIDWD||n1||T4) and
n5 = M13 ⊕ h(TIDWD||n1||T5) and then computes a session key SK∗WD−U = h(TIDU ||TIDWD ||
h(IDWD ||MK)||n2||n4||T4). After that, A successfully calculates a new temporary identity
TIDnew

j = TID∗j ⊕ h(TIDWD||n4||SK∗WD−U). Thus, Guo et al.’s scheme does not achieve un-
traceability because A can trace the authorized WDj through their new temporary identity.

6. Proposed Scheme

The existing related schemes for wearable computing are not protected against poten-
tial security attacks. Thus, we propose a “robust and efficient authentication and group–
proof scheme using the PUF for wearable computing (AGPS-PUF)” to improve the security
flaws of the existing schemes. The AGPS-PUF is resilient to cyber/physical security attacks
and provides necessary security functionalities. The AGPS-PUF consists of six phases:
(1) system setup, (2) registration, (3) login and authentication, (4) group proof, and
(5) password update. We show the overall flowchart during the AKA phase of the AGPS-
PUF, as shown in Figure 3.

Figure 3. The overall flowchart during the AKA phase.

Sensors 2023, 23, 5747 11 of 26

6.1. System Setup Phase

In this section, RC first sets the secret credentials for each WDj. The following are
detailed descriptions:

SP-1: RC selects a master private key MK for CS.

SP-2: RC chooses a unique identity IDWD for each WDj and then generates a temporary
identity TIDWD for each WDj.

SP-3: RC stores {IDWD, TIDWD} in CS’s secure database and then stores the secret cre-
dentials {IDWD, TIDWD, h(·)} in the memory of WDj.

6.2. Registration Phase

This phase consists of two parts: Ui and WDj registration phases.

6.2.1. User Registration Phase

In this phase, Ui registers within RC and then obtains the secret credentials from RC.

URP-1: Ui chooses unique IDU and PWU in MDi. After that, MDi selects a random
number ai and generates a set of (Cx

U , Rx
U) based on the PUF to ensure the unique

physical properties of the device. Then, MDi computes HIDU = h(IDU ||ai) and
HPWi = h(PWU ||ai||Rx

U) and then transmits {HIDU , HPWi, (Cx
U , Rx

U)} to RC over a
secure channel.

URP-2: RC generates a temporary identity TIDU and computes Xi = h(TIDU ||MK||Rx
U),

XUW = h(IDRC||MK), Ai = (Xi||XUW)⊕ h(HIDU ⊕ h(HPWi||Rx
U)), Bi = h(HPWi||

TIDU ||Xi), Ci = Xi ⊕ h(IDCS||TIDU ||MK), Finally, RC stores {TIDU , (Cx
U , Rx

U), Ci}
in CS’s database and then sends {Ai, Bi, TIDU} to MDi over a secure channel.

URP-3: Finally, MDi computes Di = ai ⊕ h(IDU ||PWU ||Rx
U) and stores {Ai, Bi, Di, TIDU}

in its memory.

6.2.2. Wearable Device Registration Phase

In this phase, WDj registers within RC and then obtains the secret credentials from RC.

WDRP 1: WDj generates a random number bj and a set (Cx
WD, Rx

WD) under the PUF to
ensure the unique physical properties of the device. After that, WDj calculates
Qj = bj ⊕ h(IDWD||Rx

WD) and Wj = h(IDWD||bj||Rx
WD). After that, WDj sends

{TIDWD, Qj, Wj, (Cx
WD, Rx

WD)} to RC.

WDRP 2: RC retrieves the corresponding IDWD stored in the database using TIDWD.
After that, RC computes b∗j = Qj ⊕ h(IDWD||Rx

WD), and W∗j = h(ID∗WD||b∗j ||Rx
WD),

and verifies W∗j
?
= Wj. If it is invalid, CS terminates WDj’s registration request;

otherwise, RC computes PIDWD = h(TIDWD||MK), Zj = h(TIDWD||MK||Rx
WD),

XUW = h(IDRC||MK), Ej = (XUW ||Zj||PIDWD)⊕ h(IDWD||TIDWD||Rx
WD||bj), and

Yj = Zj ⊕ h(IDCS||TIDWD||MK). After that, RC stores {Yj, (Cx
WD, Rx

WD)} in CS’s
secure database and then transmits {Ej} to WDj.

WDRP 3: Finally, WDj computes Oj = bj ⊕ h(Rx
WD ⊕ TIDWD ⊕ IDWD) and then stores

{Ej, Oj} in memory.

6.3. Login and Authentication Phase

The registered Ui and WDj should establish a common session key with the help of
CS to use reliable medical services. This phase is illustrated in Figure 4.

Sensors 2023, 23, 5747 12 of 26

Wearable Device (WDj) User/Mobile Device (Ui/MDi) Cloud Server (CS)
Inputs IDi, PWi into MDi
Computes
ai = Di ⊕ h(IDi||PWi||Rx

U)
HIDi = h(IDi||ai)
HPWi = h(PWi||ai||Rx

U)
(Xi||XUW) = Ai ⊕ h(HIDi ⊕ h(HPWi||Rx

U))
B∗i = h(HPWi||TIDi||Xi)

Checks B∗i
?
= Bi

generates random nonce R1 and timestamp T1
M1 = R1 ⊕ h(XUW ||T1)

Msg1 = {M1, T1}←−−−−−−−−−−−−−−−
(via a public channel)

Checks a freshness of |T2 − T1| ≤ ∆Ti
Computes
bj = Oj ⊕ h(Rx

WD ⊕ TIDj ⊕ IDj)
(XUW ||Zj||PIDj) = Ej ⊕ h(IDj||TIDj||Rx

WD||bj)
R1 = M1 ⊕ h(XUW ||T1)
Selects a random nonce R2 and a timestamp T2
Generates a PUF pair (C1

WD, R1
WD) from (Cx

WD, Rx
WD)

Computes
M2 = R2 ⊕ h(PIDj||TIDj||R1

WD) Checks |T3 − T2| ≤ ∆Ti
M3 = h(R1||R2||R1

WD||T2) Selects a random nonce R3 and a timestamp T3
Msg2 = {M2, M3, TIDj, C1

WD, T2}
−−−−−−−−−−−−−−−−−−−−−−−−−−→

Generates a PUF pair of (C1
U , R1

U) from (Cx
U , Rx

U)

(via a public channel) Computes
M4 = Enc(Xi ||R1

U)(R1||R3) Checks |T4 − T3| ≤ ∆Ti

M5 = h(TIDi||TIDj||R3||R1
U ||T3) Extracts Ci corresponding TIDi in its database

Msg3 = {M2, M3, M4, M5, TIDi, TIDj, C1
WD, C1

U , T2, T3}
−−−→

Computes

(via a public channel) Xi = Ci ⊕ h(IDCS||TIDi||MK)
(R1||R3) = Dec(Xi ||R1

U)(M4)

M∗5 = h(TIDi||TIDj||R3||R1
U ||T3)

Checks M∗5
?
= M5

Extracts Yj to corresponding TIDj in its database
Finds R1

WD on the basis of C1
WD

Computes
Zj = Yj ⊕ h(IDCS||TIDj||MK), PIDj = h(TIDj||MK)
R2 = M2 ⊕ h(PIDj||TIDj||R1

WD)
M∗3 = h(R1||R2||R1

WD||T2)

Checks M∗3
?
= M3

Checks |T4 − T3| ≤ ∆Ti Selects the new temporary identities TIDnew
i and TIDnew

j
Computes Updates TIDold

i to TIDnew
i and TIDold

j to TIDnew
j

(R4||TIDnew
i ||SKWD−U ||TID∗j) = Dec(R3||R1

U ||Xi)
(M6) Selects a random nonce R4 and a timestamp T4

SK∗CS−U = h(TIDi||Xi||R3||R4||T4) Computes
M∗7 = h(TIDi||SK∗CS−U ||SKWD−U ||R1

U ||R4||T4) SKCS−U = h(TIDi||Xi||R3||R4||T4)

Checks M∗7
?
= M7 SKWD−U = h(TIDi||PIDj||R2||R4||T4)

