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Abstract: A novel optimal control problem is considered for multiple input multiple output (MIMO)
stochastic systems with mixed parameter drift, external disturbance and observation noise. The
proposed controller can not only track and identify the drift parameters in finite time but, furthermore,
drive the system to move towards the desired trajectory. However, there is a conflict between control
and estimation, which makes the analytic solution unattainable in most situations. A dual control
algorithm based on weight factor and innovation is, therefore, proposed. First, the innovation is
added to the control goal by the appropriate weight and the Kalman filter is introduced to estimate
and track the transformed drift parameters. The weight factor is used to adjust the degree of drift
parameter estimation in order to achieve a balance between control and estimation. Then, the optimal
control is derived by solving the modified optimization problem. In this strategy, the analytic solution
of the control law can be obtained. The control law obtained in this paper is optimal because the
estimation of drift parameters is integrated into the objective function rather than the suboptimal
control law, which includes two parts of control and estimation in other studies. The proposed
algorithm can achieve the best compromise between optimization and estatimation. Finally, the
effectiveness of the algorithm is verified by numerical experiments in two different cases.

Keywords: stochastic systems; mixed uncertainties; parameter drift; Kalman filter; dual control

1. Introduction

Parameter drift refers to the change in parameters in the system when the component
exceeds its working life or failure. The occurrence of drift is closely related to the working
principle, operating environment and the physical properties of components’ materials [1],
especially in aerospace systems. For example, the gyroscope installed on a satellite is the
most important measurement tool for measuring the angular velocity of the satellite attitude.
However, due to the strong radiation and strong lightning of the space environment, as
well as the mechanical torsion, degradation and wear caused by the vibration, material
creep and time stress, the structural parameters of a gyroscope will drift over time [2,3].
The acceleration of drift will seriously affect the navigation accuracy of the inertial platform,
which may have serious consequences. If the drift parameter of a gyroscope can be
accurately known at any time, the drift can be found the fastest so that corresponding
measures can be taken to reduce the occurrence of accidents. Therefore, it is necessary to
study the system control problem involving parameter drift.

Generally, researchers take parameter drift as an irresolvable uncertainty. There has
been some research on this kind of uncertainty. Wen et al. [4] proposed an adaptive
control strategy for model predictive control for uncertainties in control systems, including
modeling dynamic and bounded uncertainties. Aiming at parameter uncertainty and model
uncertainty, a sampling-based approximation method is proposed in [5], which consists of
two parts, the dual part of the scenario tree and the exploitation part of computing the open
loop control sequence, both of which perform their respective functions and finally obtain
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a dual predictive control formula. In addition to these model structural uncertainties, there
are various uncertainties caused by noise. Most current studies only consider Gaussian
white noise; few researchers have studied non-Gaussian noise. Ma et al. [6] consider
the case of following thick tail distribution instead of Gaussian distribution, and Ma
et al. [7] consider the filtering problem of nonlinear stochastic systems with measured
outliers. However, they all have their limitations. Ma L. et al. [7] only studies the filtering
problem involving the measured outliers, while Ma X. et al. [6,8] consider both the filtering
and control, but the research object is limited to the single input–single output (SISO)
system. Up to now, there have been many research results on the control problems of
stochastic linear SISO time-invariant systems involving parameter drift. For fast arbitrary
drift phenomena, the drift parameters are viewed as unknown augmented states that are
compensated via model error compensation in the literature [9]. For the deterministic
drift phenomena, a double exponentially weighted moving average feedback controller
is designed to compensate the slow drift of the system in the literature [10]. In addition,
Yang et al. [11] proposed a suboptimal dual control method for the systems with parameter
drifting. However, these above methods are only for SISO cases. For the MIMO system, the
common methods are to decouple into multiple SISO systems. However, these methods
often overlook a large amount of information in the actual system and cannot accurately
describe the actual system [12]. Actually, with the rapid development of science and
technology, the structures of modern mechanical systems and aerospace systems have
become increasingly complex, with more and more subsystems and functions. Each
component is interconnected and the subsystems are coupled with each other, which makes
a simple linear SISO model far from enough to meet the current needs. Therefore, it is
urgent to solve the control and estimation problem for MIMO systems with parameter drift.

