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Abstract: Acceleration-based sensors are widely used in indicating the severity of damage caused to
structural buildings during dynamic events. The force rate of change is of interest when investigating
the effect of seismic waves on structural elements, and hence the calculation of the jerk is necessary.
For most sensors, the technique used for measuring the jerk (m/s3) is based on differentiating the time–
acceleration signal. However, this technique is prone to errors especially in small amplitude and low
frequency signals, and is deemed not suitable when online feedback is required. Here, we show that
direct measurement of the jerk can be achieved using a metal cantilever and a gyroscope. In addition,
we focus on the development of the jerk sensor for seismic vibrations. The adopted methodology
optimized the dimensions of an austenitic stainless steel cantilever and enhanced the performance in
terms of sensitivity and the jerk measurable range. We found, after several analytical and FE analyses,
that an L-35 cantilever model with dimensions 35 × 20 × 0.5 (mm3) and a natural frequency of
139 (Hz) has a remarkable performance for seismic measurements. Our theoretical and experimental
results show that the L-35 jerk sensor has a constant sensitivity value of 0.05 ((deg/s)/(G/s)) with
±2% error in the seismic frequency bandwidth of 0.1~40 (Hz) and for amplitudes in between 0.1
and 2 (G). Furthermore, the theoretical and experimental calibration curves show linear trends with
a high correlation factor of 0.99 and 0.98, respectively. These findings demonstrate the enhanced
sensitivity of the jerk sensor, which surpasses previously reported sensitivities in the literature.

Keywords: jerk sensor; stainless steel cantilever; gyroscope; finite element modeling; seismic vibrations

1. Introduction

During earthquakes, seismic waves in the form of an S-wave, P-wave, Rayleigh-wave
and Love-wave propagate in all directions, causing the ground to vibrate with a frequency
ranging from 0.1 to 40 (Hz) and peak ground acceleration ranging from 0.1 to 2 (G), which
depend strongly on the magnitude and hypocentral distance [1,2]. As a result, damage to
buildings occurs if they cannot sustain these vibrations. In addition, seismic vibrations of
low frequency and small amplitudes may cause severe cumulative damage with fatigue to
structural elements. It is important for health monitoring systems of structural buildings
and bridges to develop a new technique for directly measuring the jerk and the rate of
change of force during seismic vibrations. The development of such sensors is also needed
in many other applications such as elevators, robots, automotive safety, crashworthiness,
material fatigue, aerospace and ballistic testing [3].
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Generally, seismometers are used to detect seismic waves. A simple seismometer
consists of a mass attached to a fixed frame. The relative motion between the mass and the
frame provides a measurement of the vertical ground motion. The modern seismometers
are driven by force-balanced complex electronic controllers that hold the small mass station-
ary during the ground movement through a feedback control circuit. The force necessary
to hold the mass motionless relative to the frame is proportional to the acceleration [4].
Geophones are also used to detect seismic waves in terms of ground motion. Most of
the currently available geophones consist of a mass suspended by mechanical springs.
Mass movement is controlled by either magnets or coils. The response of a coil/magnet
geophone is proportional to the ground velocity. However, the mechanical spring decreases
the device’s performance, and the geophone’s sensitivity to ground motion is variable
with input frequency [5]. Therefore, modern seismometers and geophones measure accel-
eration instead of the velocity of ground movement. In other words, modern types are
acceleration-based sensors.