Updates TIDold
i to TIDnew

i TID∗j = TIDnew
j ⊕ h(TIDj||SKWD−U ||Zj|R4)

Stores the session keys SK∗CS−U and SK∗WD−U M6 = Enc(R3||R1
U ||Xi)

(R4||TIDnew
i ||SKWD−U ||TID∗j)

Selects a timestamp T5 M7 = h(TIDi||SKCS−U ||SKWD−U ||R1
U ||R4||T4)

Computes
M8 = Enc(R1||XUW)(R3||R4) Msg4 = {M6, M7, T4}←−−−−−−−−−−−−−−−−−−

Checks |T5 − T4| ≤ ∆Ti M9 = h(TIDj||R3||R4||SKWD−U ||T5) (via a public channel)
Computes
(R3||R4) = Dec(R1||XUW)(M8) Msg5 = {M8, M9, TID∗j , T4, T5}

←−−−−−−−−−−−−−−−−−−−−−−−−−
SK∗WD−U = h(TIDi||PIDj||R2||R4||T4) (via a public channel)
M∗9 = h(TIDj||R3||R4||SK∗WD−U ||T5)

Checks M∗9
?
= M9

Computes
TIDnew

j = TID∗j ⊕ h(TIDj||SKWD−U ||Zj||R4)

Updates TIDold
j to TIDnew

j
Stores a session key SK∗WD−U

Figure 4. Login and Authentication Phase of the AGPS-PUF.

LAP-1: Ui first inputs a unique identity IDU and password PWi into MDi. After that, MDi
calculates ai = Di ⊕ h(IDU ||PWi||Rx

U), HIDU = h(IDU ||ai), HPWi = h(PWi||ai||Rx
U),

(Xi||XUW) = Ai ⊕ h(HIDU ⊕ h(HPWi||Rx
U)), and B∗i = h(HPWi||

TIDU ||Xi) and then checks B∗i
?
= Bi. If it matches, MDi generates a random nonce R1

and a timestamp T1. Then, MDi computes M1 = R1⊕ h(XUW ||T1) to make the masked
random nonce and transmits Msg1 = {M1, T1} to WDj via an insecure channel.

LAP-2: WDj checks the freshness of |T2 − T1| ≤ ∆Ti, where T2 is the current timestamp
and ∆T1 is the maximum transmission delay for the message to be transmitted be-
tween MDi and WDj. If it matches, WDj calculates bj = Oj ⊕ h(Rx

WD ⊕ TIDWD ⊕
IDWD), (XUW ||Zj||PIDWD) = Ej ⊕ h(IDWD||TIDWD||Rx

WD||bj), and R1 = M1 ⊕
h(XUW ||T1). Then, WDj selects R2 and T2. After that, WDj chooses a pair of
(C1

WD, R1
WD) from the preloaded CRPs (Cx

WD, Rx
WD) to ensure the unique physical

properties of the device and computes M2 = R2⊕ h(PIDWD||TIDWD||R1
WD) to make

the masked random nonce, and M3 = h(R1||R2||R1
WD||T2) to verify the authorized

entity, and then transmits Msg2 = {M2, M3, TIDWD, C1
WD, T2} to MDi.

LAP-3: After receiving the message, MDi verifies the freshness of |T3 − T2| ≤ ∆Ti. If
it matches, MDi generates R3 and a timestamp T3 and chooses a pair of (C1

U , R1
U)

from the preloaded CRPs (Cx
U , Rx

U) to ensure the unique physical properties of the
device. After that, MDi decrypts M4 = Enc(Xi ||R1

U)(R1||R3) to obtain the random

nonce and calculates M5 = h(TIDU ||TIDWD||R3||R1
U ||T3) to verify the authorized

Sensors 2023, 23, 5747 13 of 26

entity, and then transmits Msg3 = {M2, M3, M4, M5, TIDU , TIDWD, C1
WD, C1

U , T2, T3}
to CS through a public channel.

LAP-4: After receiving Msg3 from MDi, CS checks the freshness of |T4 − T3| ≤ ∆Ti. If it
matches, CS finds R1

U on the basis of C1
U. After that, CS extracts Ci corresponding

to TIDU in its database. CS decrypts (R1||R3) = Dec(Xi ||R1
U)(M4), and computes

Xi = Ci ⊕ h(IDCS||TIDU ||MK), and M∗5 = h(TIDU ||TIDWD||R3||R1
U ||T3), and ver-

ifies M∗5
?
= M5. If it matches, CS aborts the current session; otherwise, CS extracts

Yj to the corresponding TIDWD in its database. Then, CS finds R1
WD on the basis of

C1
WD and computes Zj = Yj ⊕ h(IDCS||TIDWD||MK), PIDWD = h(TIDWD||MK),

R2 = M2 ⊕ h(PIDWD||TIDWD||R1
WD), and M∗3 = h(R1||R2||R1

WD

||T2), and verifies M∗3
?
= M3. If it matches, CS selects the new temporary iden-

tities, TIDnew
i and TIDnew

j for Ui and WDj, and updates TIDold
i to TIDnew

i and

TIDold
j to TIDnew

j in its database. CS generates R4 and T4 and computes SKCS−U =

h(TIDU ||Xi ||R3||R4||T4), SKWD−U = h(TIDU ||PIDWD ||R2||R4||T4), TID∗j = TIDnew
j ⊕ h(TIDWD ||

SKWD−U ||Zj|R4), M6 = Enc(R3 ||R1
U ||Xi)

(R4||TIDnew
i ||SKWD−U ||TID∗j)to transmit the secret param-

eters securely, and M7 = h(TIDU ||SKCS−U ||SKWD−U ||R1
U ||R4||T4) to verify the au-

thorized entity. Finally, CS sends Msg4 = {M6, M7, T4} to MDi.

LAP-5: MDi verifies the freshness of |T4 − T3| ≤ ∆Ti. If it matches, MDi decrypts
(R4||TIDnew

i ||SKWD−U ||TID∗j) = Dec(R3||R1
U ||Xi)

(M6) and computes SK∗CS−U = h

(TIDU ||Xi||R3||R4||T4), and M∗7 = h(TIDU ||SK∗CS−U ||SKWD−U ||R1
U ||R4||T4), and

verifies M∗7
?
= M7. If it is not equal, MDi terminates the current session; otherwise,

MDi updates a new temporary identity TIDold
i to TIDnew

i and stores the session
keys SK∗CS−U and SK∗WD−U . After that, MDi generates a timestamp T5 and com-
putes M8 = Enc(R1||XUW)(R3||R4) to transmit the secret parameters securely, and
M9 = h(TIDWD||R3||R4||SKWD−U ||T5) to verify the authorized entity, and then
transmits Msg5 = {M8, M9, TID∗j , T4, T5} to WDj over a public channel.

LAP-6: WDj checks the freshness of |T5 − T4| ≤ ∆Ti. If it matches, WDj computes
(R3||R4) = Dec(R1||XUW)(M8), SK∗WD−U = h(TIDU ||PIDWD||R2||R4||T4), and M∗9 =

h(TIDWD||R3||R4||SK∗WD−U ||T5), and verifies M∗9
?
= M9. If it matches, WDj authen-

ticates Ui, successfully and then calculates TIDnew
j = TID∗j ⊕ h(TIDWD||

SKWD−U ||Zj||R4). Finally, WDj updates a new temporary identity TIDold
j to TIDnew

j
and stores a session key SK∗WD−U .

6.4. Group–Proof Generation and Verification Phases

After the authentication process is executed successfully, Ui generates a group proof
for multiple WDj by MDi, indicating that WDj belongs to the same Ui and then sends the
group proof to CS for verification. This phase is illustrated in Figure 5.

