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Abstract: The development of technology, such as the Internet of Things and artificial intelligence, has
significantly advanced many fields of study. Animal research is no exception, as these technologies
have enabled data collection through various sensing devices. Advanced computer systems equipped
with artificial intelligence capabilities can process these data, allowing researchers to identify signifi-
cant behaviors related to the detection of illnesses, discerning the emotional state of the animals, and
even recognizing individual animal identities. This review includes articles in the English language
published between 2011 and 2022. A total of 263 articles were retrieved, and after applying inclusion
criteria, only 23 were deemed eligible for analysis. Sensor fusion algorithms were categorized into
three levels: Raw or low (26%), Feature or medium (39%), and Decision or high (34%). Most articles
focused on posture and activity detection, and the target species were primarily cows (32%) and
horses (12%) in the three levels of fusion. The accelerometer was present at all levels. The findings
indicate that the study of sensor fusion applied to animals is still in its early stages and has yet to be
fully explored. There is an opportunity to research the use of sensor fusion for combining movement
data with biometric sensors to develop animal welfare applications. Overall, the integration of
sensor fusion and machine learning algorithms can provide a more in-depth understanding of animal
behavior and contribute to better animal welfare, production efficiency, and conservation efforts.

Keywords: sensor; animals; animal computer interaction; machine learning; sensor fusion

1. Introduction
1.1. Multi-Modal Animal Monitoring

Technological advancements, including sensors, the Internet of Things (IoT), machine
learning (ML), and big data, have revolutionized the development of intelligent monitoring
applications in various domains [1–5]. These transformative technologies have also found
extensive application in animal monitoring, serving diverse objectives such as economic
and production interests, animal welfare and care, and scientific research on different
species, ranging from livestock to wildlife [6]. Sensor technologies offer both challenges
and opportunities for animal farmers to achieve various goals, such as reducing produc-
tion costs, improving operational efficiencies, enhancing animal welfare, and maximizing
animal yield per hectare [7]. Additionally, researchers are actively exploring innovative
noninvasive techniques to promote animal well-being, moving away from invasive ap-
proaches [8]. To model animal behavior, it is essential to collect a substantial amount of
diverse data sets that encompass a wide range of information, including local weather data,
air quality data, animal vocalizations, visual recordings of animal movements, and other
relevant behavioral data. Researchers can efficiently capture real-time data using various
sensors, ensuring minimal disruption to the animals’ daily routines. Data collection must
be facilitated through an automated system designed to integrate with the everyday lives
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of animals seamlessly. In the context of animal monitoring, it is often necessary to automate
the identification of specific patterns within collected sensor data, especially when dealing
with large datasets. Although specific factors such as temperature changes, movement
levels, or heart rate can be easily detected using a single sensor. Certain aspects pose more
significant challenges, such as determining animal activity, detecting signs of pathological
behavior, or identifying shifts in mood. The complex nature of these aspects suggests
that developing effective recognition methods relies on utilizing multiple modalities or
employing multiple sensors of the same modality whose information complements one
another [9].

1.2. Sensor Fusion

Sensor fusion is a powerful method in computer engineering and signal processing to
combine information from multiple sensors and generate a more accurate and comprehen-
sive output. This technique draws inspiration from the human sensory system and finds
applications in various domains, including robotics, autonomous vehicles, and surveillance
systems. In the realm of animal computer interfaces, sensor fusion plays a crucial role
in integrating data from various sensors to gain a deeper understanding of the animal’s
activities, posture, health, and behaviors. The combination of information from multiple
sensors to overcome individual sensor limitations is referred to as multimodal sensor fusion.
This is achieved through different fusion techniques [10], such as single fusion algorithm,
Unimodal switching, Multimodal switching, and Mixing, to name a few. The single fusion
algorithm involves the raw data or the extraction of features from each individual sensor
modality and then incorporating all these extracted features into a unified fusion algorithm.
Unimodal switching refers to a method where a single mode is utilized to identify changes
in operating modes and switch between different sensor fusion techniques. The second
mode is exclusively used as the input for each of the sensor algorithms. Multimodal
switching involves using one mode to detect shifts in operating modes and switch between
various sensor fusion algorithms. Each of the sensor algorithms employs multiple modes as
inputs. Mixing refers to the simultaneous operation of numerous sensor fusion algorithms
integrating one or more modes. The results from these algorithms are combined with the
weight of each output being determined based on a single mode.

1.3. Sensor Fusion in Animal Monitoring

In animal monitoring, the use of multiple sensors enables researchers to obtain more
accurate and comprehensive data. By combining different sensors, researchers can achieve
a holistic understanding of the behavior and health of the animal. For instance, a camera
captures visual information regarding the animal’s movements and behavior, an accelerom-
eter provides insights into the animal’s activity level, and a heart rate monitor offers data
on the animal’s physiological state. However, the raw signals acquired from these sensors
must undergo processing, analysis, and interpretation to become valuable to stakeholders.
Sensor fusion techniques take advantage of complementary, redundant, and cooperative
attributes to enhance data interpretation. Traditional sensor fusion techniques include
probabilistic fusion, evidence-based belief fusion, and rough set-based fusion. However,
with advances in sensor technology, processing hardware, and other data processing tech-
nologies, new opportunities arise for data fusion [11]. Sensor fusion techniques can be
classified into cooperative, competitive, and complementary systems based on low, feature,
and high levels. This hierarchical organization, proposed by Elmenreich [12], offers a
systematic approach to understanding and designing sensor fusion systems. This catego-
rization helps to identify technical requirements and limitations. In the modeling process,
different strategies can be employed to merge information from sensors [8], such as early
fusion (sensor-level combination), intermediate fusion (feature-level combination), and late
fusion (decision-level combination). These sensor fusion techniques enhance the accuracy
and reliability of monitoring systems.
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1.4. Machine Learning and Sensor Fusion in Animal Monitoring

Machine learning techniques are vital for enhancing data fusion algorithms by capital-
izing on the abundance of available data to train models and achieve high-precision results.
Machine learning empowers computers to learn from data examples without explicit pro-
gramming, enabling flexibility and adaptability in handling complex tasks. Prominent
techniques involve training models with labeled datasets and automating new data classi-
fication. With the rise in machine learning, impressive progress has been made in image
classification and object detection, motivating researchers to apply artificial intelligence
for action recognition of animals, such as mice, cows, pigs, Tibetan antelope, and felines,
among others [13]. In addition, wearable devices based on the Inertial Measurement Unit
(IMU) sensor device are becoming more prevalent. It can be used, for example, to support
the automatic behavior classification of grazing sheep and the evaluation of production
performance [14,15]. There are also promising applications for the interaction between
different animals, search and rescue missions, and the protection of animals from poaching
and theft [7].

The evaluation performed by Leoni et al. [16] in terms of the precision of the prediction
and the interpretability of the decision-making process shows that multimodal systems
can overcome the challenges of a hostile environment, which proves to be an effective
support for intelligent remote automatic profiling. Integration of multiple sensors, sensor
fusion, and machine learning techniques holds great potential to revolutionize our un-
derstanding and management of animals. This integration can improve animal welfare,
production efficiency, and conservation efforts. For example, in animal farming, the suc-
cessful application of these technologies has facilitated the production of more meat and
animal products, which benefits farmers and the industry as a whole [17]. In agriculture,
automated recognition of behavior patterns in livestock can lead to the early identification
and resolution of health or welfare issues, resulting in healthier and more productive
animals [18]. In the field of conservation biology, the automated recognition of patterns
in wild animals offers valuable insights into their behavior and movements, enabling
the development of effective conservation strategies [19]. Using the power of artificial
intelligence, machine learning, and sensor fusion, we can unlock significant advancements
in animal-related domains, fostering improvements in various sectors and driving positive
impacts. In recent years, there has been an increased social emphasis on the treatment of
animals in research. As a result, when using sensor fusion and machine learning techniques
in animal research, it is essential to prioritize animal welfare. This involves implementing
measures to provide appropriate care, ensure comfortable conditions, and employ human
practices throughout the research process. Ethical guidelines often require researchers to
obtain approval from ethics committees or institutional review boards, which evaluate
proposed research protocols to ensure compliance with ethical standards. By adhering
to these ethical guidelines, researchers can demonstrate their commitment to responsible
and ethical practices in animal research. This promotes animal welfare and helps to build
public trust and confidence in the scientific community.