Presently, numerous works have contributed to the research regarding the MIMO
system, such as the approximation of nonlinear MIMO system control [13], the optimal
adaptive tracking control [14] and stable adaptive control of nonlinear multivariable sys-
tems [15], model predictive control [16], adaptive certainty equivalence control [17,18] and
so on. For stochastic systems with parameters and noise unicertainties, the idea of dual
control was first proposed by former Soviet researcher Feldbaum as early as the early 1960s.
He and NASA‘s Barshalom (founder of information fusion) noticed this kind of problem
and pointed out in their series of papers that, except for a few ideal cases, the optimal
control of such systems generally pursues two conflicting goals: on the one hand, the
controller needs to optimize the system. In order to achieve good control effects, the control
amount should be small and not too large, which is the cautious role of the controller.
On the other hand, the controller also needs to learn to deal with uncertainties regarding
parameters and system states. In order to obtain better processing results, it is hoped that
the control amount will be as large as possible to motivate rich information in the sys-
tem [19,20], which is the detection function of the controller. The controller design theory
that combines caution and detection is a challenge to the existing theory of LQG, which is
the so-called dual adaptive control problem of systems with double uncertainty. These two
actions conflict with each other and cannot be carried out separately, resulting in difficulty
in obtaining optimal control solutions in most cases. There have been some research results
about the problem, such as adaptive dual control [21,22] and robust learning control [23],
innovation dual control [24], variance minimization cumulant control under complete
statistical characterization [25], LQG nominal dual control [26,27] and so on. The above
approaches are designed on the basis of the state space model for the stochastic system
with unknown parameters, not emphasizing the correlation and coupling between internal
variables and outside variables in the system. In [22], a suboptimal dual control strategy
is proposed for stochastic systems with parameter uncertainties. However, the designed
controller contains two parts: one is for control and the other is for learning. Among them,
the learning part is to add the trace of covariance matrix to the control law in a specific
way, resulting in a suboptimal control strategy. Therefore, they cannot be widely applied.
Because the separation principle between the filter and the controller is not fulfilled and
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the controller and observer are mutually coupled in the MIMO stochastic system, it is a
significant challenge to obtain the analytic solution of the controller.

Motivated by the above description, for the MIMO system with parameter drift, we
design a novel optimal dual control law by viewing drift parameters as parameters that vary
with time in finite time instead of drifting off to infinity. The control designed can track the
drift parameters on one hand, and it can also drive the system to run towards the desired
target. The innovations of this paper can be summarized as follows. 1. This paper designs
an optimal control law for drift parameters, which replaces many suboptimal control laws,
including control and learning parts, while reducing computational complexity. 2. Due to
the drift parameters in the system, the separation principle does not work. In this paper,
multi-step optimization is transformed into one-step optimization, and the optimal goal at
each moment is achieved online while estimating, ultimately achieving optimal control. 3.
Almost all control systems are MIMO systems, and the model in this paper is closer to the
actual system. At the same time, it can also solve the optimal control problem of linearized
systems with this type of structure, which has a very broad practical application prospect.

The remaining part of the paper is organized as follows. In Section 2, the problem
to be solved is presented. In Section 3, we transform the system model and the drift
parameters and then estimate and track them using Kalman filter. A novel dual control
law with learning property is designed for the control problem in Section 4. In Section 5,
two numerical simulation examples are used to verify the effectiveness of the algorithm
proposed in this paper, and the conclusion is presented in Section 6.

2. Problem Statement

Consider a general multi-input multi-output stochastic system model:

z1(t + 1) =g11(t)z1(t) + g12(t)z2(t) + · · ·+ g1m(t)zm(t)

+ h11(t)u1(t) + h12(t)u2(t) + · · ·+ h1r(t)ur(t) + ε1(t)

z2(t + 1) =g21(t)z1(t) + g22(t)z2(t) + · · ·+ g2m(t)zm(t)

+ h21(t)u1(t) + h22(t)u2(t) + · · ·+ h2r(t)ur(t) + ε2(t)
...

zm(t + 1) =gm1(t)z1(t) + gm2(t)z2(t) + · · ·+ gmm(t)zm(t)

+ hm1(t)u1(t) + hm2(t)u2(t) + · · ·+ hmr(t)ur(t) + εm(t)