Wearable Device (WDj) User/Mobile Device (Ui/MDi) Cloud Server (CS)
Selects a random nonce RN1 and a timestamp TS1
Computes
G1 = RN1 ⊕ h(SKWD−U ||XUW ||TS1)

GM1 = {G1, TS1}←−−−−−−−−−−−−−−−
(via a public channel)

Checks the freshness of |TS2 − TS1| ≤ ∆TSi
Computes
RN1 = G1 ⊕ h(SKWD−U ||XUW ||TS1)
Generates a random nonce RN2 and a timestamp TS2
Computes
sj = h(SKWD−U ||RN1||RN2) Checks the freshness of |TS3 − TS2| ≤ ∆TSi
G2 = RN2 ⊕ h(RN1||SKWD−U ||XUW) Computes
Pj = h(PIDWD||TIDWD||sj) RN2 = G2 ⊕ h(RN1||SKWD−U ||XUW)

GM2 = {G2, Pj, sj, TIDWD, TS2}
−−−−−−−−−−−−−−−−−−−−−−−−−→

s∗j = h(SKWD−U ||RN1||RN2

(via a public channel) Checks whether s∗j
?
= sj Decrypts (TIDU , TIDWD, RN1, RN2, GPi) = DecSKCS−U (G3)

Computes Extracts Ci corresponding to TIDU in this database
GPi = h(TIDU ||Xi||SKCS−U ||P1 ⊕ P2 ⊕ · · · Pj) Computes
G3 = EncSKCS−U (TIDU , TIDWD, RN1, RN2, GPi) Xi = Ci ⊕ h(IDCS||TIDU ||MK)

GM3 = {G3}−−−−−−−−−−−→
Extracts IDWD and SKWD−U corresponding to TIDWD in its database

(via a public channel) Computes
PIDWD = h(IDWD||MK), s∗j = h(SKWD−U ||RN1||RN2)

P∗j = h(PIDWD||TIDWD||sj)

GP∗i = h(TIDU ||Xi||SKCS−U ||P1 ⊕ P2 ⊕ · · · Pj)

Checks whether GP∗i
?
= GPi

If it matches, the group proof GPi for the multiple instances of WDj is valid.

Figure 5. Group–proof generation and verification phase of the AGPS-PUF.

Sensors 2023, 23, 5747 14 of 26

GPGV 1: MDi for authorized Ui selects RN1 and TS1. After that, MDi computes G1 =
RN1 ⊕ h(SKWD−U ||XUW ||TS1) and then sends GM1 = {G1, TS1} to WDj over a
public channel.

GPGV 2: WDj verifies the freshness of |TS2 − TS1| ≤ ∆TSi. If it matches, WDj cal-
culates RN1 = G1 ⊕ h(SKWD−U ||XUW ||TS1) and generates a random nonce RN2
and a timestamp TS2. After that, WDj computes sj = h(SKWD−U ||RN1||RN2),
G2 = RN2 ⊕ h(RN1||SKWD−U ||XUW), and Pj = h(PIDWD||TIDWD||sj), and then
transmits GM2 = {G2, Pj, sj, TIDWD, TS2} to MDi.

GPGV 3: MDi checks the freshness of |TS3 − TS2| ≤ ∆TSi. If it matches, MDi computes
RN2 = G2 ⊕ h(RN1||SKWD−U ||XUW) and s∗j = h(SKWD−U ||RN1||RN2, and checks

whether s∗j
?
= sj. If it matches, MDi generates the group proof GPi = h(TIDU ||Xi||

SKCS−U ||P1 ⊕ P2 ⊕ · · · Pj) for all wearable devices. Finally, WDj encrypts G3 =
EncSKCS−U (TIDU , TIDWD, RN1, RN2, GPi) using a session key SKCS−U and then trans-
mits GM3 = {G3} to CS over an open channel.

GPGV 4: CS decrypts (TIDU , TIDWD, RN1, RN2, GPi) = DecSKCS−U (G3) using a session
key SKCS−U . CS extracts Ci corresponding to TIDU in this database, computes Xi =
Ci ⊕ h(IDCS||TIDU ||MK), and then extracts IDWD and SKWD−U , corresponding to
TIDWD in its database. After that, CS computes PIDWD = h(IDWD||MK), s∗j =

h(SKWD−U ||RN1||RN2), P∗j = h(PIDWD||TIDWD||sj), and GP∗i = h(TIDU ||Xi||

SKCS−U ||P1 ⊕ P2 ⊕ · · · Pj) and then checks whether GP∗i
?
= GPi. If it matches, CS

successfully verifies that the multiple instances of WDj belong to the same Ui through
the group proof.

6.5. Password Update Phase

If Ui wishes to obtain a new PWi, Ui can freely update their old PWi without interacting
with RC.

PUP-1: Ui inputs IDU and an old password PWold
i in MDi.

PUP-2: MDi chooses a set of (Cx
U , Rx

U), and computes ai = Di⊕ h(IDU ||PWi||Rx
U), HIDU =

h(IDU ||ai), HPWi = h(PWi||ai||Rx
U), (Xi||XUW) = Ai ⊕ h(HIDU ⊕ h(HPWi||Rx

U),

and B∗i = h(HIDU ||TIDU ||Xi), and verifies whether B∗i
?
= Bi. If the condition is met,

Ui is prompted to choose a new password.

PUP-3: Ui inputs a new PWnew
i and computes HPWnew

i = h(PWnew
i ||ai||Rx

U), Anew
i =

(Xi||XUW)⊕ h(HIDU ⊕ h(HPWnew
i ||Rx

U)), Bnew
i = h(HPWnew

i ||TIDU ||Xi), Dnew
i =

ai ⊕ h(IDU ||PWnew
i ||Rx

U). Finally, MDi replaces {Ai, Bi, Di} with {Anew
i , Bnew

i , Dnew
i }.

As a result, MDi contains {Anew
i , Bi, Dnew

i , TIDU}.

7. Security Analysis

The following introduces the informal/formal security analyses.

7.1. Informal Security Analysis

We demonstrate that the AGPS-PUF can prevent“lethal security attacks” and allow
“anonymity, untraceability, and mutual authentication”.

7.1.1. Impersonation Attack

This attack means that A attempts to impersonate the legitimate user by eavesdropping
on the exchanged data over an open channel. In this case,A should generate the authentication
messages {Msg1, Msg2, Msg3}, and {Msg4, Msg5}. However, it is difficult to generate the
sensitive messages sinceA cannot obtain the “random nonces {R1, R3}” and “secret credential
{Xi, XUW}”. Consequently, the AGPS-PUF is resistant to impersonation attacks because A
cannot successfully generate the sensitive messages of the legitimate user.

Sensors 2023, 23, 5747 15 of 26

7.1.2. MITM Attack

According to Section 3.1, A can inject, modify, eavesdrop, intercept, delete, and block
the exchanged messages, {Msg1, Msg2, Msg3, Msg4, Msg5}, in the bidirectional communi-
cation between Ui, WDj, and CS, and then attempt to obtain sensitive information from
legitimate entities. However, A cannot generate sensitive messages since all messages are
masked with the PUF responses, {R1

U , R1
WD}, and fresh random nonces {R1, R2, R3}, by

using “XOR” and “hash” functions. Hence, the AGPS-PUF is secure against MITM attacks
since A cannot obtain sensitive information from legitimate entities.

7.1.3. Session Key Disclosure Attack

Based on the information presented in Section 3.1, A can steal the MD and then extract
the secret information {Ai, Bi, Di, TIDU} stored in the memory. In the AGPS-PUF,A should
obtain the real identities {IDU , IDWD, IDCS} and random nonces {R2, R3, R4} to calculate
the session keys, SKCS−U = h(TIDU||Xi||R3||R4||T4) and SKWD−U = h(TIDU||PIDWD||R2||
R4||T4). However, it is impossible for A to obtain the common session keys, SKCS−U and
SKWD−U , since the random nonces and real identities are preserved with secret parameters
{Xi, XUW , Zj}, and the PUF parameters {R1

U , R1
WD}, using cryptographic primitives. Hence,

the AGPS-PUF resists session key disclosure attacks.

7.1.4. Replay Attack

A eavesdrops on the transmitted messages {Msg1, Msg2, Msg3, Msg4, Msg5} during
the AKA phase and then attempts to authenticate with other parties by transmitting the
intercepted data in the previous session. A solution to prevent replay attacks, such as the existing
schemes [37,38], is to add random nonces and timestamps to the information exchanged so that
the data are unique for each authentication phase. Thus, the AGPS-PUF verifies the freshness of
Ti. Moreover, the data are masked with {R1, R2, R3, R4}. Therefore, even ifA selects and sends
valid authentication messages to legitimate entities, the AGPS-PUF is secure against replay
attacks since the current timestamp freshness is incorrect.