1.5. Workflow of Machine Learning-Based Sensor Fusion

In order to perform sensor fusion integrating machine learning techniques, it is neces-
sary to collect data from sensors and process it according to the required level of sensor
fusion. Figure 1 illustrates the general workflow of sensor fusion at each level. The low-
level fusion, also known as raw level, uses information from multiple sources without prior
data processing. ML models are fed with these data to get answers. This can be observed
in Figure 1 following the red line. The second level is the intermediate or feature level.
During this phase, the data from multiple sources are reduced in dimensionality before
being combined by an ML model. This example can be seen by following the yellow line
of Figure 1. The third level determines the result by combining one or more algorithms
during the high or decision level. The combination can be decided through methods such
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as majority vote, statistical models, or fuzzy logic. This is shown in Figure 1 following the
green line.

Figure 1. Representation of the three levels of sensor fusion.

2. Objectives

Sensor fusion systems for animal monitoring have gained attention in computer, be-
havioral, and veterinary sciences. Research in this field aims to enhance animal monitoring
through sensor fusion applications. Understanding current approaches, implementations,
and evaluation methods is crucial for advancing this area. Previous reviews have covered
topics such as wearable sensors for animal health management [20], precision livestock
farming technologies [21], and the integration of sensor technologies and machine learning
in animal farming [22]. However, there is a gap in investigating machine learning-based
sensor fusion techniques in animal monitoring. This review aims to bridge this gap by
comprehensively examining existing literature and discussing recent advancements in
sensor fusion and machine learning for animal monitoring. This review addresses the
following six key questions:

1. What specific challenges or problems have been addressed through the application of
machine learning-based sensor fusion techniques in the field of animal monitoring?

2. Which animal species have been the primary subjects of studies exploring the ap-
plication of machine learning-based sensor fusion techniques in the field of animal
monitoring?

3. What are the applications of machine learning-based sensor fusion systems for animal
monitoring?

4. What sensing technologies are utilized in machine learning-based sensor fusion
applications for animal monitoring?

5. How have machine learning-based fusion techniques been utilized for animal moni-
toring in sensor fusion applications?

6. What are the documented performance metrics and achieved results in machine
learning-based sensor fusion applications for animal monitoring?

This review aims to provide valuable insights to technologists developing intelligent
animal monitoring solutions, researchers in animal behavior seeking automated data
capture and analysis, and computer scientists working on information fusion for animal
monitoring. This review aims to contribute to the progress and development of intelligent
animal monitoring systems by conducting a comprehensive analysis.

3. Methods

We followed a scoping review methodology to synthesize research on the current
application of sensor fusion through machine learning in the field of animal monitoring.
This protocol followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses extension for Scoping Reviews) methodology [23] to ensure that our
review was conducted systematically and was bias-free.
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3.1. Eligibility Criteria

To conduct this scoping review, we focused on studies in English of at least four pages
in length, published between 2011 and 2022, that met the following criteria: (1) focus on
the description of sensor fusion, (2) sensor fusion is based on machine learning techniques,
and (3) focus on animal monitoring.

3.2. Exclusion Criteria

To evaluate every document included in this review, we performed a quantitative
analysis using the QualSyst standard [24], which provides a structured approach to ensure
the quality of the reviewed articles. This analysis includes fourteen evaluation points,
of which thirteen related to the research design were selected. These points can be consulted
in Table 1. The Qualsyst standard for each of the assessing points can be assigned as follows:
two points (completely met), one point (partially met), or zero points (not met). The total
score is divided by the number of assessment points. This score is expressed as a percentage
from 0% to 100%. We excluded studies with a Qualsyst score <60 %.

Table 1. QualSyst selected questions [24].

Question

1. Is the research question/objective sufficiently described?
2. Is the study design evident and appropriate?
3. Is the selection of subject/comparison group or source of information/input variables
described and appropriate?
4. Are the subject (and comparison group, if applicable) characteristics sufficiently described?
5. If it is an interventional study, and random allocation was possible, is it described?
6. If it is an interventional study and blinding of investigators was possible, is it reported?
7. If it is an interventional study, and blinding of subjects was possible, is it reported?
8. Are the outcome and (if applicable) exposure measure(s) well-defined and robust
to measurement/miss-classification bias? Are the means of assessment reported?
9. Are the analytic methods described/justified and appropriate?
10. Is some estimate of variance reported for the main results?
11. Was confounding controlled for?
12. Are the results reported in sufficient detail?
13. Are the conclusions supported by the results?

3.3. Information Sources

We conducted a comprehensive search for published papers using four databases,
including the Institute of Electrical and Electronics Engineers (IEEE ) Xplore, Google Scholar,
Dimensions, and Springer. These databases cover computer science literature and provide
extensive coverage of the topic and field.

3.4. Study Selection

A multistage screening process was conducted to select relevant articles. Initially, two
reviewers screened each article based on their titles and abstract. The resulting articles
were then combined into a single list, and a second full-text review was performed to make
a final decision on inclusion. In any disagreement between the two reviewers, a discussion
was held to reach a consensus.

3.5. Data Charting and Synthesis of Results

The data that were extracted from the studies meeting the inclusion criteria allowed the
answering of the question listed in the Introduction: (1) the problems have been addressed
involving sensor fusion techniques in animal monitoring, (2) the species have been the
subject of studies, (3) the applications of sensor fusion systems for animal monitoring,
(4) the sensing, processing, and interaction technologies using for animal monitoring using
sensor fusion, (5) the modalities used in animal monitoring using sensor fusion, (6) how
fusion techniques have been employed for analyzing animal behavior, (7) what are the
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reported efficacy of sensor fusion performance metrics and results obtained. The authors
developed, calibrated, and utilized several templates, each containing different sections
used to extract and summarize the data.

• Related to the study.

– Year of publication (2011–2022).
– Qualsyst score.

• Related to animal monitoring.

– Problem addressed (e.g., increasing production, monitoring, and welfare).
– Target species.
– Sensor fusion target.
– Animal activities.
– Animal postures.
– Number of animals included in the experiment.

• Related to monitoring technology.

– Animal-computer interface (e.g., collars, vest, ear tags, and girth straps).
– Sensor technology (e.g., accelerometer, gyroscope, magnetometer, optic flow

sensor, Global Positioning System (GPS), and microphone).
– The sensor sampling rate.

• Related to sensor fusion.

– Sensor fusion type (e.g., single fusion, uni-modal switching, and mixing). Sensor
fusion can be performed by fusing raw data from different sources, extrapolated
features, or even decisions made by single nodes.

– Data alignment techniques (e.g., re-sampling interpolation and timestamps).
Machine learning assumes data regularity for identifying target patterns, such
as fixed duration, to detect a bark in audio. Discrepancies in time, frame rates,
or sensor variations (audio, video) can disrupt this regularity. Data alignment
techniques are needed to establish consistent time steps in the dataset.

– Feature extraction techniques. These techniques condense valuable information
in raw data using mathematical models. Often, these algorithms are employed
to reduce extracted features and optimize dataset size. A trend is using pre-
trained machine learning models for feature extraction and reduction, leveraging
knowledge from large-scale datasets for improved efficiency.