(1)

where uj(t), j = 1, 2, · · · , r are r-dimension control input, zi(t), i = 1, 2, · · · , m are m-dimension
control output, g1i(t), · · · , gmi(t), h1j(t), · · · , hmj(t), i = 1, 2, · · · , m, j = 1, 2, · · · , r
represent the drift parameters reflecting the physical characteristics in the actual system,
ε1(t), ε2(t), · · · , εm(t) are stochastic perturbations acting on the system. In general, they
are viewed as mutually independent Gaussian white noises with normal distribution, and
expressed as εi ∼ N(0, σ2

i ), i = 1, 2, · · · , m.
For the sake of designing controller, the system (1) can be described by the following

r-dimension input and m-dimension output stochastic system model:

z(t + 1) = G(t)z(t) + H(t)u(t) + ε(t) (2)

where z(t) is an output vector composed of each output component zi(t), i = 1, 2, · · · , m,
expressed as z(t) = [z1(t), z2(t), · · · , zm(t)]T , T represents the transpose of the vector.
u(t) is the same denoted by u(t) = [u1(t), u2(t) · · · , ur(t)]T , stochastic perturbations
are ε(t) denoted by ε(t) = [ε1(t), ε2(t), · · · , εm(t)]T . Since each component is subject to
Gaussian white noise, they satisfy εi ∼ N(0, Σε). Further, Σε = diag(σ2

1 , σ2
2 , · · · , σ2

m), diag(·)
represents the diagonal matrix. For the convenience of writing, a is used instead of a(t) in
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this paper to represent the time-varying parameter with drift. Therefore, the parameters of
the system can be rewritten as

G =


g11 g12 · · · g1m
g21 g22 · · · g2m

...
... · · ·

...
gm1 gm2 · · · gmm

H =


h11 h12 · · · h1r
h21 h22 · · · h2r

...
... · · ·

...
hm1 hm2 · · · hmr


It is worth noting that rewritten model (2) and original model (1) are interchangeable

and have the same structure.
Next, the performance index is expressed in linear quadratic form as follows:

J , E

{
N−1

∑
t
[z(t + 1)− zr(t + 1)]TQ[z(t + 1)− zr(t + 1)]

}
(3)

where zr(t + 1), t = 0, 1, · · · , N− 1 is the desired output trajectory, Q = diag[q1, q2, · · · , qm]
is a semidefinite diagonal weight matrix. E{·} represents the mathematical expectation of
error between the actual output and the desired output based on under the information set
in the past.

For the above model (2), the goal of our research is to look for an optimal control to
minimize the output deviation of the system in statistical sense. At the same time, it can
effectively deal with the drift parameters in the system. The control problem to be solved
in this paper can be described as the following optimization problem:

(P) min
u

J

s.t.z(t + 1) = G(t)z(t) + H(t)u(t) + ε(t)

t = 0, 1, 2, · · · , N − 1

For the above optimization problem (P), when the parameters representing the charac-
teristics of the system are all known, we can treat it as given constant and no parameter
drift at any stage; the traditional minimum variance approach has been solved, and it is
quite mature. When parameters are drifting, it is a new problem and the existing approach
cannot be solved. The work of this paper is to derive a control law for the above dual
control problem so that the derived control law can predict or track effectively the drift
parameters while driving the system to work towards the desired target.

3. Parameter Prediction

In the problem (P), parameter drift makes it difficult to determine the control law.
Therefore, the problem of parameter estimation is given priority to solve. The model (2) is
transformed into the following model:

z(t + 1) = Φ(t)Θ(t) + ε(t) (4)

where z(t + 1) is the output vector at time t + 1, Φ(t) = diag[φ(t), φ(t), · · · , φ(t)]; here, φ(t)
as a new system vector containing the output component and the control component, denoted
by φ(t) = [zT(t), uT(t)], Θ(t), is the parameter vector consisting of all the drift parameters,
denoted by Θ(t) = [θT

1 (t), θT
2 (t), · · · , θT

m(t), ]T, θi(t) = [gi1, gi2, · · · , gim, hi1, hi2, · · · , hir]
T,

i = 1, 2, · · · , m.
In the above model (4), the parameter vector Θ is assumed to satisfy Gaussian distri-

bution with initial mean Θ̂(0) and initial covariance matrix P(0). The disturbance noise is
assumed to be mutually independent with the parameter vector.