7.1.5. Physical Wearable Device Capture Attack

Assume that WDjs are physically captured by A and then extract {Ej, Oj} in WDj’s
memory, where Ej = (XUW ||Zj||PIDWD) ⊕ h(IDWD||TIDWD||Rx

WD||bj) and Oj = bj ⊕
h(Rx

WD ⊕ TIDWD ⊕ IDWD). However, A does not successfully compute SK∗WD−U between
Ui and WDj without the knowledge of {R2, R4} and the secret credentials {XUW}. In
addition, the PUF pairs {(C1

WD, R1
WD)} are distinct, independent, and secure for all batched

WDj. Hence, the AGPS-PUF is resilient against physical wearable device capture attacks
since the PUF output depends on the inherent physical fluctuations of the IC chip.

7.1.6. Stolen Verifier Attack

In this attack, A extracts and learns the secret parameters related to Ui and WDj,
which are stored in the database of CS, and it then attempts to masquerade as a legit-
imate entity. However, even if A obtains the stored parameters {TIDU , (Cx

U , Rx
U), Ci}

for Ui and {Yj, (Cx
WD, Rx

WD)} for WDj, A cannot calculate the common session keys
{SKWD−U , SKCS−U}, and impersonate a legitimate entity. Unfortunately,A does not obtain
the secret credentials {Ci, Yj} that are masked with RC’s master secret key MK by perform-
ing the cryptographic primitives. Furthermore, PUF pairs (Cx

U , Rx
U), and (Cx

WD, Rx
WD) for

Ui and WDj are computationally infeasible for A to derive the fresh PUF because the PUF
output depends on the inherent physical fluctuations of the IC. Hence, the AGPS-PUF is
resistant to stolen verifier attacks.

7.1.7. Offline Password-Guessing Attack

Referring to the information presented in Section 3.1, we assume that A can intercept
the transmitted information and then extract the secret credentials stored in the MD. Then,
A attempts to use these attacks to guess Ui’s real PWi. However, PWi is composed as

Sensors 2023, 23, 5747 16 of 26

MPWi = h(PWi||ai||Rx
U). Therefore, it is impossible for A to correctly guess PWi without

knowledge of the random number ai and the PUF response value Rx
U . As a result, the

offline password-guessing attack is not feasible in the AGPS-PUF.

7.1.8. Desynchronization Attack

In the AGPS-PUF, the temporary identities, TIDU and TIDWD, are assigned to Ui and
WDj during the AKA phase and then tables are maintained from CS. Since both the old
temporary identities, i.e., TIDold

i and TIDold
j , are stored, if the last acknowledgment messages

are blocked or lost due to time delay, there will always be consistent temporary identities
between Ui, WDj, and CS. Thus, the AGPS-PUF is resistant to desynchronization attacks.

7.1.9. Privileged Insider Attack

In this attack, A is a privileged insider of the proposed system. Hence, we assume that
A is able to obtain the request message {HPWi, HPWi, (Cx

U , Rx
U)} from the remote user

Ui. However, the secret credentials, {Xi, Zj, XUW} of Mi, and WDj, are computationally
infeasible for A without knowledge of the master private key MK and identity IDCS. Thus,
the AGPS-PUF can prevent privileged insider attacks because A cannot correctly generate
the sensitive information of Ui and WDj.

7.1.10. Mutual Authentication

In the AGPS-PUF, all participants successfully perform secure mutual authentica-
tion. After obtaining the authentication request messages, {M3, M5}, CSj check whether

M∗5
?
= h(TIDU ||TIDWD||R3||R1

U ||T3) to verify the authenticity and integrity of the re-

ceived message. If it matches, CS is authenticated with Ui. CS then verifies whether M∗3
?
=

h(R1||R2||R1
WD||T2) to verify the authenticity and integrity of the received message. If it

matches, CS is authenticated with WDj. Upon receiving the authentication message, {M7},
Ui checks M∗7

?
= h(TIDU ||SK∗CS−U ||SKWD−U ||R1

U ||R4||T4) to verify the authenticity and
integrity of the received message. If it matches, Ui authenticates CS. After receiving the au-

thentication confirmation message, {M9}, WDj verifies M∗9
?
= h(TIDWD||R3||R4||SK∗WD−U

||T5) to verify the authenticity and integrity of the received message. If it is valid, WDj
authenticates Ui. Thus, the AGPS-PUF successfully allows secure mutual authentication
and integrity between Ui, WDj, and CS.

7.1.11. Anonymity and Untraceability

Assume that A intercepts the transmitted messages during the AKA phase. However,
it is impossible for A to obtain Ui’s identity IDU and pseudo-identity HIDU and WDj’s
identity IDWD and pseudo-identity PIDWD without knowledge, such as random nonces,
the PUF secret value, and secret credentials. Hence, the AGPS-PUF provides anonymity for
Ui and WDj. Furthermore, A cannot track the legitimate Ui since all messages are unique
and dynamic using timestamps, random nonces, and temporary identities in each session.
Moreover, the temporary identities, TIDU and TIDWD of Ui and WDj, are updated as
TIDnew

i and TIDnew
j in each session. Hence, 3P-AGPS guarantees untraceability for Ui

and WDj.

7.1.12. Perfect Forward Secrecy (PFS)

The PFS security indicates that SK will not be exposed to A even if a long-term secret
key is compromised. In the AGPS-PUF, if CS’s long-term secret key MK is compromised,
A cannot compute the session keys, SKCS−U and SKWD−U , because A does not have
knowledge of the secret credentials {XUW , Xi}, the PUF secret value {Rx

U , Rx
WD}, and real

identities {IDU , IDWD}. Consequently, the AGPS-PUF is resistant to PFS.

Sensors 2023, 23, 5747 17 of 26

7.2. Formal Analysis through ROR Oracle Model

We utilize a formal proof, denoted as the ROR Oracle model, to prove the session key
(SK) security. We define the queries required for the ROR Oracle model [10].

In the AGPS-PUF, there are three participants: the mobile user ΓU , the wearable device
ΓWD, and the cloud server ΓCS. Let Γt1

U be the instance t1 of a participant U, Γt2
WD be the

instance t2 of a participant WD, and Γt3
CS be the instance t3 of a participant CS. In Table 2,

we present the descriptions for each query, including “CorruptMD(·),Execute(·), Test(·),
Send(·), and Reveal(·) for ROR Oracle model”.

Table 2. Query and purpose.

Query Purpose

Send(Γt, Msg) Based on this query, A can transmit the message Msg
to the Γt, and obtain the response message accordingly.

CorruptMD(Γt1
U)

This query indicates as the mobile device stolen attacks,
whereA can extract the secret credentials stored in MD.

CorruptWD(Γt3
WD)

This query indicates as the physical capture attacks
whereA can obtain the secret parameters stored in WD.

Execute(Γt1
U , Γt2

WD, Γt3
CS,)

Based on Execute(·), A performs the passive/active at-
tacks by eavesdropping the exchanged messages be-
tween each entity over a insecure channel.

Reveal(Γt)
Based on this query, A reveals a SK generated between
Γt1

U and Γt2
WD using Reveal(·) query.

Test(Γt)

An unbiased coin c is tossed prior to game start. If A
gets c = 1 under the Test(·), it indicates a SK between
Γt1

U and Γt2
WD is fresh. If A gets the c = 0, it indicates SK

is not fresh; otherwise, A gets a null value (⊥).

Theorem 1. Let AdvAGPS−PUF
A be the advantage that AdvAGPS−PUF

A is able to break the SK

security of the AGPS-PUF. Hence, we derive the following AdvAGPS−PUF
A ≤ q2

h
|Hash| +

q2
P

|PUF| +

2{C · qs
send, qs

2l1
, qs

2l2
}

Proof. The PUF(·) range space, h(·) query number, Send(·) query number, and Hash range
space indicate qP, qh, qsend, and Hash. Furthermore, the Zipf credentials [39] indicate C, lm,
s, and ln.

Proof: We present the five games GMi (i ∈ [0, 4]). We indicate that AdvAGPS−PUF
A,GMi

is
the probability of A to win GMi. All games are described in detail as follows.