– Feature type. Commonly, feature extraction techniques produce a compact and
interpretative resulting dataset by applying mathematical domain transforma-
tions to the raw data. The resulting dataset can be assigned a type according
to the domain, for example, time, frequency, or timefrequency domain. Raw
data is collected in time series in real time. In the time domain, some representa-
tive types are traditional descriptive statistics such as mean, variance, skewness,
etc. Information coming from the frequency domain can be recovered by using
the Fast Fourier Transformation (FFT) or Power Spectrum analysis. Regarding
time-frequency features, the short-time Fourier Transform (STFT) is the most
straightforward method, but Wavelets are also employed.

– Machine Learning (ML) algorithms. According to Goodfellow et al. [25], ML is
essentially a form of applied statistics with an increased emphasis on the use of
computers to statistically estimate complicated functions and a decreased empha-
sis on proving confidence intervals around these functions; typical classification
of such methods is on supervised or unsupervised learning depending on the
presence or absence of a labeled dataset, respectively. Examples of relevant ML
algorithms are [26]: Gradient Descent, Logistic Regression, Support Vector Ma-
chine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANNs),
Decision Tree, Back Propagation Algorithm, Bayesian Learning, and Naïve Bayes.
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• Related to performance metrics and results.

– Assessment techniques used to measure model performance (e.g., accuracy, f-
score, recall, and sensibility) metrics used in the model evaluation should be
aligned with the specific task, such as classification, regression, translation,
or anomaly detection. For instance, accuracy is commonly employed in classifica-
tion tasks to gauge the proportion of correct model outputs. Performance metrics
are valuable for assessing model effectiveness during experiments. However, it
is essential to note that model performance in real scenarios can be inconsistent
due to dependencies on the available training data. This review recorded the
best-reported performance metric from each article in the corresponding table.

4. Results
4.1. Overview

During the search phase, the results showed 263 papers; after removing duplicates
and pieces without access, 192 articles were obtained. Only 28 met the inclusion criteria
explained earlier. The remaining 164 articles were excluded due to the following reasons:
(i) have purposes not oriented to animals, (ii) use techniques not related to machine learning,
(iii) use techniques not related to sensor fusion, (iv) reviews (e.g., surveys and systematic
reviews), (v) articles could not be accessed, and (vi) less than four pages long. This review
includes articles with Qualsyst score percentages ≥60%. As a result, 23 articles were
included for in-depth analysis [7,13–16,27–44]; the remaining 5 articles were excluded
since their score was below the acceptance percentage [45–49]. The flow diagram of the
review phases’ is shown in Figure 2. The first study identified dates back to 2016 [39],
and 95.7% (22/23) of the studies were conducted in the last five years (2018–2022). Most of
the 23 studies were conducted in Europe (11/23, 47.8%) [7,15,16,29,30,32,33,38–41] followed
by Asia (8/23, 34.7%) [13,27,34–36,42–44], and Oceania (3/23, 13%) [31,37,44]. An overview
of the results is presented in Table 2, and a detailed analysis of the selected studies are
displayed in Tables 3–5, according to sensor fusion level. The following subsections provide
detailed findings to answer the six defined questions.

Table 2. Overview of the main characteristics of the reviewed works (N = 23).

Characteristic Studies, n (%)

Year of publication
2022 4 (17.3%)
2021 9 (39.1%)
2020 5 (21.7%)
2019 3 (13%)
2018 1 (4.3%)
2017 0 (0%)
2016 1 (4.3%)

Problems addressed
Animal welfare 11 (47.8%)
Wildlife monitoring 6 (26.1%)
Animal production 5 (21.7%)
Domestic animal monitoring 1 (4.3%)
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Table 2. Cont.

Characteristic Studies, n (%)

Target species
Cows 8 (34.8%)
Horses 3 (13%)
Pigs 2 (8.7%)
Felines 2 (8.7%)
Dogs 2 (8.7%)
Sheep 2 (8.7%)
Fish 1 (4.3%)
Camouflaged animals 1 (4.3%)
Primates 1 (4.3%)
Koalas 1 (4.3%)
Goats 1 (4.3%)
Birds 1 (4.3%)

Sensor fusion application
Activity detection 12 (52.2%)
Posture detection 11 (47.8%)
Health screening 4 (17.4%)
Identity recognition 2 (8.6%)
Camouflaged animal detection 1 (4.3%)
Emotion classification 1 (4.3%)
Personality assessment 1 (4.3%)
Social behavior analysis 1 (4.3%)
Spatial proximity measurement 1 (4.3%)

Animal-computer interface
Collar 11 (47.8%)
Natural (vision, audio) 7 (30.4%)
Ear-tag 4 (17.4%)
Vest 1 (4.3%)
Localization devices on a girth strap 1 (4.3%)
Hock strap 1 (4.3%)

Sensors technology
Accelerometer 14 (60.7%)
Camera (visual spectrum range) 8 (34.8%)
Gyroscope 7 (30.4%)
Magnetometer 5 (21.7%)
Global Positioning System (GPS) 3 (13%)
Camera (IR spectrum range) 3 (13%)
Global Navigation Satellite System 2 (8.7%)
Pedometer 1 (4.3%)
Wireless ad-hoc system for positioning 1 (4.3%)
Real-time locating system 1(4.3%)
Microphone 1 (4.3%)
Optic flow sensor 1 (4.3%)
Weather sensor 1 (4.3%)

Fusion level
Features/medium level 9 (39.1%)
Classification/regression/late/decision 8 (34.8%)
Raw/Early fusion 7 (30.4%)
Not specified 1 (4.3%)



Sensors 2023, 23, 5732 9 of 28

Table 3. Sensors fusion for animal monitoring and assessment (Low/Raw level).

Author Rios-Navarro et al. [39] Kasnesis et al. [7] Leoni et al. [16] Xu et al. [44] Arablouei et al. [28] Kaler et al. [15]

Year 2016 2022 2020 2020 2022 2020

Qualsyst Score 76% 86% 100% 100% 100% 61%

Problem addressed Wildlife monitoring Domestic animal
monitoring Wildlife monitoring Increase production Increase production Welfare

Fusion application Activity detection - Activity detection
- Posture detection Posture detection - Personality assessment

- Influence of individuals Activity detection Health detection

Target population Horses Dogs Primates Cows Cows Sheep

Animal interface Collar Vest Collar Girth strap - Collar
- Ear-tag Ear-tag

Activities - Walking
- Trotting

- Walking
- Trotting
- Running
- Nose work

- Walking
- Running
- Feeding
- Eating

Leading

- Walking
- Resting
- Drinking
- Grassing

Walking

Postures Standing Standing - Standing
- Sitting

- Stationary
- Non-stationary
- Closeness between
individuals

-
- Standing
- Lying on the belly,
- Lying on the side

Participants 3 9 26 10 8 18

Sensors/
Sampling rate (Hz,
FPS)

- Accelerometer
- Magnetometer
- Gyroscope
- GPS

- Accelerometer
(100 Hz)
- Magnetometer
- Gyroscope (100 Hz)
- GPS (10 Hz)

- Accelerometer (12 Hz)
- GPS
- Optic flow sensor

- GPS (1 Hz)
- Wireless ad-hoc system
for positioning

- Accelerometer (50 Hz,
62.5 Hz)
- GPS
- Optic flow sensor

- Accelerometer (16 Hz)
- Gyroscope

Feature extraction -
ML models
(LSTM-models,
CNN-models, etc.)

- Acceleration norm
- Acceleration ratios

- ML models
(LSTM-models,
CNN-models, etc.)

- -

Feature type - Spatiotemporal - Spatiotemporal
- Motion

- Spatiotemporal
- Spatial
- Closeness

- Spatiotemporal
- Spatial Motion Statistical
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Table 3. Cont.