In fact, no matter in the actual aerospace system, high-speed train operation system or
large building structure, bridge or ship system, there are some components of failure, wear
and aging phenomena, which are reflected in the change in system parameters. At the same
time, there are also some systems whose parameters are ideal values obtained from trials,
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but, due to the complexity of the working environment, the one-to-one correspondence
between the real parameters and the ideal values is not established, or they inevitably drift
due to production errors, external time stresses and physical properties of materials. The
drift is a dynamic process and affected by external noise or environment. A dynamic model
of drift parameters is therefore established:

Θ(t + 1) = Γ(t)Θ(t) + ξ(t) (5)

where Γ represents the drift coefficient matrix that can reflect the amplitude or changing
trend in the parameter drift. ξ(t) represents the process noise during the operation of the
system. To use Kalman filtering, we assume that it is independent of the measurement
noise and follows normal distribution, namely ε(t) satisfies ξ ∼ N(0, Σξ).

When the drift coefficient is unknown but constant, it is shown from (5) that the drift
parameters are stable during the operation of the system, which is an ideal condition.
At the moment, Γ is the identity matrix. When the parameters are fluctuant, Γ is not
identity matrix. If ||Γ||2 is lager than 1, it indicates that the value of the system parameters
gradually increases over time. For example, in the motor speed control system, with
the continuous operation of the motor, the motor temperature is more and more high as
time goes by and the resistance becomes great as the temperature increases. If ||Γ||2 is
smaller than 1, it indicates that the value of the system parameters gradually decreases
over time; for example, as the key measuring device of aerospace attitude control system,
the performance of gyroscope is degraded due to wear and creep caused by harsh external
environment and time stress. When the gyroscope parameter value of drift is less than the
preset threshold value, the drift coefficient can be adjusted appropriately by modifying
its torque to eliminate errors as much as possible. However, because the wear and aging
caused by time stress is irreversible, the modified drift parameters still show a decreasing
trend; namely, the drift parameter decreases gradually. The above analysis shows the
situation that the parameters are time-varying, and the tendency of parametric variation in
the model (5) is described at the same time. Therefore, above model (5) has universality.

Since the past control and output information is needed in processing drift parameters
and solving optimal control, all information collected by the control law before the sampling
time t is called real-time information set, that is:

zt ={z1(0), · · · , zm(0), u1(0), · · · , ur(0), z1(1), · · · , zm(1), u1(1), · · · , ur(1), · · · ,

z1(t− 1), · · · , zm(t− 1), u1(t− 1), · · · , ur(t− 1), z1(t), · · · , zm(t)}.

If the initial time of the control system starts from the time t = 1, the initial information set
is represented as z1 = {z1(1), z2(1), · · · , zm(1), u1(0), u2(0), · · · , ur(0)}, which is set up in
advance before the system runs.

In the practical system, zt is known, the parameter estimation, estimate error and
estimation covariance matrix are defined:

Θ̂(t|t) = E{Θ(t)|zt} (6)

Θ̃(t|t) = Θ(t)− Θ̂(t|t) (7)

P(t|t) = E{Θ̃(t|t)Θ̃(t|t)T} (8)

where E{·} represents mathematical expectation.
In the system described by (4) and (5), the evolutions of the conditional mean and

covariance matrix are given by the standard Kalman filter equations
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Θ̂(t + 1|t) = ΓΘ̂(t|t) (9)

Θ̂(t + 1|t + 1) = Θ̂(t + 1|t) + F(t + 1)e(t + 1) (10)

e(t + 1) = z(t + 1)−Φ(t)Θ̂(t + 1|t) (11)

F(t + 1) = P(t+1|t)ΦT(t)
[Φ(t)P(t+1|t)ΦT(t)+Σξ ]

(12)

P(t + 1|t) = ΓP(t|t)ΓT + Σε (13)

P(t + 1|t + 1) = P(t + 1|t)− F(t + 1)Φ(t)P(t + 1|t) (14)

where (11) is the new information about the system parameters contained in z(t + 1), i.e.,
the innovation sequence.

Equation (10) shows the estimation and tracking of drift parameters at the current
sanpling isntant.