Accelerometer sensors measure acceleration and indirectly detect the input jerk in
dynamic systems [6,7]. Accelerometer sensors must have high responsiveness and resolu-
tion to sense acceleration accurately, and this is achieved by maintaining a high Q-factor
to prevent any reduction in the sensitivity due to increased damping [8,9]. Unfortunately,
the current measurement of the jerk using accelerometers is mainly based on signal pro-
cessing by differentiating the input acceleration with respect to time [10–19]. This indirect
technique of measuring the input jerk consumes more calculations and time. In addition,
high error levels due to noise sensitivity and small-time steps are expected. This technique
may lead to imprecise calculations of the jerk value in small amplitude and low frequency
signals, especially in health monitoring systems of structural buildings [9]. Consequently,
many attempts have been made to overcome this problem; Rangel-Magdaleno et al. [20]
developed a sensor for jerk monitoring with finite differences of the acceleration signal.
They used a standard accelerometer with an improved signal-to-quantization noise ratio.
Their idea is based on improved oversampling techniques that give a better estimation of
the jerk than that produced by a Nyquist-rate differentiator. Xueshan et al. [21] proposed
a different approach to measure the input jerk signal. Their idea is based on absolute
motion detection using a mass-spring system with an electromechanical coupling circuit to
substitute traditional differential circuits. They developed four models called JW-1, JW-2,
JW-3 and JW2-3D. However, in these models, they neglected the damping coefficient, and
so the sensor sensitivity decreased with increasing the excitation frequency. For instance,
the JW-1 model sensitivity was 0.08 (mV/(m/s3)) for a bandwidth of 0~100 (Hz). Kubota
et al. [22] developed a servo-type jerk sensor for an air-type anti-vibration system. This type
of servo jerk sensor is mainly based on integral feedback control. They improved their jerk
sensor’s phase and sensitivity characteristics by increasing the stiffness of the plate spring
of the pendulum in the sensor. Manabe et al. [23,24] proposed a servo-type jerk sensor
based on controlling the zero position of a pendulum through velocity feedback control
(i.e., PI compensator), which auto corrects the position, enhances stability and reduces
oscillation. Li et al. [25] proposed a direct method for measuring the jerk using a fiber
optic jerk sensor (FOJS) based on a differentiating Mach–Zehnder interferometer. If the
sensing probe detects a jerk signal, the fiber winding on the probe stretches and modulates
the phase of the interferometer. Thus, the jerk is measured by measuring the absolute
phase of the interference light. In 1999, Tamura et al. [26] proposed a direct method for
sensing the jerk with a cantilever-based jerk sensor. They measured the output voltage of a
vibratory gyroscope mounted on an aluminum cantilever to detect discontinuities in the
response of buildings under earthquakes based on the continuous vibration system theory.
They reported two sensor models named A and B. However, the model with the higher
sensitivity has significantly large dimensions of 145 × 30 × 5 (mm3) and a low sensitivity
of 0.01 ((deg/s)/(G/s)). However, in practical applications, lower dimensions and a higher
sensitivity are needed. Therefore, more research is required to enhance the sensitivity of
the cantilever-based jerk sensor proposed by Tamura [26].
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In earthquake engineering, jerk sensors are not common. Consequently, several meth-
ods have been used to try to quantify the jerk during seismic vibrations [27]. Tong et al. [28]
evaluated the basic characteristics (amplitude, duration and frequency component) of the
time derivative of earthquake acceleration (TDoA) based on records from the 1999 Chi-Chi
earthquake (Mw 7.6) and one of its aftershocks (Mw 6.2). Using a mid-point differentia-
tion formula, they extracted the TDoA time series with direct numerical differentiation of
the ground acceleration time series. They found that the maximum TDoA recorded at a
free-field station was over 31.8 (G/s), with a total error within 4%. They stated that, in the
case of large TDoA, the structural response might be accompanied by stress concentration
and local damages due to inhomogeneous dynamic loading resulting from the stress wave
propagation. Haoxiang et al. [7] established a numerical computing method for measur-
ing elastic and inelastic jerk response spectra of structures under seismic activity. They
calculated the jerk spectrum directly by establishing state–space equations and using the
fourth-order Runge–Kutta method for solving the structural acceleration response. The
jerk response is obtained by calculating the time derivation of acceleration. The results
showed that the jerk spectrum had similar rules to the acceleration spectrum in general,
and the amplitude was relative to the predominant period, especially for structures with
a short or medium period. Other researchers used damage detection methods based on
the jerk energy of the structural response; An et al. [19] used a jerk energy-based damage
index in defining two damage localization procedures, namely, mean normalized curvature
difference of waveform jerk energy and curvature difference probability waveform jerk
energy. After experimentation on a six-story lumped-mass shear building model, they
found that these methods have much better accuracy in determining localized damage and
a better performance than model-based methods in the presence of noise. However, these
methods are classified as model-free in which damage detection is based on the vibration
response time series signals rather than numerical models.

From previous studies, the detection of the input jerk during seismic vibration is
commonly based on the differentiation of the measured acceleration. However, very few
works have been conducted to measure the input jerk directly. Therefore, this study focuses
on enhancing the sensitivity of a cantilever-based sensor for direct measurement of the
jerk during seismic events. The value of the enhanced jerk sensor lies in providing high
sensitivity, reducing signal processing time and eliminating differentiation errors, which
are necessary for small amplitude and low frequency signals. In other words, the enhanced
sensor provides online jerk measurement without performing signal differentiation in
contrast to geophones, accelerometers and seismometers. The enhanced jerk sensor was
modeled, designed and simulated using analytical equations and ANSYS 2020R2 finite
element analysis software to obtain the sensitivity frequency response and theoretical
calibration curves. The enhanced design of the cantilever-based jerk sensor is based on
optimizing the dimensions of an austenitic spring stainless steel 304 metallic cantilever
to increase the sensitivity. The sensor dimensions were chosen based on the excitation
frequency range of seismic vibrations. The best sensor model design has been fabricated
and experimentally tested on a high-excitation computer-controlled shaker. The rest of
the paper is organized into three main sections as follows: Section 2 (includes the sensor
structure, sensor analytical model, sensor design, sensor FE modeling and simulation
work and experimental work), Section 3 (includes FE results, experimental verification and
performance comparison) and finally, Section 4 (summary and conclusions).