Author Rios-Navarro et al. [39] Kasnesis et al. [7] Leoni et al. [16] Xu et al. [44] Arablouei et al. [28] Kaler et al. [15]

Data alignment - Same datasize Downsampling Timestamps Timestamps Timestamps

Machine learning
algorithms Spiking Neural Network Convolutional

Neural Networks XGBoost
- K-Means
- Agglomerative
Hierarchical Clustering

Multilayer perceptron

- KNN
- Random forest
- SVM
- Adaboost

Sensor fusion type Single fusion algorithm Single fusion
algorithm Single fusion algorithm Extended Kalman filter

(EKF)
- Multimodal switching
- Two or more classifiers Mixing

Performance metrics Accuracy (83.33%) Accuracy (93%)
- Accuracy (100%)
- Sensibility/Recall (100%)
- Specificity (100%)

-Accuracy (15 cm),
- Silhouette analysis

Matthews correlation
coefficient

-Accuracy (91.67%)
- Sensibility/Recall
(≈80%)
- Specificity (≈70%)
- Precision (≈75%)
- F1-score (≈85%)

Table 4. Sensors fusion for animal monitoring and assessment (Features/medium level).

Author Ren et al. [38] Mao et al. [36] Wang et al. [43] Luo et al. [35] Huang et al. [34] Aich et al. [27] Jin et al. [14] Tian et al. [42] Arablouei et al. [28]

Year 2021 2021 2021 2021 2021 2019 2022 2021 2022

Qualsyst Score 69% 100% 69% 69% 64% 78% 100% 65% 100%

Problem
addressed

Increase
production Welfare Welfare Welfare Wildlife

monitoring Welfare Welfare Increase production Increase production

Fusion
application

Social behavior
analysis

- Posture
detection
- Activity
detection

- Activity
detection
- Health detection

Posture detection camouflaged
animals detection

- Activity
detection
- Emotion
detection

Activity detection - Activity detection
- Posture detection Activity detection

Target
population Cows Horses Fishes Pigs Camouflaged

animals Dogs Sheep Cows Cows

Animal
interface Collar Collar - - - Collar Collar Collar - Collar

- Ear-tag
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Table 4. Cont.

Author Ren et al. [38] Mao et al. [36] Wang et al. [43] Luo et al. [35] Huang et al. [34] Aich et al. [27] Jin et al. [14] Tian et al. [42] Arablouei et al. [28]

Activities -

- Galloping
- Trotting
- Feeding/eating
- Walking

- Normal
- Feeding/eating - -

- Normal
- Feeding/eating
- Nose work
- jumping

- Walking
- Running
- Grassing

- Walking
- Running
- Feeding
- Eating
- Resting
- Drinking
- Head-shaking
- Ruminating

- Walking
- Resting
- Drinking
- Grassing

Postures - Standing -

- Standing,
- Lying on belly
- Lying on side
- Sitting
- Mounting

-
- Sitting
- Sideways
- Stay

- Standing
- Lying on belly
- Lying on the side
- Sitting
- Standing

- -

Participants 120 18 - 2404 - 10 3 60 8

Sensors/
Sampling rate
(Hz, FPS)

- Visual spectrum
camera (25 FPS)
- Real-time
locating system

- Accelerometer
(100 Hz)
- Magnetometer
- Gyroscope
(12 Hz)

Visual spectrum
camera (25 FPS)

- Visual spectrum
camera (15 FPS)
- Infrared thermal
camera

Visual spectrum
camera

- Accelerometer
(33 Hz)
- Gyroscope

- Accelerometer
(20 Hz)
- Gyroscope

- Accelerometer
(12.5 Hz)
- Magnetometer

-Accelerometer
(50 Hz, 62.5 Hz)
- GPS
- Optic flow sensor

Feature
extraction

ML models
(LSTM-models,
CNN-models,
etc.)

ML models
(LSTM-models,
CNN-models,
etc.)

ML models
(LSTM-models,
CNN-models, etc.)

ML models
(LSTM-models,
CNN-models, etc.)

ML models
(LSTM-models,
CNN-models, etc.)

- - Randomly selected
features -

Feature type Temporal domain
- Spatiotemporal
- Temporal
domain

-Spatiotemporal
- Motion Spatial Spatial

- Statistical
- Peak-based
features

- Frequency
domain
- Statistical

- Temporal domain - Spatiotemporal
- Spatial

Data alignment - Timestamps
- Mapping Concatenation

- Concatenacton
- Downsampling
- Same datasize

- Concatenation
- downsampling
- same datasize

Same datasize Timestamps Same datasize - Timestamps
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Table 4. Cont.

Author Ren et al. [38] Mao et al. [36] Wang et al. [43] Luo et al. [35] Huang et al. [34] Aich et al. [27] Jin et al. [14] Tian et al. [42] Arablouei et al. [28]

Machine
learning
algorithms

- Convolutional
Neural Networks
- Long Short-Term
Memory
- Long-Term
Recurrent
Convolution
Networks

Convolutional
Neural
Networks

DSC3D network

-
Light-SPD-YOLO
model
- YOLO

- Cascade
- Feedback Fusion

- SVM
- KNN
- Naive Bayes
- Random forest
- Artificial Neural
Networks

ELM Adaboost
Stacking

- SVM
- KNN
- Random forest
- KNN-RF Weighted
Fusion
- Gradient Boosting
Decision Tree
- Learning Vector
Quantization

Multilayer
perceptron

Sensor fusion
type

Single fusion
algorithm

Cross-modality
interaction

Dual-stream
Convolutional
Neural Networks

Path aggregation
network

- Cascade
- Feedback Fusion

Single fusion
algorithm

Two or more
classifiers

KNN-RF weighted
fusion model

Multimodal
switching of two or
more classifiers

Performance
metrics

- Accuracy
(93.2%)
- Confusion
matrix (92%)

- Accuracy
(93.3%)
- Sensibil-
ity/Recall
(83.7%)
- F1-score (82.9%)

- Accuracy (95.7%)
- Sensibility/Recall
(100%)
- F1-score
- Confusion matrix

- Sensibility/
Recall
- Accuracy (98.4%)
- Receiver
operating
characteristic
curve
- Mean average
precision (97.7%)

- Accuracy

- Accuracy (96.5%)
- Sensibility/Recall
(94.6%)
- F1-score (93.6%)
- Confusion matrix

- Accuracy (99.7%)
- Kappa value
(0.995)

-Accuracy (99.3%)
- Confusion matrix
- Recognition error
rate
- Recognition rate
(98.5%)

Matthews correla-
tion coefficient

Table 5. Sensor fusion for animal monitoring and assessment (Decision/High level).

Author Hou et al. [33] Feng et al. [13] Bocaj et al. [29] Schmeling et al. [40] Dziak et al. [32] Sturm et al. [41] Rahman et al. [37] Corcoran et al. [31]

Year 2021 2021 2020 2021 2022 2020 2018 2019

Qualsyst Score 83% 71% 70% 96% 75% 100% 86% 67%

Problem addressed Welfare Wildlife monitoring Welfare Welfare Wildlife monitoring Increase production Welfare Wildlife monitoring

Fusion application Health detection Activity detection Activity detection Activity detection Individuals
recognition Health detection Activity detection Individuals recognition

Target species Pigs Felines - Horses
- Goats Cows - Felines

- Birds Cows Cows Koalas

Animal interface - - Collar Collar - Ear-tag
-Collar
- Ear-tag
- Halter

Collar

Postures - Standing - - Standing
- Lying

- Standing
- Lying on the side

- Walking
- Running
- Flying postures

- Stationary
- Non-Stationary
- Lying on belly

Standing
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Table 5. Cont.