Game: GM0: A executes a real attack in AGPS-PUF. Hence, A picks a random bit c at
the beginning of GM0. We obtain the following Equation (1) as

AdvAGPS−PUF
A = |2 · AdvAGPS−PUF

A,GM0
− 1| (1)

Game GM1: GM1 indicates that A executes an “eavesdropping attack, in which the
transmitted messages are intercepted between U, WD, and CS performing Execute(·)
query”. In GM1, A carries out “Test(·)/Reveal(·) queries” to compromise SK. The results
of the Test(·)/Reveal(·) queries determine whether A obtains SKCS−U and SKWD−U . To
compromise SK, A requires the random nonces {R2, R3, R4}, and PUF values. Therefore,
A is not able to increase the winning probability of GM1. We can derive Equation (2) as

AdvAGPS−PUF
A,GM1

= AdvAGPS−PUF
A,GM0

(2)

Game GM2: This game indicates that A executes a “real attack” based on “Send(·)
and Hash” queries. A transmits the modified messages to participants and acts as a legal
user so that it is able to guess the outcomes of the “Send(·) query”. Moreover, A aims to

Sensors 2023, 23, 5747 18 of 26

find collisions for the hash oracle and attempts to copy messages that are expected to be
authenticated by the entities. Because the random nonce, timestamp, temporary secret, and
identity are configured using hash functions in each message, running “Send(·) and Hash
queries” cannot cause a conflict. We can deduce that the probability of aborting the game

is bounded by q2
h

2|Hash| . It is worth noting that this may happen when processing Send()
query; the game is aborted with a probability determined by the birthday paradox [40]. The
probability of finding collisions in the hash oracle Hash, as per the square of the birthday
paradox, is the probability, and the two games, GM1 and GM2, are indistinguishable, unless
one of the above rules causes the game to abort. Thus, we can have Equation (3) as

|AdvAGPS−PUF
A,GM2

− AdvAGPS−PUF
A,GM1

| ≤
q2

h
2|Hash| (3)

Game GM3: This game is executed in the analogy as presented in GM2. By using the
“analogous argument” described in GM2, we can derive Equation (4) as

|AdvAGPS−PUF
A,GM3

− AdvAGPS−PUF
A,GM2

| ≤
q2

P
2|PUF| (4)

Game GM4: In this game,A attempts to extract {Ai, Bi, Di, TIDU} in the MD’s memory
by using the “differential power analysis” with CourruptWD(·) and CourruptMD(·) queries.
Note that Ai = (Xi||XUW)⊕ h(HIDU ⊕ h(HPWi||Rx

U)), Bi = h(HPWi||TIDU ||Xi), Di =
ai ⊕ h(IDU ||PWi||Rx

U), and TIDU. Moreover, A can obtain the secret credentials {Ej, Oj} in
the WD’s memory using physical capture attacks. Note that, Ej = (XUW ||Zj||PIDWD)⊕
h(IDWD||TIDWD||Rx

WD||bj) and Oj = bj ⊕ h(Rx
WD ⊕ TIDWD ⊕ IDWD). However, GM3 is

computationally infeasible for A to compromise the PWi of the legitimate Ui over the
Send(·) query without ai and Rx

U . Moreover, A should guess the parameters from the
extracted data because A does not have knowledge of the “password”, “biometric”, and
“PUF secret”. Moreover, it is computationally impossible to guess the “biometric”, “pass-
word”, and “PUF secret”. In conclusion, GM3 and GM4 are “indistinguishable”. We obtain
Equation (5) as follows:

|AdvAGPS−PUF
A,GM4

− AdvAGPS−PUF
A,GM3

| ≤ {C · qs
send,

qs

2lb
} (5)

Based on the execution of GM0 − GM4, A attempts to guess the “bit c to win the
games by performing Test(·) query”. We can obtain Equation (6) as follows:

AdvAGPS−PUF
A,GM4

=
1
2

(6)

Based on the “Formulas (1), (2), and (6)”, we obtain Equation (7) as follows:

1
2

AdvAGPS−PUF
A = |AdvAGPS−PUF

A,GM0
− 1

2
|

= |AdvAGPS−PUF
A,GM1

− 1
2
|

= |AdvAGPS−PUF
A,GM1

− AdvAGPS−PUF
A,GM4

| (7)

Based on the “triangular inequality with the Formulas (3), (4), (5) and (7)”, we obtain
Equation (8) as follows:

Sensors 2023, 23, 5747 19 of 26

1
2

AdvAGPS−PUF
A = |AdvAGPS−PUF

A,GM1
− AdvAGPS−PUF

A,GM4
|

≤ |AdvAGPS−PUF
A,GM1

− AdvAGPS−PUF
A,GM3

|

+ |AdvAGPS−PUF
A,GM3

− AdvAGPS−PUF
A,GM4

|

≤ |AdvAGPS−PUF
A,GM1

− AdvAGPS−PUF
A,GM2

|

+ |AdvAGPS−PUF
A,GM2

− AdvAGPS−PUF
A,GM3

|

+ |AdvAGPS−PUF
A,GM3

− AdvAGPS−PUF
A,GM4

|

≤
q2

h
2|Hash| +

q2
P

2|PUF| + {C · q
s
send,

qs

2l1
,

qs

2l2
}. (8)

Finally, by multiplying both sides of Equation (8) by a factor of 2, we can obtain the

following: AdvAGPS−PUF
A ≤ q2

h
|Hash| +

q2
P

|PUF| + 2{C · qs
send, qs

2l1
, qs

2l2
}

7.3. Formal Analysis through AVISPA Simulation

This simulation proves the formal security robustness of the cryptographic protocol
against MITM and replay attacks. We implement the security simulation and demonstrate
the security result. We first need to implement the AGPS-PUF as a programming language
HLPSL [41]. After that, this simulation starts analyzing the intermediate format (IF) over
the four backends: “On-the-Fly Model Checker (OFMC)”, “Constraint Logic-based Attack
Searcher (CL-AtSe)”, “SAT-based Model-Checker (SATMC)”, and “Tree Automata based on
Automatic Approximations for the Analysis of Security Protocols (TA4SP)”. Since TA4SP
and SATMC backends do not implement XOR operations, the simulation results of the
AGPS-PUF under these backends become inconclusive; thus, the results based on TA4SP
and SATMC backends have been ignored.

We simulated the AGPS-PUF using the “Security Protocol ANimator (SPAN) [?]” for
AVISPA. It is worth noting that AVISPA implements the DY model and that an intruder
participates in the protocol execution with a concrete session. The specification roles of
the WD, U, and CS are implemented using HLPSL, such as sessions, security goals, and
environments. In Figure 6, the HLPSL specification of the protocol is converted into the IF
by using the HLPSL2IF translator. After that, the IF is converted to the output format (OF)
by feeding it to one of the four backends. The OF contains the following:

• SUMMARY: It refers to whether the tested security protocol is safe or unsafe, or
whether the analysis is inconclusive.

• DETAILS: It explains why the analysis is inconclusive, why the tested security protocol
is safe, or under what conditions the test applications or security protocols may be
exploitable to the attack.

• PROTOCOL: It refers to the HLPSL specification of the target security protocol in the IF.
• GOAL: It demonstrates the goal of the analysis, which is performed by AVISPA using

HLPSL specifications.
• BACKEND: It is the name of the backend that is utilized for the analysis of SATMC,

CL-AtSe, OFMC, or TA4SP.
• STATISTICS: It includes the trace of any potential vulnerability in the target security

protocol, along with several useful statistics and related comments.

In the simulation based on AVISPA backends, two verifications were performed:
(1) checking for replay attacks and (2) DY model-based MITM attacks. When checking
for replay attacks on the AGPS-PUF, both OFMC and CL-AtSe check if the legitimate
participants can execute the specified protocols by performing a search for a passive
intruder. Moreover, both OFMC and CL-AtSe backends are used to check whether any
MITM attacks are possible by an intruder in the DY model. The SPAN simulation results

Sensors 2023, 23, 5747 20 of 26

demonstrate the security attacks and intruder simulations over a web-based GUI (graphical
user interface). Moreover, the implementation results obtained using the CL-AtSe and
OFMC backends are presented in Figure 7. According to the simulation results under
the OFMC and CL-AtSe in Figure 7, the SAFE output shows that the AGPS-PUF is safe
based on the specified security goals. Consequently, we demonstrate that the AGPS-PUF is
protected from replay and MITM attacks.