4. Main Results

In general, it is easy to obtain the optimal control sequence u∗(t) by minimizing the
performance index at each stage using dynamic programming. However, the realization
condition of dynamic programming is that the system parameters must be known; other-
wise, the dynamic programming cannot be recursive. In this paper, it is easy to find that
it is very intractable to obtain the optimal control law of the system by direct dynamic
programming because of system parameter drift and uncertainties. Therefore, we design
a novel MIMO dual control optimization algorithm. The control law designed not only
can track the drift parameters of the system but can also drive the control system to run
towards the desired target, i.e., a tradeoff between the control objectives and the parameter
estimation objectives.

Different from [22], the part dealing with drift parameters is directly integrated into
the performance index with different weight factors. In this way, the control law obtained
can be guaranteed to be the optimal control law, but it also greatly reduces the amount of
calculation, which is very convenient for application and popularization.

In order to realize the above two objectives, we need to simplify the initial prob-
lem. The principle of simplification is that the controller solved has dual characteristics
and can obtain the analytic solution. In order to obtain the analytic solution, the general
solution is to convert the global optimal to the single-step optimal so that not only the
parameter drift can be taken into account but also the optimal control of the system can be
obtained through a series of processing methods. Therefore, we transform the overall per-
formance index to the single-step optimal performance index; the new performance index is
rewritten as:

Jt = E{[z(t + 1)− zr(t + 1)]TQ[z(t + 1)− zr(t + 1)]

− βeT(t + 1)Qe(t + 1)|zt},
t = 0, 1, 2, · · · , N − 1.

(15)

where β is the learning weighting factor.
The first term of Equation (15) considers the control ability of the controller and

guarantees the system to track the reference signal in the optimal way. The second term
endows the learning ability of the controller and carries out prediction output of the model
to inch as close as possible to the practical output of the system. The sign of the second is
thus negative because of the mutual conflict between optimization and estimation. It can be
seen that the control law determined by the performance index (15) has dual characteristics.

The optimal weight coefficient β determined indicates that the control law derived
by the performance index (15) can achieve the best tradeoff between optimization and
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estimation. In addition, we can obtain the analytic solution of the control law using (15),
and the specific derivation process is as follows:

E{eT(t + 1)Qe(t + 1)}
= E{[z(t + 1)−Φ(t)Θ̂(t)]TQ[z(t + 1)−Φ(t)Θ̂(t)]}
= E{[Φ(t)Θ(t) + ε(t)−Φ(t)Θ̂(t)]TQ[Φ(t)Θ(t) + ε(t)−Φ(t)Θ̂(t)]}
= E{[Φ(t)Θ̃(t) + ε(t)]TQ[Φ(t)Θ̃(t) + ε(t)]}
= E{Θ̃T(t)ΦT(t)QΦ(t)Θ̃(t)}+ tr(QΣε)

= tr[ΦT(t)QΦ(t)P(t)] + tr(QΣε)

(16)

where tr(·) represents the trace of the matrix. The theorem tr(ABC) = tr(BCA) = tr(CAB)
is used in Equation (16).

The following equation can be obtained by Equations (15) and (16):

Jt = [Φ(t)Θ̂(t)− zr(t + 1)]TQ[Φ(t)Θ̂(t)− zr(t + 1)]

+ (1− β)[tr(ΦT(t)QΦ(t)P(t)) + tr(QΣε)]
(17)

To deal with the optimal control problem, introduce the following partitionings of
the observation vector Φ(t), the estimated drift parameter vector θ̂i(t) and covariance
matrix P(t):

θ̂T
i (t) = [ĝT

i , ĥT
i ], i = 1, 2, · · · , m (18)

P(t) =


P11(t) P12(t) · · · P1r(t)
P21(t) P22(t) · · · P2r(t)

...
... · · ·

...
Pm1(t) Pm2(t) · · · Pmm(t)

 (19)

where ĝi = [ĝi1, ĝi2, · · · , ĝim]
T , ĥi = [ĥi1, ĥi2, · · · , ĥir]

T , P11(t), P22(t), · · · , Pmm(t) are
(m + r)−dimension square matrices. Pii, i = 1, 2, · · · , m is, therefore, partitioned and
written as

Pii(t) =

[
Pgi(t) Pghi(t)
PT

ghi(t) Phi(t)