Author Hou et al. [33] Feng et al. [13] Bocaj et al. [29] Schmeling et al. [40] Dziak et al. [32] Sturm et al. [41] Rahman et al. [37] Corcoran et al. [31]

Activities - - Walking
- Running

- Galloping
- Walking
- Running
- Trotting
- Feeding/eating
- Grassing
- Walking (with rider)

- Normal
- Walking
- Feeding/eating
- Resting

- Walking
- Running
- Trotting
- Flying

Ruminating - Grassing
- Ruminating -

Participants 10 - 11 7–11 - 671 - 48

Sensors/
Sampling rate (Hz,
FPS)

Visual spectrum
cameras

Visual spectrum
cameras (30 FPS)

- Accelerometer
(100 Hz)
- Magnetometer
(12 Hz)
- Gyroscope (100 Hz)

-Accelerometer
- Magnetometer
- Gyroscope
- Visual spectrum
cameras (60 FPS)

- Visual spectrum
cameras
- Infrared thermal
camera

Accelerometer (10 Hz) Accelerometer (30 Hz) Infrared thermal camera
(9 Hz)

Feature extraction

- Histogram-oriented
gradients
- Local binary patterns
- ML models
(LSTM-models,
CNN-models, etc.)

ML models
(LSTM-models,
CNN-models, etc.)

ML models
(LSTM-models,
CNN-models, etc.)

ML models
(LSTM-models,
CNN-models, etc.)

ML models
(LSTM-models,
CNN-models, etc.)

ML models
(LSTM-models,
CNN-models, etc.)

- ML models (LSTM-models,
CNN-models, etc.)

Feature type Spatial Spatiotemporal - - Spatiotemporal
- Motion

- Spatiotemporal
- Motion

- Spatial
- Statistical

- Statistical
- Frequency domain -

Data alignment Same datasize Same datasize Same datasize - Downsampling Timestamps Timestamps Same datasize

Machine learning
algorithms

- Convolutional
Neural Networks
- Bayesian-CNN

- VGG
- LSTMs

Convolutional Neural
Networks

- SVM
- Naive Bayes
- Random forest

- YOLO
- FASTER RCNN

- Naive Bayes
- Nearest centroid
classification

Random forest

- Convolutional Neural
Networks
- YOLO
- FASTER RCNN

Sensor fusion type Two or more classifiers Single fusion
algorithm

Single fusion
algorithm Multimodal switching Single fusion

algorithm Feature level fusion Mixing Two or more classifiers

Performance metrics - Accuracy (98.12%)
- Precision Accuracy (92%) - Accuracy (97.42%)

- F1-score (+84%) Accuracy (87.3%) Accuracy (94%)

- Accuracy (72.58%)
- Sensibility/Recall
(66.98%)
- Precision (32.27%)
- F1-score (43.56%)
- Mattews correlation
(31.55%)
- Youdens index
(40.61%)

F1-score (93.2%)
Probability of detection
(87%)
Precision (49%)
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Figure 2. Phases of the review according to the PRISMA-ScR methodology.

4.2. Problems Addressed and Target Species

The reviewed papers predominantly centered around the crucial issue of animal wel-
fare, with more than half (12/23, 52.2%) of them dedicated to this significant topic. Another
critical concern explored in these papers was the imperative for the effective monitoring of
animals in their natural habitats (6/23, 26.1%). Additionally, 21.7% (5/23) of the reviewed
papers addressed the challenge of increasing animal production. Finally, one study (1/23,
4.3%) focused explicitly on monitoring domestic animals. Figure 3 provides an overview
of the distribution of problem areas addressed per year. Regarding the targeted species,
the majority of the studies (8/23, 34.8%) focused on cows. Three studies (3/23, 13%) specifi-
cally targeted horses, while there were two studies (2/23, 8.7%) for each of the following
species: pigs, felines, dogs, and sheep. Finally, there was one study (1/23, 4.3%) for each
one of the following species: fish, camouflaged animals, primates, koalas, goats, and birds.

Figure 3. Problems addressed per year.
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4.3. Sensor Fusion Application

Animal behavior monitoring using sensor fusion has been applied to various applica-
tions that can be grouped into five categories: activity detection (e.g., walking, jumping,
and eating), posture detection (e.g., standing, sitting, and lying down), disease detection
(e.g., hypoxia, hypothermia, and lameness), individual identification, and recognition of
positive and negative emotions. As shown in Figure 4, most articles included in this review
performed activity detection, and 22% performed posture detection. It is important to note
that three of the articles that did activity detection also did posture detection. Fewer articles
addressed the problem of detecting diseases 17%. Two articles tried to identify specific
individuals, and only one worked on emotion recognition. The number of works oriented
to each of the five applications seems to have a direct relationship with the complexity
of the modeled behavior. That is, activity detection is a more easily detectable behavior
than posture, which in turn is more easily detectable than diseases, and so on. The most
challenging behavior to estimate in animals is emotion. Regarding the use of sensors in
different applications, we can see that accelerometers and gyroscopes were used for all
applications except for detecting individuals. Likewise, it can be seen that the information
modality, the number of sensors, and the level of information fusion were related to the
complexity of the behavior to be modeled. In other words, less complex behaviors, such
as activities and postures, are detectable using inertial sensors or cameras without really
needing a fusion of different modalities. On the other hand, identifying diseases and
emotions requires that the animal carry a more significant number of sensors, use more
than one information modality and merge the modalities.

Figure 4. Application of technologies and sensors used.

4.4. Sensing Technology for Animal Monitoring Using Sensor Fusion

Regarding animal computer interfaces, the most used device for collecting data was the
collar, which was present in 47.8% of the works, followed by the usage of natural interfaces
based on computer vision in 30.4%. When it comes to sensors, they can be categorized
into four main classes: motion, position, image, and others. The motion modality focused
on sensors designed to measure an animal’s movements. Examples of commonly used
motion sensors included accelerometers (60.86%), gyroscopes (30.43%), magnetometers
(21.73%), and pedometers (4.34%). The position modality pertains to obtaining an animal’s
position within its environment. Various technologies were employed for this purpose,
including global positioning systems (GPS) (13.04%), wireless ad hoc systems (4.34%),
global navigation satellite systems (4.34%), and real-time systems (4.34%). The optic
modality involved systems that acquire images using cameras or optic flow sensors (4.34%).
In this modality, the two primary camera types were visible spectrum images (34.78%)
and infrared spectrum images (13.04%). Visible spectrum images capture the light visible
to the human eye, while infrared spectrum images detect the heat emitted by animals.
Additionally, other modalities have been discovered, such as microphone-based systems
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(4.34%) and weather sensors (4.34%). These modalities expand the range of sensor options
available to capture data and information in different contexts.

4.5. Sensor Fusion Techniques

During the present review, the reviewed articles reported the usage of different sensor
fusion approaches. The majority of the approaches were based on a single fusion algorithm
(6/23, 26%). Other articles utilized two or more classifiers for sensor fusion (6/23, 26%).
Among the articles, a subset of them (2/23, 8.6%) employed multimodal switching as
a method for fusion, while another subset (2/23, 8.6%) utilized mixing. Additionally,
specific fusion methods were identified, including Cross-modality interaction [36], Dual-
Stream Convolutional Neural Networks [43], Path aggregation network [35], Cascade and
Feedback Fusion [34], KNN-RF Weighted Fusion Model [42], and EKF [44]. Each method
was mentioned once, representing 4.35% of the total.

4.6. Machine Learning Algorithms Used for Sensor Fusion

In the reviewed articles, an analysis was performed to determine the prevailing trends
in selecting learning algorithms for behavior detection in animals. However, no clear
consensus emerged regarding the preference for specific types of algorithms. Figure 5
shows no dominant machine-learning algorithm was utilized in sensor fusion to recognize
animal behavior. In particular, the two most frequently employed techniques were random
forest and convolutional neural networks (CNNs). Both algorithms found application in all
three categories of sensor fusion. Support vector machines (SVM) and K-Nearest Neighbors
(KNN) were employed in multiple reviewed studies. It should be noted that these four
algorithms share a common attribute, namely their status as standard approaches that
have demonstrated favorable outcomes across diverse data types and applications. Often
regarded as baseline algorithms, they serve as a foundation upon which more specialized
algorithms can be developed to address specific problems in the classification domain. This
observation prompts consideration of the current state of research and development in
sensor fusion algorithms for multisensor and multimodal recognition of animal behavior.
It becomes apparent that this field is still in its nascent stages, as indicated by the continued
reliance on these foundational techniques. Pursuing more advanced and tailored algorithms
represents an opportunity for further exploration, potentially leading to improved accuracy
and performance in animal behavior recognition.