Figure 6. AVISPA simulation results based on SPAN.

Figure 7. AVISPA results based on OFMC and CL-AtSe.

8. Testbed Experiments Using MIRACL

We present the testbed experiments to estimate the execution times required for essen-
tial cryptographic operations utilized in the AGPS-PUF and existing related schemes. We
used the well-known “MIRACL crypto SDK [42]”, which is a C/C++-based programming
software library.

We used the two platforms to estimate the execution times required for cryptographic
operations. Tsed, Tecpm, Tme, and Th evaluate the execution times required for “a AES encryp-
tion and decryption”, “an ECC scalar point multiplication”, “a modular exponentiation”,
and “a SHA-256 hash function”.

• Platform 1: This platform is used to calculate the execution times for the MD and
WD settings on MIRACL, as follows: “Model: Raspberry PI 4B, with “OS: Ubuntu
20.04.2 LTS”, “Processor: 1.5 GHz Quad-core”, “CPU: 64-bit”. Each operation was run

Sensors 2023, 23, 5747 21 of 26

1000 times on the same setup and we observed the average, maximum, and minimum
times. The results of this platform are tabulated in Table 3.

Table 3. Execution times (in milliseconds) based on the MIRACL library, obtained using a Raspberry Pi 4.

Operation Min. Time (ms) Max. Time (ms) Average Time (ms)
Tecpm 2.766 2.920 2.848
Th 0.274 0.643 0.309
Tme 0.178 0.493 0.228
Tsed 0.011 0.021 0.012

• Platform 2: This platform was used to calculate the execution time for the CS server
setting as follows: “OS: Ubuntu 18.04.4 LTS, Processor: Intel Core i5-10400 @2.9 GHz,
Six-core, CPU: 64-bits”. All primitives were run 1000 times on the same setup and we
observed the average, maximum, and minimum times. The results of this platform
are tabulated in Table 4.

Table 4. Execution times (in milliseconds) based on the MIRACL library for a server.

Operation Min. Time (ms) Max. Time (ms) Average Time (ms)
Tecpm 0.472 2.737 0.522
Th 0.024 0.149 0.055
Tme 0.022 0.082 0.040
Tsed 0.001 0.002 0.001

9. Performance Comparison

This section presents the “performance comparison analysis” of the AGPS-PUF and
existing related schemes for wearable computing [8,21,23,25,26,28].

9.1. Computation Costs

We discuss the comparative computation costs of the AGPS-PUF with the existing
related schemes [8,21,23,25,26,28] during the AKA phase. We used the“ testbed experimen-
tal results for the Raspberry PI 4 and server setting in Section 8”. With the information
presented in Table 3, we utilized the analysis results of the average time for each operation
under Ui and WDj.

We calculated the execution times for the MD and WD settings on MIRACL as follows:
“Model: Raspberry PI 4B, with “OS: Ubuntu 20.04.2 LTS”, “Processor: 1.5 GHz Quad-core”,
“CPU: 64-bit”. As seen in Table 3, we present “Tecpm ≈ 2.848 ms, Th ≈ 0.309 ms, Tme ≈ 0.228
ms and Tsed ≈ 0.012 ms”. Moreover, we calculated the execution times for the CS server
setting as follows: “OS: Ubuntu 18.04.4 LTS, Processor: Intel Core i5-10400 @2.9 GHz,
Six-core, CPU: 64-bits”. As seen in Table 4, we utilized the analysis results for the average
time of each operation under CS. In scenario 2, we present “Tecpm ≈ 0.522 ms, Th ≈ 0.055
ms, Tme ≈ 0.040 ms and Tsed ≈ 0.001 ms”. We prove the performance results for the
comparative computational costs in Table 5 and Figure 8. Consequently, the AGPS-PUF
offers the necessary security requirements and features while maintaining similar costs
compared to previous schemes [8,25,26,28]. Hence, the AGPS-PUF is suitable for practical
wearable computing environments.

Sensors 2023, 23, 5747 22 of 26

Table 5. Comparison between computational costs.

Scheme User Gateway/Server Wearable Device Total Computation Cost
Li et al. [21] 6Th + 2Tsed 7Th + 6Tsed 5Th + 2Tsed 18Th + 10Tsed
Wu et al. [23] 10Th + 2Tsed 6Th + 5Tsed 4Th + Tsed 20Th + 8Tsed
Amin et al. [25] 12Th 18Th 6Th 36Th
Ali et al. [26] 12Th + 2Tsed 16Th + 3Tsed 7Th + 5sed 35Th + 10Tsed
Hajian et al. [28] 13Th 7Th 9Th 29Th
Guo et al. [8] 21Th 18Th 7Th 46Th
AGPS-PUF 10Th + 3Tsed 10Th + 2Tsed 8Th + Tsed 28Th + 6Tsed

Figure 8. Computational cost comparison of all entities.

9.2. Communication Costs

We discuss the comparative communication costs of the AGPS-PUF and existing related
schemes [8,21,23,25,26,28]. Referring to [8], we assume that the bits for the timestamp, the PUF
challenge, identity, random nonce, symmetric encryption/decryption, and hash digest are 32,
64, 128, 128, 128, and 256 bits, respectively. During the AKA phase of the AGPS-PUF, the ex-
changed messages {M1, T1}, {M2, M3, TIDWD, C1

WD, T2}, {M2, M3, M4, M5, TIDU, TIDWD,
C1

WD, C1
U, T2, T3}, {M6, M7, T4}, and {M8, M9, TID∗j , T4, T5} require “(256 + 32 = 288 bits),

(256 + 256 + 128 + 64 + 32 = 736 bits), (256 + 256 + 128 + 256 + 128 + 128 + 64 + 64 + 32 + 32 =
1344), (128 + 256 + 32 = 416 bits), and (256 + 256 + 256 + 32 + 32 = 832 bits)”. Consequently,
the AGPS-PUF has similar costs compared with previous schemes, as presented in Table 6
and Figure 9, since transmitting fewer bits minimizes the network latency and number
of collisions.

Table 6. Comparison between communication costs.

Scheme Communication Cost for W Dj Total Cost Number of Messages
[21] 2112 bits 4352 bits 4 messages
[23] 2304 bits 2816 bits 3 messages
[25] 1280 bits 4096 bits 5 messages
[26] 1952 bits 4128 bits 4 messages
[28] 1504 bits 3552 bits 5 messages
[8] 1920 bits 5088 bits 5 messages
AGPS-PUF 1568 bits 3616 bits 5 messages

Sensors 2023, 23, 5747 23 of 26

Figure 9. Communication cost comparison.

9.3. Security Functionality Comparison

This section compares the “security functionalities” of the AGPS-PUF with the existing
related schemes for wearable computing [8,21,23,25,26,28]. In Table 7, we show that some
existing schemes for wearable computing are not fully protected and may be fragile to
different potential security attacks. Thus, the security protocols must be designed in such a
way that they must be robust against lethal security attacks. In contrast, the AGPS-PUF
is resilient to lethal security attacks, and guarantees the necessary security requirements
and functionalities, including “mutual authentication, PFS, anonymity, and untraceability”.
Thus, the AGPS-PUF provides more security functionalities when compared to the existing
related schemes for wearable computing [8,21,23,25,26,28].

Table 7. Comparative study on security features.

Security Features [21] [23] [25] [26] [28] [8] Our
SF1 o o o o x x o
SF2 o x x o o o o
SF3 o x x o x x o
SF4 x NA NA NA o x o
SF5 NA x x NA x o o
SF6 o o o o o o o
SF7 o o x o x x o
SF8 o o o o o o o
SF9 x x x o o o o
SF10 o o o o x x o
SF11 x x x o o o o
SF12 o o o o o o o
SF13 o x o o o x o
SF14 x o o o o x o
SF15 NA NA NA NA NA o o

o: “protection of security features”; x: “non-protection of security features”; NA: “not applicable”; SF1: “MITM
attack”; SF2: “offline password-guessing attack”; SF3: “impersonation attack”; SF4: “sensor physical capture
attack”; SF5: “mobile device stolen attack”; SF6: “stolen verifier attack”; SF7: “session key disclosure attack”; SF8:
“replay attack”; SF9: “privileged insider attack”; SF10: “mutual authentication”; SF11: “user anonymity”; SF12:
“PFS”; SF13: “untraceability”; SF14: “formal (simulation) analysis”; SF15: “group proof”.