]
, i = 1, 2, · · · , m (20)

where Pgi(t) is the m−dimension square matrix, Phi(t) is the r−dimension square matrix.
Combining Equations (18)–(20):

tr[ΦT(t)QΦ(t)P(t)]

= tr[diag(φT(t), φT(t), · · · , φT(t))Qdiag(φ(t), φ(t), · · · , φ(t))P(t)]

= tr[ΦT(t)q1φ(t)P11(t) + ΦT(t)q2φ(t)P22(t) + · · ·+ ΦT(t)qmφ(t)Pmm(t)]

=
m

∑
i=1

tr[φT(t)qiφ(t)Pii(t)]

=
m

∑
i=1

tr[z(t)qizT(t)Pgi(t) + z(t)qiuT(t)PT
ghi(t) + u(t)qizT(t)Pghi(t) + u(t)qiuT(t)Phi(t)]

(21)
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Substituting Equations (18) and (19) into the first of the performance index (15):

[Φ(t)Θ̂(t)− zr(t)]TQ[Φ(t)Θ̂(t)− zr(t)]

=
m

∑
i=1

[ĝT
i z(t)qizT(t)ĝi + ĝT

i z(t)qiuT(t)ĥi + ĥT
i u(t)qizT(t)âi + ĥT

i u(t)qiuT(t)ĥi]

−
m

∑
i=1

[yT
ri(t + 1)qi(zT(t)âi + uT(t)ĥi)]

−
m

∑
i=1

[(ĝT
i z(t) + ĥT

i u(t))qizri(t + 1)] + zT
r (t + 1)Qzr(t + 1)

(22)

Combining Equations (21) and (22), the target function is derived as follows:

Jt =
m

∑
i=1

[ĝT
i z(t)qizT(t)ĝi + âT

i z(t)qiuT(t)ĥi + ĥT
i u(t)qizT(t)ĝi + ĥT

i u(t)qiuT(t)ĥi]

−
m

∑
i=1

[zT
ri(t + 1)qi(zT(t)ĝi + uT(t)ĥi)]

−
m

∑
i=1

[(ĝT
i z(t) + ĥT

i u(t))qizri(t + 1)] + zT
r (t + 1)Qzr(t + 1)

+ (1− β){
m

∑
i=1

tr[z(t)qizT(t)Pai(t) + z(t)qiuT(t)PT
ghi(t)

+ u(t)qizT(t)Pghi(t) + u(t)qiuT(t)Pbi(t)] + tr(QΣε)}

(23)

In order for the controller to minimize the performance index, the control law is
obtained by ∂Jt

∂ut
= 0; it yields

u∗(t) = −

m
∑

i=1
[ĥiqi ĝT

i z(t)− b̂iqizri(t + 1)] + 1−β
2

m
∑

i=1
PT

ghi(t)z(t)qi

m
∑

i=1
ĥiqi ĥT

i + qi(1− β)
m
∑

i=1
Phi(t)

(24)

Equation (24) is the optimal controller u∗(t) solved for the problem (P). It is shown
from the above Equation (24) that the controller is not only related to the parameter
estimated and estimation covariance matrix but also to the value of β. If the system
parameters are constant, the estimation covariance matrix is zero; i.e., the second term of
the numerator and denominator in (24) is zero. The contribution of the paper is endowing
the learning characteristic of the controller by adding the terms about estimation covariance
matrix. The value of β can be determined by the following property.

Theorem 1 (Property). In Equation (24), i.e., the optimal control u∗(t), there exists a constant ∆
such that 0 < β < ∆.

Proof of Theorem 1. In the practical system, the ability of parameter learning is related to
the covariance matrix and the innovation of Kalman filter. The mathematical expectation
(16) of innovation square can be obtained. Combining Equations (18)–(20), Equation (23)
can be derived.
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Jt =
m

∑
i=1

ĝT
i u(t)qiuT(t)ĝi + (1− β)

m

∑
i=1

tr(u(t)qiuT(t)Phi(t))

+
m

∑
i=1

[ĝT
i z(t)qiuT(t)ĥi + ĥT

i u(t)qizT(t)ĝi]−
m

∑
i=1

[zT
ri(t + 1)qi(zT(t)ĝi + uT(t)ĥi)]

+ (1− β)
m

∑
i=1

tr[z(t)qiuT(t)PT
ghi(t) + u(t)qizT(t)Pghi(t)]