4.7. Performance Metrics and Reported Results

This scoping review provides an extensive overview of the performance metrics com-
monly utilized in studies related to sensor fusion. Sensor fusion plays a crucial role in
integrating data from multiple sensors to enhance the reliability of systems. Throughout our
analysis, we identified several prominent metrics, including accuracy [7,13,15,16,27,29,32,
33,35,36,38–41,43,50,51], recall [15,27,36,39,41,43], and F1-score [15,27,29,36,37,41], which
are widely recognized and essential for evaluating fusion system performance. The accu-
racy metric serves as a fundamental measure in sensor fusion studies, assessing the overall
correctness of the fused data. It quantifies the proportion of instances or predictions that are
accurately classified in relation to the total number of instances. Notably, a significant por-
tion of the included articles (78%) incorporated accuracy into their evaluation. Among the
studies reporting accuracy results, the average accuracy was determined to be 92.91%
across the various levels of fusion. Additionally, recall, also known as sensitivity, emerged
as another critical metric employed by the sensor fusion proposals in this review. Recall
measures the system’s ability to correctly identify true positive cases, providing insights
into its performance in capturing all relevant positive instances. Among the studies that
reported their results using this metric (34.78%), the average recall was found to be 87.54%.
Furthermore, the F1-score proved to be a vital metric that combines precision and recall,
offering a comprehensive evaluation of sensor fusion system performance. By considering
both the system’s ability to identify positive instances (precision) correctly and its capability
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to capture all relevant positive instances (recall), the F1-score provides a balanced assess-
ment. Among the studies that reported their results using this metric (21.73%), the average
F1-score was determined to be 82.04%. While accuracy, recall, and F1-score were commonly
employed metrics in the reviewed sensor fusion studies, it is important to note that other
metrics were also identified. These additional metrics include the Receiver Operating
Characteristic curve (ROC), Matthews correlation coefficient (MCC), Silhouette analysis,
Kappa Value, Specificity, Recognition Error Rate, Mean Average Precision, Recognition Rate,
Youdens Index, and Cohens. These metrics offer valuable insights into different aspects of
fusion system performance, showcasing the diverse approaches used in evaluating sensor
fusion systems.

4.8. Analysis by Sensor Fusion Level

Among the included articles, we observed the following distribution: the low level
of sensor fusion was employed in 30.4% of the papers. In comparison, the feature level of
fusion was utilized in 39.1% of the included papers. Additionally, a high level of sensor
fusion was present in 34.7% of the papers. It is important to note that for more detailed
information on each level of fusion, readers can refer to Table 3, Table 4, and Table 5,
respectively, which provide comprehensive data on the specific techniques and approaches
employed in each level. It should be emphasized that we came across a paper where the
level of fusion employed in their approach was not reported. (reference: [30]). Sensor fusion
is a versatile technique that can be applied to various animal populations. In particular,
cows [28,30,37,38,40–42,44] and horses [29,36,39] are among the animal populations that
are covered by all three levels of sensor fusion. However, sensor fusion can be applied to
other animal populations. In the high level: pigs [33], felines [13,32], koalas [31], goats [29],
and birds [32], regarding feature level: pigs [35], fish [43], dogs [27], camouflaged ani-
mals [34], and sheep [14]. Meanwhile, for the low-level: horses [39], dogs [7], primates [16],
and sheep [15]. For further details, Figure 6 can be consulted. The predominant sensor
fusion approach is feature-level, which covers 6 of the 9 applications identified in the study,
which were: detection of activity [14,27,36,43], poses [35,36], camouflaged animals [34],
emotions, spatial proximity [38], and [27], social behavior analysis [38]. Regarding animal
posture detection, standing and lying postures are covered by all three levels of sensor
fusion. However, any moving posture [32] and running [32] poses are only covered by the
high level of sensor fusion. The feature-level sensor fusion only detects mounting [35] and
sideways [27] postures. Notably, the low level of sensor fusion does not cover any specific
posture not covered by the higher levels. Consult Figure 7 for additional information.
The three levels of sensor fusion can detect a range of animal activities, including walking,
feeding, resting, grazing, trotting, running, and drinking. However, flying [32] activity is
only detected using a high level of fusion, while jumping [27] is only approached using
feature fusion. Meanwhile, leading is only detected using low fusion. See Figure 8 for more
details. The study found that wearable animal-computer interfaces were used primarily at
a low fusion level. Wearable devices, such as collars, vests, girth straps, and ear tags, can
aid in collecting data from different sensor types. This aligns with research that focuses
on natural interfaces, such as computer vision systems, which did not include proposals
that utilized low-level fusion. For further information, see Figure 9. Regarding the sensors
utilized in the analyzed papers, it was observed that accelerometers, gyroscopes, and mag-
netometers were consistently employed across all three levels. These sensors are very
relevant to the primary applications of activity and pose detection. Additionally, camera
usage was reported at high and feature levels, with both visual spectrum and IR cameras
being used. Notably, the proposals at all three levels of sensor fusion relied on the same set
of sensors, which were mainly related to movement; this is illustrated in Figure 10.
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Figure 5. Machine learning algorithms by fusion level. Low level uses information from multiple sources
without any prior data processing. At Medium level the processed data are reduced in dimensionality
before being decided by an ML model. High level applies decision algorithms to ML output.

Figure 6. Target species presented by fusion level. Low level uses information from multiple sources
without any prior data processing. At Medium level, the processed data are reduced in dimensionality
before being decided by an ML model. High level applies decision algorithms to ML output.
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Figure 7. Posture detection by fusion level. Low level uses information from multiple sources without
any prior data processing. At Medium level, the processed data are reduced in dimensionality before
being decided by an ML model. High level applies decision algorithms to ML output.

Figure 8. Activity detection by fusion level. Low level uses information from multiple sources
without any prior data processing. At Medium level the processed data are reduced in dimensionality
before being decided by an ML model. High level applies decision algorithms to ML output.

Figure 9. Animal computer interfaces by fusion level. Low level uses information from multiple
sources without any prior data processing. At Medium level the processed data are reduced in
dimensionality before being decided by an ML model. High level applies decision algorithms to
ML output.
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Figure 10. Sensors by fusion level. Low level uses information from multiple sources without any
prior data processing. At Medium level the processed data are reduced in dimensionality before
being decided by an ML model. High level applies decision algorithms to ML output.

5. Discussion
5.1. Overview

Given the increasing interest in machine learning-based sensor fusion techniques for
animal monitoring, future studies in this field must identify key features that designers of
this type of system should consider. This scoping review contributes by identifying and
summarizing essential characteristics that currently define the construction and evaluation
of these systems. The findings of this review offer valuable insights for future research
in this area and contribute to the advancement of animal science. Our study examined
23 serious games published over the past 12 years (2011–2022). Notably, the majority
of these publications (22 out of 23, 95.7%) were released in the last five years, starting
in 2018. The earliest study we identified dates back to 2016, while 2021 had the highest
number of publications, with nine articles. Furthermore, the articles reviewed demon-
strated an average Qualsyst score of 81.1 ± 14.02%, indicating a favorable level of quality
and robustness.