Sensors 2023, 23, 5747 24 of 26

10. Conclusions

We prove that Guo et al.’s scheme is not protected against session key disclosure,
MITM, and impersonation attacks, and it does not offer security requirements and features
such as mutual authentication and untraceability. Hence, we designed an efficient and
robust authentication and group–proof scheme using the PUF for wearable computing to
address the security issues of Guo et al.’s scheme. We demonstrate the session key security
of the AGPS-PUF by performing formal security under the ROR Oracle model analysis
and show that the AGPS-PUF is resistant to replay and MITM attacks by using the AVISPA
simulation analysis. Furthermore, we present the testbed experiments of the AGPS-PUF
using MIRACL crypto SDK based on Raspberry PI 4. We demonstrate the performance
comparison of the AGPS-PUF and the existing related schemes for wearable computing
with respect to computation costs, communication costs, and security features. Thus, the
AGPS-PUF ensured a higher security level than the existing related scheme in wearable
computing environments and provided similar computational and communication costs
to the existing related schemes for wearable computing. Thus, the AGPS-PUF is suitable
for practical wearable computing environments, as it offers more effective efficiency and
superior security compared to existing related schemes for wearable computing.

Author Contributions: Conceptualization, S.Y.; methodology, S.Y.; validation, S.Y.; formal analy-
sis, S.Y.; writing—original draft preparation, S.Y.; writing—review and editing, Y.P.; supervision,
Y.P.; project administration, Y.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Institute of Information and Communications Technology
Planning and Evaluation (IITP) grant funded by the Korean government (MSIT) (no. 2022-0-01019,
Development of eSIM security platform technology for edge devices to expand the eSIM ecosystem).

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Roggen, D.; Magnenat, S.; Waibel, M.; Troster, G. Wearable Computing. IEEE Robot. Autom. Mag. 2011, 18, 83–95. [CrossRef]
2. Sun, H.; Zhang, Z.; Hu, R.Q.; Qian, Y. Wearable Communications in 5G: Challenges and Enabbling Technologies. IEEE Veh.

Technol. Mag. 2018, 13, 100–109. [CrossRef]
3. Abbas, G.; Tanveer, M.; Abbas, Z.H.; Waqas, M.; Baker, T. A Secure Remote User Authentication Scheme for 6LoWPAN-based

Internet of Things. PLoS ONE 2021, 16, e0258279. [CrossRef] [PubMed]
4. Majumder, S.; Mondal, T.; Deen, M.J. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, 130. [CrossRef] [PubMed]
5. Seneviratne, S.; Hu, Y.; Nguyen, T.; Lan, G.; Khalifa, S.; Thilakarathna, K.; Hassan, M.; Seneviratne, A. A Survey of Wearable

Devices and Challenges. IEEE Commun. Surv. Tutor. 2017, 19, 2573–2620. [CrossRef]
6. Wang, S.; Bie, R.; Zhao, F.; Zhang, N.; Cheng, X.; Choi, H.A. Security in Wearable Communications. IEEE Netw. 2016, 30, 61–67.

[CrossRef]
7. Zhang, Y.; Deng, R.H.; Han, G.; Zheng, D. Secure Smart Health with Privacy-aware Aggregate Authentication and Access Control

in Internet of Things J. Netw. Comput. Appl. 2018, 123, 889–100. [CrossRef]
8. Guo, Y.; Zhang, Z.; Guo, Y. Anonymous Authenticated Key Agreement and Group Proof Protocol for Wearable Computing. IEEE

Trans. Mob. Comput. 2022, 21, 2718–2731. [CrossRef]
9. AVISPA. Automated Validation of Internet Security Protocols and Applications. 2001. Available online: http://www.avispa-

project.org/ (accessed on 16 March 2021).
10. Abdalla, M.; Fouque, P.A.; Pointcheval, D. Password-based authentication key exchange in the three-party setting, in Public

Key Cryptography. In Proceedings of the International Workshop on Public Key Cryptography, Les Diablerets, Switzerland,
23–26 January 2005; Springer: Berlin/Heidelberg, Garmany, 2005; pp. 65–84.

11. Park, K.S.; Noh, S.K.; Lee, H.J.; Das, A.K.; Kim, M.H.; Park, Y.H.; Wazid, M. LAKS-NVT: Provably Secure and Lightweight
Authentication and Key Agreement Scheme Without Verification Table in Medical Internet of Things. IEEE Access 2020, 8,
119387–119404. [CrossRef]

http://doi.org/10.1109/MRA.2011.940992
http://dx.doi.org/10.1109/MVT.2018.2810317
http://dx.doi.org/10.1371/journal.pone.0258279
http://www.ncbi.nlm.nih.gov/pubmed/34748568
http://dx.doi.org/10.3390/s17010130
http://www.ncbi.nlm.nih.gov/pubmed/28085085
http://dx.doi.org/10.1109/COMST.2017.2731979
http://dx.doi.org/10.1109/MNET.2016.7579028
http://dx.doi.org/10.1016/j.jnca.2018.09.005
http://dx.doi.org/10.1109/TMC.2020.3048703
http://www.avispa-project.org/
http://www.avispa-project.org/
http://dx.doi.org/10.1109/ACCESS.2020.3005592

Sensors 2023, 23, 5747 25 of 26

12. Das, A.K.; Zeadally, S.; Wazid, M. Lightweight Authentication Protocols for Wearable Devices. Comput. Electr. Eng. 2017, 63,
196–208. [CrossRef]

13. Vhaduri, S.; Poellabauer, C. Multi-Modal Biometric-Based Implicit Authentication of Wearable Device Users IEEE Trans. Inf.
Forensics Secur. 2019, 14, 3116–3125. [CrossRef]

14. Li, M.; Yu, S.; Lou, W.; Ren, K. Group Device Pairing Based Secure Sensor Association and Key Management for Body Area
Networks. In Proceedings of the IEEE INFOCOM, San Diego, CA, USA, 14–19 March 2010; pp. 2651–2659.

15. Tan, C.C.; Wang, H.; Zhong, S.; Li, Q. IBE-Lite: A Lightweight Identity-Based Cryptography for Body Sensor Networks. IEEE
Trans. Inf. Technol. Biomed. 2019, 13, 926–932. [CrossRef]

16. Xiong, H.; Qin, Z. Revocable and Scalable Certificateless Remote Authentication Protocol with Anonymity for Wireless Body
Area Networks. IEEE Trans. Inf. Forensics Secur. 2015, 10, 1442–1455. [CrossRef]

17. Al-Riyami, S.S.; Paterson, K.G. Certificateless Public Key Cryptography. Lect. Notes Comput. Sci. 2003, 294, 452–473.
18. Liu, W.; Liu, H.; Wan, Y.; Kong, H.; Ning, H. The Yoking-Proof-based Authentication Protocol for Cloud-assisted Wearable

Devices Pers. Ubiquitous Comput. 2016, 20, 469–479. [CrossRef]
19. Das, A.K.; Wazid, M.; Kumar, N.; Khan, M.K.; Choo, K.K.R.; Park, Y.H. Design of Secure and Lightweight Authentication Protocol

for Wearable Devices Environment. IEEE J. Biomed. Health Inform. 2018, 22, 1310–1322. [CrossRef]
20. Liu, H.; Yao, X.; Yang, T.; Ning, H. Cooperative Privacy Preservation for Wearable Devices in Hybrid Computing-Based Smart

Health. IEEE Internet Things J. 2019, 6, 1352–1362. [CrossRef]
21. Li, X.; Niu, J.; Kumari, S.; Liao, J.; Liang, W.; Khan, M.K. A New Authentication Protocol for Healthcare Applications Using

Wireless Medical Sensor Networks with User Anonymity. Secur. Commun. Netw. 2016, 9, 2643–2655. [CrossRef]
22. Das, A.K.; Sutrala, A.K.; Odelu, V.; Goswami, A. A Secure Smartcard-Based Anonymous User Authentication Scheme for

Healthcare Applications Using Wireless Medical Sensor Networks. Wirel. Pers. Commun. 2017, 94, 1899–1933. [CrossRef]
23. Wu, F.; Xu, L.; Kumari, S.; Li, X. An Improved and Anonymous Two-factor Authentication Protocol for Health-care Applications

with Wireless Medical Sensor Networks. Multimed. Syst. 2017, 23, 195–205. [CrossRef]
24. Srinivas, J.; Mishra, D.; Mukhopadhyay, S. A Mutual Authentication Framework for Wireless Medical Sensor Networks. J. Med.