−
m

∑
i=1

[(ĝT
i z(t) + ĥT

i u(t))qizri(t + 1)]

+
m

∑
i=1

ĝT
i z(t)qizT(t)ĝi + zT

r (t + 1)Qzr(t + 1)

+ (1− β){
m

∑
i=1

tr[z(t)qizT(t)Pgi(t)] + tr(QΣε)}

(25)

Calculate the trace of Equation (25):

Jt =

(
m

∑
i=1

qi

m

∑
i=1

ĥT
i ĥi + (1− β)

m

∑
i=1

qi

m

∑
i=1

trPhi(t)

)
uT(t)u(t) + ζ1 + ζ2 (26)

where ζ1 denotes the single term containing u(t) or uT(t), ζ2 denotes the constant term not
containing u(t) or uT(t). Obviously, in order to obtain the minimum value of Equation (26)
on u(t), the coefficient of quadratic term should be greater than zero:

m

∑
i=1

qi

m

∑
i=1

ĥT
i ĥi + (1− β)

m

∑
i=1

qi

m

∑
i=1

trPhi(t) ≥ 0

namely:

β ≤ 1 +

m
∑

i=1
qi

m
∑

i=1
b̂T

i b̂i

m
∑

i=1
qi

m
∑

i=1
trPhi(t)

(27)

Suppose ∆ = 1 +

m
∑

i=1
qi

m
∑

i=1
ĥT

i ĥi

m
∑

i=1
qi

m
∑

i=1
trPhi(t)

.

The controller performs the estimation to the drift parameters at each stage; the
N − 1 steps are accumulated to control system. Therefore, the upper bound ∆ of β for all

inequalities can be obtained by taking the maximum
m
∑

i=1
trPhi in Equation (27).

5. Numerical Experiments

The novel MIMO dual control optimazation algorithm can be obtained by summariz-
ing the above methods:

Step 1: Initialization, and set t = 0;
Step 2: Estimate the drift parameters Θ using Kalman filtering (7a–7f);
Step 3: Calculate the optimal control u∗(t), minimizing the performance index using

Equation (24).
Step 4: Apply the control u∗(t) to the system (4).
Step 5: If t = N − 1, stop; otherwise, set t = t + 1; go back to Step 1.
Due to the randomness and unknowability of the system drift, in order to better verify

and compare the algorithms in this paper, we treat the drift parameters as a time-varying
function and process them. In actual industrial production, due to the continuous changes
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in operating conditions, the system structural parameters may not be consistent with the
label values or ideal values. Therefore, we first treat the drift parameters as unknown but
constants for estimation. For example, when the actuator is stuck, the system parameters
drift to a fixed value. After that, the parameters are unknown and change in a certain trend
over time, such as gyroscopes with continuously deteriorating performance. During the
entire lifecycle of the gyroscope, when a certain practice is exceeded, the performance of
the gyroscope components shows a certain trend of degradation, which can be considered
as an unknown time-varying parameter. This trend is currently being studied in the fields
of life prediction and health management.

In response to these two cases, we use two numerical experiments to verify the
effectiveness of the control law designed. This section mainly presents simulation results
and optimal performance for two cases, and analyzes the simulation results. The system
equations in all examples fit the MIMO structure of (1), where r = 2, m = 2.

The performance index:

J = E{[z(t + 1)− zr(t + 1)]TQ[z(t + 1)− zr(t + 1)]}

where Q = I2, I2 denotes 2-order identity matrix, zr(t + 1) are 2-dimensional zero vectors.
Since the drift parameters of the practical system with noise are fluctuating at random,

the parameters in every moment are varying, which makes it difficult to show the estimation
ability of the controller designed in the paper. In addition, how to drift and the form of
drift are not within the scope of this paper. This paper only considers the impact of the
system on the parameters after it occurs. Next, let us first consider the first case and use the
following simulation example to verify the designed control law.