5.2. Problems Addressed and Target Species

Regarding the problems addressed, most of the studies primarily focused on animal
welfare, followed by wildlife animal monitoring and increasing production (see Figure 3).
Notably, there has been an observable upward trend in animal welfare studies from 2018 to
2021, indicating a growing emphasis on improving animal welfare in recent years. These
tendencies align with the advancements witnessed in sensor-based animal monitoring,
which have revolutionized our understanding of and interaction with animals. Specifically,
sensor-based animal monitoring has substantially contributed to three key areas: animal
welfare [52], wildlife conservation [53], and livestock management [54]. Animal welfare
encompasses the ethical and compassionate treatment of animals, taking into account
their physical, mental, and emotional well-being. Wildlife conservation entails protecting,
preserving, and managing wild animal species and their habitats. Livestock management
involves the raising and caring of domesticated animals, primarily for agricultural purposes
such as food and fiber production or labor. Interestingly, there was a notable lack of work
focusing on monitoring domestic animals, such as dogs, presenting an opportunity for
further study.
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In terms of the target species, the majority of the studies (16/23, 69.56%) focused on
farm animals, with cows being the most commonly studied species (8/23, 34.8%), followed
by horses (2/23, 8.7%), pigs (2/23, 8.7%), sheep (2/23, 8.7%), goats (1/23, 4.3%), and fish
(1/23, 4.3%). Additionally, six studies (26.1%) focused on wild animals, including wild
horses, felines, camouflaged animals, primates, koalas, and birds. Surprisingly, only two
papers specifically focused on domestic animals, such as dogs (8.7%). The predominance of
farm animal studies can be attributed to their significant commercial, nutritional, and health
importance [54]. In contrast, the focus on wild animals reflects the growing interest in
wildlife conservation and management [53]. However, despite their global population and
societal relevance, there were a limited number of studies addressing domestic animals,
particularly dogs and cats. Further research in this area is warranted to handle these animals’
monitoring and welfare needs. It is essential to highlight the considerable variation in the
number of participants involved in the data collection process across species. As expected,
studies involving farm animals typically included a large number of participants, such as
697 cows or 2404 pigs. Conversely, studies involving wild animals had fewer participants,
for instance, three wild horses, 48 koalas, or 26 primates. Interestingly, the number of
participants in studies focusing on domestic animals was unexpectedly lower than those for
wild animals, with only nine or ten dogs, for example. Further research and standardized
approaches are necessary to ensure adequate sample sizes and representative data collection
across different animal species.

5.3. Sensor Fusion Application

The majority of the articles included in the review focused on activity recognition
(52%), posture recognition (47.8%), and health detection (17.3%). However, several other
interesting research areas could be explored within these domains. In terms of activity
detection, while walking (65.21%), feeding or eating (60.8%), and running (30.4%) received
significant attention, it could also be valuable to investigate other activities such as sleeping
or animals’ vocalizations, such as barking in dogs.

Regarding posture detection, the included papers primarily focused on standing (52%)
followed by laying, including postures such as lying on the belly and on the side (44.4%).
However, additional postures, such as the "play bow" posture in dogs, could be explored,
a common invitation to play.

Regarding health systems, the predominant focus was lameness detection (8%),
but there are other potential applications worth exploring, including hypoxia, hypother-
mia, ketosis, and ischemia detection. Similarly, emotion detection was relatively limited
in the reviewed articles, with only one paper evaluating positive, neutral, and negative
emotions in animals. It could be interesting to incorporate biometric sensors that provide
insightful information about an animal’s health condition and emotions, such as surface
skin temperature, heart rate, and respiratory rate, to name a few.

Overall, while the reviewed articles covered important areas such as activity recog-
nition, posture detection, and health monitoring, there is still room for exploration and
expansion into other activities, postures, health indicators, and emotional aspects in animal
sensor fusion applications.

5.4. Sensing Technology

For data collecting, our investigation revealed that the most used device was the collar
(47.82%) and ear tags (17.39%). On the other hand, a significant number of proposals
used computer vision-based systems. Therefore, they did not use a wearable interface
(30.43%). Regarding sensors, the accelerometer was the primarily used device (60.86%)
which was present in 14 of 23 articles, followed by visible spectrum cameras (34.78%),
magnetometers (21.73%), gyroscopes (30.43%). As these types of sensors can commonly
be found in devices such as smartphones, it might be possible to utilize them during the
prototyping or validation stages. However, their high cost and logistical implications could
hinder their use in large-scale animal applications, such as monitoring cows or other farm
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animals. Similarly, developing alternatives to collars and ear tags for animal computer
interfaces (i.e., vests, and wristbands) can be challenging due to the anatomical features of
each animal species. Each species may have specific physical characteristics that need to be
considered when designing and implementing these alternative interfaces.

One notable observation from the reviewed articles is the limited utilization of bio-
metric sensors. These specialized sensors, capable of measuring vital parameters such as
heart rate, respiration rate, body temperature, and blood pressure, offer invaluable insights
into an animal’s health, emotions, and complex behaviors. However, the adoption of such
sensing technology is hindered by the scarcity of animal-specific sensors in the market.
Moreover, although some commercial sensors are already available that can measure bio-
metric parameters such as heart rate, respiratory rate, and body temperature, they tend to
be costly, have limited distribution, and do not always meet the researchers’ expectations.

In the coming years, the rapid advancement of IoT technology is expected to pro-
foundly impact animal monitoring systems in various settings such as farms, stables,
and homes. The IoT offers immense potential for scaling up animal monitoring systems,
as its infrastructure enables the integration of hundreds or even thousands of sensors
distributed across different locations. In IoT applications, three distinct levels of data
processing can be identified: edge computing, fog computing, and cloud computing. These
different processing paradigms offer the flexibility to implement robust sensor fusion
systems that leverage machine learning techniques based on the specific context.

At the edge computing level, data processing occurs directly within the data sensing
devices themselves. This decentralized approach allows for real-time processing and
decision-making, making it particularly suitable for scenarios where internet access may
be limited or unreliable, such as wildlife monitoring. Fog computing, on the other hand,
leverages the computing and storage resources available in devices and systems located
closer to users and data sources. This intermediate level of processing enables efficient data
aggregation and local analysis. Lastly, cloud computing involves storing and processing
data in a remote infrastructure connected to the data source through the Internet. This level
of processing is well-suited for applications in environments with reliable connectivity,
such as farms or homes, where a wider range of connectivity options is available.

5.5. Levels of Sensor Fusion

The review indicates that sensor fusion has been applied to different animals, with a
particular focus on cows and horses. However, there were also studies involving pigs,
felines, koalas, goats, birds, fish, dogs, camouflaged animals, and sheep, among others.
This highlights the versatility of sensor fusion across different animal species.

The reviewed articles primarily focused on activity and pose detection as the main
applications of sensor fusion. These categories were addressed across all three levels of
fusion, highlighting their importance in understanding animal behavior. Our findings
also revealed a study that specifically aimed to evaluate personality using a low level of
fusion. Feature level fusion, on the other hand, was utilized for various applications such
as social behavior analysis, camouflaged animal detection, emotion detection, and spatial
proximity evaluation. These applications required the integration of data from multiple
sensors to analyze and interpret complex behavioral patterns. In terms of individual
recognition, a high level of sensor fusion was employed. This fusion level allowed for
accurate identification and tracking of individual animals within a population. Furthermore,
health detection was covered by both the low and high levels of sensor fusion. This indicates
that sensor fusion techniques could be used to monitor and detect various health parameters
and conditions in animals. Using low-level sensor fusion in challenging applications such
as personality evaluation and health detection can be counter-intuitive and may stem from
constraints during the system development stage. This can be attributed to the reliance
on machine learning-based sensor fusion, which heavily depends on the availability and
quality of data.
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Regarding the use of sensors across the three levels of fusion, it was observed that
systems based on natural interfaces such as cameras were primarily utilized in the high
or feature levels. This is because digital images captured by cameras require processing
to extract useful information. In contrast, the raw level of fusion focuses on sensor data
that does not require extensive processing, making it less suitable for incorporating camera-
based systems. The usage of accelerometers, gyroscopes, and magnetometers was widely
employed across all three levels of fusion. The reason for this could be that activity and
pose detection systems primarily rely on movement data. These sensors are specifically de-
signed to capture motion-related information, making them suitable for those applications.
Interestingly, activity recognition and posture detection were identified as two of the most
popular research applications in this review. Another intriguing finding was that the low
level of fusion presented the most sensor variety, incorporating sensors such as positioning
systems, microphones, and optic flow sensors that were not utilized in the higher levels.
This suggests that the low level of sensor fusion allows researchers to incorporate a broader
range of sensor inputs without significantly increasing resource requirements. Similarly,
when considering animal-computer interfaces, it can be observed that the low level of
fusion offers a wider variety of options than the higher levels. At the low level, researchers
have the flexibility to employ various interface devices such as collars, vests, girth straps,
and ear tags.