Syst. 2017, 41, 80. [CrossRef] [PubMed]
25. Amin, R.; Islam, S.K.H.; Biswas, G.P.; Khan, M.K.; Kumar, N. A Robust and Anonymous Patient Monitoring System Using

Wireless Medical Sensor Networks. Future Gener. Comput. Syst. 2018, 80, 483–495. [CrossRef]
26. Ali, R.; Pal, A.K.; Kumari, S.; Sangaiah, A.K.; Li, X.; Wu, F. An Enhanced Three Factor Based Authentication Protocol Using

Wireless Medical Sensor Networks for Healthcare Monitoring. J. Ambient. Intell. Humaniz. Comput. 2018, 9, 1–22. [CrossRef]
27. Gupta, A.; Tripathi, M.; Shaikh, T.J.; Sharma, A. A Lightweight Anonymous User Authentication and Key Establishment Scheme

for Wearable Devices. Comput. Netw., 2019, 149, 29–42. [CrossRef]
28. Hajian, R.; ZakeriKia, S.; Erfani, S.H.; Mirabi, M. SHAPARAK: Scalable Healthcare Authentication Protocol with Attack-resilience

and Anonymous Key-agreement. Comput. Netw. 2020, 183, 107567. [CrossRef]
29. Yu, S.J.; Park, K.S. SLAS-TMIS: Secure, Anonymous and Lightweight Privacy-Preserving Scheme for IoMT-Enabled TMIS

Environments. IEEE Access 2022, 10, 60534–60549. [CrossRef]
30. Dolev, D.; Yao A.C. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–208. [CrossRef]
31. Yu, S.J.; Park, K.S. ISG-SLAS: Secure and Lightweight Authentication and Key Agreement Scheme for Industrial Smart Grid

Using Fuzzy Extractor. J. Syst. Archit. 2022, 131, 102698. [CrossRef]
32. Kocher, P.; Jaffe, J.; Jun, B. Differential power analysis. In Proceedings of the Annual International Cryptology Conference, Santa

Barbara, CA, USA, 15–19 August 1999; pp. 388–397.
33. Park, K.S.; Park, Y.H.; Park, Y.H.; Das, A.K. 2PAKEP: Provably Secure and Efficient Two-Party Authenticated Key Exchange

Protocol for Mobile Environment. IEEE Access 2018, 6, 30225–30241. [CrossRef]
34. Yu, S.J.; Park, Y.H. A Robust Authentication Protocol for Wireless Medical Sensor Networks Using Blockchain and Physically

Unclonable Functions. IEEE Internet Things J. 2022, 9, 20214–20228. [CrossRef]
35. Gao, Y.; Sarawi, S.F.A.; Abbott, D. Physical Unclonable Functions. Nat. Electron. 2020, 3, 81–91. [CrossRef]
36. Frikken, K.B.; Blanton, M.; Atallah, M.J. Robust Authentication Using Physically Unclonable Functions. In Proceedings of the

International Conference on Information Security, Pisa, Italy, 7–9 September 2009; pp. 262–277.
37. Badshah, A.; Waqas, M.; Abbas, G.; Muhammad, F.; Abbas, Z.H.; Vimal, S.; Bilal, M. LAKA-BSG: Lightweight Authenticated Key

Exchange Scheme for Blockchain-Enabled Smart Grids. Sustain. Energy Technol. Assessments 2022, 52, 102248. [CrossRef]
38. Tanveer, M.; Alasmary, H. LACP-SG: Lightweight Authentication Protocol for Smart Grids. Sensors 2023, 23, 2309. [CrossRef]

[PubMed]
39. Wang, D.; Cheng, H.; Wang, P.; Huang, X.; Jian, G. Zipf’s Law in Passwords. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2776–2791.

[CrossRef]
40. Boyko, V.; Mackenzie, P.; Patel, S. Provably Secure Password-Authenticated Key Exchange Using Diffie-Hellman. In Proceedings

of the International Conference on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, 14–18 May 2000;
Springer: Berlin/Heidelberg, Germany, 2000; pp. 156–171.

http://dx.doi.org/10.1016/j.compeleceng.2017.03.008
http://dx.doi.org/10.1109/TIFS.2019.2911170
http://dx.doi.org/10.1109/TITB.2009.2033055
http://dx.doi.org/10.1109/TIFS.2015.2414399
http://dx.doi.org/10.1007/s00779-016-0926-8
http://dx.doi.org/10.1109/JBHI.2017.2753464
http://dx.doi.org/10.1109/JIOT.2018.2843561
http://dx.doi.org/10.1002/sec.1214
http://dx.doi.org/10.1007/s11277-016-3718-6
http://dx.doi.org/10.1007/s00530-015-0476-3
http://dx.doi.org/10.1007/s10916-017-0720-9
http://www.ncbi.nlm.nih.gov/pubmed/28364358
http://dx.doi.org/10.1016/j.future.2016.05.032
http://dx.doi.org/10.1007/s12652-018-1015-9
http://dx.doi.org/10.1016/j.comnet.2018.11.021
http://dx.doi.org/10.1016/j.comnet.2020.107567
http://dx.doi.org/10.1109/ACCESS.2022.3181182
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1016/j.sysarc.2022.102698
http://dx.doi.org/10.1109/ACCESS.2018.2844190
http://dx.doi.org/10.1109/JIOT.2022.3171791
http://dx.doi.org/10.1038/s41928-020-0372-5
http://dx.doi.org/10.1016/j.seta.2022.102248
http://dx.doi.org/10.3390/s23042309
http://www.ncbi.nlm.nih.gov/pubmed/36850907
http://dx.doi.org/10.1109/TIFS.2017.2721359

Sensors 2023, 23, 5747 26 of 26

41. Oheimb, D.V. The High-Level Protocol Specification Lanuage HLPSL Developed in the EU Project AVISPA. In Proceedings of the
APPSEM 2005 Workshop, Tallinn, Finland, 13 September 2005; pp. 1–17.

42. MIRACL. Cryptographic SDK: Multiprecision Integer and Rational Arithmetic Cryptographic Library. 2019. Available online:
https://github.com/miracl/MIRACL (accessed on 16 April 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/miracl/MIRACL

	Introduction
	Motivations
	Research Contributions
	Paper Outlines

	Related Works
	Preliminaries
	Threat Model
	PUF
	System Model

	Review of Guo et al.'s Scheme
	System Setup Phase
	User Registration Phase
	Login and Authentication Phase

	Security Flaws of Guo et al.'s Scheme
	Impersonation Attack
	MITM Attack
	Session Key Disclosure Attack
	Mutual Authentication
	Untraceability

	Proposed Scheme
	System Setup Phase
	Registration Phase
	User Registration Phase
	Wearable Device Registration Phase

	Login and Authentication Phase
	Group–Proof Generation and Verification Phases
	Password Update Phase

	Security Analysis
	Informal Security Analysis
	Impersonation Attack
	MITM Attack
	Session Key Disclosure Attack
	Replay Attack
	Physical Wearable Device Capture Attack
	Stolen Verifier Attack
	Offline Password-Guessing Attack
	Desynchronization Attack
	Privileged Insider Attack
	Mutual Authentication
	Anonymity and Untraceability
	Perfect Forward Secrecy (PFS)

	Formal Analysis through ROR Oracle Model
	Formal Analysis through AVISPA Simulation

	Testbed Experiments Using MIRACL
	Performance Comparison
	Computation Costs
	Communication Costs
	Security Functionality Comparison

	Conclusions
	References