Example 1. A simple example is given to illustrate the implementation of the MIMO control
algorithm proposed in this paper. Considering a 2-dimensional input and 2-dimensional output
system (2), the parameter values after drift are set as follows:

θ1 = [0.2, 1.8,−0.8, 0.7]T ; θ2 = [−0.6, 0.5, 0.2, 1.5]T ;

In order to make Kalman filter play a better role, it is necessary to find a suitable initial
for prediction and update. Therefore, the initial is set to θ̂1(0) = [0.1, 0.1, 0.1, 0.1]T , θ̂2(0) =
[0.1, 0.1, 0.1, 0.1]T . External disturbances and observation noise are Gaussian white noise with
mean value 0 and variance Σξ , Σε, respectively, specifically Σξ = 0.02, σ2

1 = σ2
2 = 0.2, Σε =

diag(σ2
1 , σ2

2 ). In addition, the initial covariance matrix is set as P(0) = I8, where I8 denotes 8-order
identity matrix.

The simulation results are shown in Figures 1 and 2. In these two figures, the estimation
processes of fixed drift parameters are shown. Since the stochastic system is considered
in this paper, the estimation process is different every time it is run, but it will eventually
reach the true value without exception. At the same time, through multiple runs, we found
that, for each simulation, the true values of drift parameters can be accurately estimated
before time t = 15 and remain stable, which proves the effectiveness of the algorithm in the
above case.

The above are the simulation results for the first case. In order to enhance the
persuasiveness of our method, we conducted simulations for the second case. Next,
we considered that the drift parameters are no longer invariant when unknown but a
time-varying function.
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Figure 1. The estimate process of parameters a11 , a12, a21 and a22.

Figure 2. The estimate process of parameters b11, b12, b21 and b22.

Example 2. Similarly, we consider a dynamic stochastic system with the same structure of (1); the
time-varing drift parameters are expressed in the following:

a11 = 20sin
2πt
100

, a12 = 50sin
2πt
80

a21 = 20sin
2πt
50

, a22 = 30sin
2πt
30

b11 = 200sin
2πt
100

, b12 = 100sin
2πt
80

b21 = 100sin
2πt
80

, b22 = 200sin
2πt
100

For convenience, in this example, external disturbances and observation noise still use
the variance value from Example 1. At the same time, the initial covariance matrix P(0)
remains unchanged.

The simulation results are shown in Figures 3–6.
Figures 3–6 show the learning process of parameters in the last case. It can be seen

from the figures that learned parameters can follow true parameters with time, but some
errors exist, which is inevitable. This is because learning is a process, which can be shown
in Figures 1 and 2, and it needs to take about time 15 to learn the true parameter for each
parameter. However, the parameters in this example are changing with time t and it is
impossible to learn exact values at every moment. However, the algorithm in this paper
can estimate approximate parameters and follow the variation trend of parameters. The
simulation results prove that the algorithm of this paper provides a feasible method for
solving such problems.
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Figure 3. The estimate process of parameters a11 and a12.

Figure 4. The estimate process of parameters a21 and a22.

Figure 5. The estimate process of parameters b11 and b12.

Figure 6. The estimate process of parameters b21 and b22.
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In the sequent, the value of performance index under the action of the optimal control
law can be calculated by Monte Carlo experiments. Simultaneously, the values under the
action of nominal control and pure control are also calculated. The comparison results are
shown in Tables 1 and 2.

Table 1. Comparison results of example 1 under different control laws.

Nominal Control Pure Control Dual Control of e.g., 1

369.112 491.224 289.377

Table 2. Comparison results of example 2 under different control laws.

Nominal Control Pure Control Dual Control of e.g., 2

1805.325 2156.771 1765.391

As we can see from Tables 1 and 2, the value of the performance index is different
under the action of two different control laws. Among them, the performance index value
of pure control is the largest, while that of dual control is the smallest. This indicates that the
algorithm proposed is obviously better than the other two, which proves the effectiveness
of the designed control law.

In this section, the effectiveness of the proposed optimal dual control strategy is
verified by performing two different numerical experiments.

6. Conclusions

For the stochastic system involved in parameter drift, disturbances and measurement
noise, a novel MIMO dual control strategy is designed in this paper. The proposed control
algorithm can not only estimate the drift parameters but can also carry out the optimal
control of the system. Due to the conflict between parameter prediction and control target,
a weighting factor is added in the preceding parameter term to balance above conflict. The
real-time information in the optimal controller designed in the paper is a set of output
information and control information at the previous moment. Because of the mutual couple
and complex nonliear structure of the MIMO system, the dual control problem based on
deep learning is our main research problem in the future.
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