The use of different sensor fusion levels can present difficulties and limitations. This
review was presented in a three-level categorization. One advantage of utilizing low-level
sensor fusion is its ability to work with a relatively small amount of data and operate on
systems with lower computational requirements. Nevertheless, this comes with a possible
tradeoff with accuracy, precision, or other important performance metrics. The fusion of
raw sensor data may result in less refined and less informative output. The other extreme of
sensor fusion is high-level fusion. This type of sensor fusion typically requires at least two
trained models. However, high-level fusion also comes with its own set of challenges. One
significant challenge is requiring a substantial amount of representative data to train and
fine-tune the individual models involved in the fusion process. Acquiring and labeling such
data can be time-consuming and resource-intensive. Moreover, the computational power
needed to run multiple trained models simultaneously can be demanding. High-level
fusion often involves complex computations and may require significant computational
resources, limiting its practicality in resource-constrained environments or real-time ap-
plications. Furthermore, the performance and accuracy of the trained models heavily
rely on the quality and representativeness of the training data. Insufficient or biased data
can negatively impact the effectiveness of the high-level approach. In between low-level
and high-level fusion is the medium level, which, as its name suggests, offers a balance
between the two extremes. Medium-level or feature fusion combines sensor data at an
intermediate level of abstraction. This approach aims to leverage the advantages of low-
level and high-level fusion while mitigating some limitations. Medium-level fusion can
provide a more meaningful representation of the sensor data than low-level fusion, cap-
turing relevant features and reducing noise or redundancy. At the same time, it can offer
a more computationally efficient and less data-intensive alternative to high-level fusion.
The selection of the appropriate fusion level depends on factors such as the complexity of
the application, the available resources, and the desired trade-off between accuracy and
computational requirements.

5.6. Sensor Fusion Techniques

The usage of different sensor fusion approaches was reported in the reviewed articles,
reflecting the diversity in fusion techniques. The majority of the methods were based on a
single fusion algorithm, indicating the prevalence of this approach in the field. Researchers
often rely on a specific fusion algorithm that best suits their application requirements.
Moreover, the incorporation of two or more classifiers for sensor fusion indicates an
acknowledgment of the advantages associated with combining multiple classifiers to
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enhance accuracy and robustness in fusion systems. Additionally, the search conducted for
this review yielded articles that proposed new sensor fusion techniques.

The increasing use and proposal of newer sensor fusion techniques in research indicate
that the field of sensor fusion is experiencing significant growth. This trend suggests that
researchers are actively exploring and developing innovative approaches to improve the
effectiveness and efficiency of sensor fusion systems. By introducing novel fusion tech-
niques, researchers aim to address existing limitations, enhance sensor fusion capabilities
in various domains, and advance the overall state-of-the-art in this field.

5.7. Machine Learning Algorithms

During the conducted review, a wide range of machine learning algorithms focused on
sensor fusion were identified. The diversity of these algorithms suggests that sensor fusion
is a rapidly growing research area, with researchers actively exploring various techniques to
address different challenges and application requirements. This indicates a strong interest
in advancing the field of sensor fusion and improving its effectiveness in animal-focused
applications. Our findings show that neural networks-based approaches and random forest
algorithms are widely used, which could indicate their efficacy and suitability for sensor
fusion tasks.

Another interesting observation is that, besides Convolutional Neural Networks, there
does not seem to be a clear preference for a specific machine learning algorithm across
different fusion levels. This suggests that researchers are exploring various algorithms and
considering their suitability for different fusion levels based on the specific requirements
of their applications. This indicates a flexible approach in selecting machine learning
algorithms for sensor fusion, where the focus is more on achieving optimal results rather
than relying on a specific algorithm for a particular fusion level.

5.8. Performance Metrics and Reported Results

Based on the results reported in the included studies, it was evident that there was
no clear preference for using specific performance metrics in sensor fusion. The choice of
metrics appears to depend more on the algorithms employed and the specific objectives of
the research. Different algorithms may have distinct evaluation requirements, influencing
the selection of appropriate metrics that align with their unique characteristics and goals.
Nevertheless, it is worth noting that among the metrics used in this review, accuracy, recall,
and F1-score were the most commonly employed. The average values obtained for these
metrics were 92%, 87%, and 82%, respectively. These high average values suggest that the
sensor fusion systems evaluated in the studies exhibited good performance.

5.9. Limitation of the Review

The scoping literature review has limitations that should be considered when inter-
preting the results. First, our inclusion criteria specifically targeted data and sensor fusion
techniques using machine learning for animal monitoring, excluding studies that explored
sensor use without fusion techniques and potentially limiting the breadth of our findings.
Second, our search strategy was constrained by database selection, although we attempted
to mitigate this limitation by searching multiple databases. In addition, we included articles
with a Qualsyst score of >=60% to ensure minimal experimental criteria. However, this
threshold may have excluded studies with valuable insights that did not meet the specific
scoring criteria. The limited number of included studies and the possibility of missing
relevant studies during our search process also impact our review’s comprehensiveness
impact developing. Despite these limitations, this study provides an essential overview of
the current state of sensors and data fusion techniques for animal monitoring, offering valu-
able insights into important characteristics, reported evaluations, and existing constraints
in the field.
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6. Conclusions

This review presents the usage of sensor fusion and machine learning focused on
livestock and companion animals. This article aims to provide valuable insights to a diverse
group of readers focused on animal studies. The search was conducted in IEEE Xplore,
Google Scholar, Dimensions, and Springer databases using the search words “sensor fusion
machine learning animals”. The articles were filtered according to the language, page
length, content, publication date, and Qualsyst Score above 60%. Only 23 of 263 initially
retrieved met the inclusion criteria (8.67%).

The review categorizes sensor fusion into Low/Raw, Medium/Feature, and High/
Decision. Our research indicates that there has been an increase in the topic of sensor
fusion related to animals in recent years. However, the majority of studies focus only
on cows, neglecting other animal populations such as dogs, sheep, and cats, to name a
few examples. It is possible to believe that the main focus is on cow-related applications
due to their importance in the global dietary industry. Additionally, most studies rely on
collar-based animal-computer interfaces, indicating an opportunity to develop solutions
based on ear tags, vests, or other types of wearable devices and also explore new proposals
for Animal-Computer Interaction methods. Recent advances in artificial intelligence,
machine learning, and computing power on portable devices have opened the doors to the
possibility of proposing new natural interaction methods based on animal vocalizations
or learning from their behavioral patterns. While the reviewed articles primarily focus
on posture and activity recognition, there is a small number of articles related to emotion
detection and health monitoring, indicating the potential for the development of systems
addressing these topics. In terms of machine learning algorithms, there is no particular
architecture for performing the fusion. However, neural networks, SVM, and random
forest-based solutions were found across the three levels of sensor fusion, suggesting
that these algorithms are a good starting point for developing such projects. The most
commonly used sensors include accelerometers, gyroscopes, magnetometers, and visual
spectrum cameras. It is surprising that none of the included articles utilized biometric
sensors. The usage of sensors specialized in biological signals, such as electrocardiogram,
electromyography, electroencephalography, respiratory rate, and noninvasive skin surface
temperature sensors designed explicitly for animals, could lead to the creation of better
products aiming at improving not only production but also animal well-being in general.
This could potentially meet with design challenges, such as creating one specific sensor
for just one animal species that could be commercially nonviable. Additionally, animals
present different skin properties, which can limit the application of optical and electrode-
based devices.
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