2. Materials and Methods
2.1. Sensor Structure

The jerk sensor consisted of a metal cantilever with a gyroscope mounted at its free
tip, and an accelerometer mounted at its fixed end, as shown in Figure 1. The accelerometer
was used once in practice to calibrate the jerk sensor sensitivity. When the jerk sensor
(cantilever and gyroscope) was subjected to an excitation signal (a(t)), the jerk amplitude
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(j(t)) was determined from the gyroscope reading (Ω) (angular velocity) and jerk sensitivity
(Sj), which will be explained in the next section.
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2.2. Sensor Analytical Model

The jerk (j(t)) is a physical signal that describes the rate of change of acceleration
(a(t)), or in other words, it is the first derivative of acceleration with respect to time
(j(t) = da(t)/dt), and its unit is m/s3. The rate of change of force can be related to the
jerk when mass is constant by differentiating Newton’s second law (F(t) = ma(t)) with
respect to time as described in Equation (1).

dF(t)
dt

= m
da(t)

dt
= mJ(t) (1)

Consider a cantilever beam as shown in Figure 2; when the beam is statically analyzed
under constant acceleration (a = gravitational acceleration), the beam self-mass and the
attached mass at the cantilever tip induce a static force that causes a static deflection (dy).
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Figure 2. Schematic diagram showing the change in deflection angle along the length of a
cantilever beam.

From solid mechanics [29], as the moment (M) on the beam increases, the radius of
curvature (r) decreases; thus, the relationship is inversely proportional. The constant can
be determined based on the geometry of the cross-section (I) and the beam’s material
stiffness (E):

M1r1 = M2r2 = const. = EI
1
r = M

EI

(2)
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where M1 and M2 are arbitrary moment values causing curvature radii (r1) and (r2),
respectively. By referring to Figure 2, the change in the slope of deflection is dθ = dx/r;
thus, the slope of deflection (θ(x)) can be related to the moment from Equation (2):

θ(x) =
∫ 1

r
dx =

∫ M(x)

EI
dx (3)

Therefore, by using Equation (3), the deflection (y(x)) can be obtained:

dy(x)
dx = tan θ(x) ≈ θ(x)[rad]

y(x) =
∫

θ(x)dx =
∫ ∫ M(x)

EI dx2
(4)

where M(x) is the total moment as a function of x and can be calculated using the superposi-
tion method by summing up the moment from the gyroscope mass (M1(x)) and the moment
from the cantilever self-mass (M2(x)). Assuming a constant acceleration (a) is acting on the
masses perpendicular to the x-axis, the resulting moment (M(x)) can be calculated as:

M(x) = M1(x) + M2(x)

For the moment resulting from the gyroscope mass (M1(x)):

M1(x) = −m1aL + m1ax

M1(x) = m1a(x− L)

Thus, the angle of deflection due to the gyroscope mass (θ1(x)) can be calculated as the
first integral with respect to dx:

θ1(x) =
∫ M1(x)

EI dx = m1a
EI
∫
(x− L)dx

θ1(x) =
m1a
EI

(
x2

2 − Lx + c1

) (5)

Note that at x = 0, due to fixed support, θ1(x) = 0; therefore, c1 = 0. For the moment
resulting from the cantilever self-mass (M2(x)):

M2(x) =
−m2aL2

2 + m2aLx− m2ax2

2

M2(x) = −
m2a

2
(
x2 − 2Lx + L2)

Thus, the angle of deflection due to the cantilever self-mass (θ2(x)) can be calculated as
the first integral with respect to dx:

θ2(x) =
∫ M2(x)

EI dx = −m2a
2EI
∫ (

x2 − 2Lx + L2)dx

θ2(x) = −
m2a
2EI

(
x3

3 − Lx2 + L2x + c2

) (6)

Note that at x = 0, due to fixed support, θ2(x) = 0; therefore, c2 = 0. Therefore,
the total cumulative angle of deflection (θ(x)) measured from the fixed end towards any
position along the cantilever length is given as the sum of Equations (5) and (6):

θ(x) = θ1(x) + θ2(x)

θ(x) =
m1a
EI

(
x2

2 − Lx
)
− m2a

2EI

(
x3

3 − Lx2 + L2x
)

θ(x) =
a

EI

(
m1

(
x2

2 − Lx
)
− m2

2

(
x3

3 − Lx2 + L2x
)) (7)
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From Equation (4), the deflection (y(x)) at any position can be calculated by integrating
the total angle of deflection (θ(x)) obtained from Equation (7):

y(x) =
∫

θ(x)dx = a
EI
∫ (

m1

(
x2

2 − Lx
)
− m2

2

(
x3

3 − Lx2 + L2x
))

dx

y(x) =
a

EI

(
m1

(
x3

6 −
Lx2

2

)
− m2

2

(
x4

12 −
Lx3

3 + L2x2

2

)
+ c3

) (8)

Note that at x = 0, due to fixed support, y = 0; therefore, c3 = 0. Therefore, the angle
of deflection and the deflection at the cantilever tip (x = L) can be evaluated:

θtip = θ(x=L) = −
L2

EI

m1

2
+

−
m2L

6

a (9)

ytip = y(x=L) = −
L3

EI

m1

3
+

−
m2L

8

a = −δtip.a (10)

Then, δtip becomes the deflection due to a unit acceleration. So, the spring stiffness (k)
(the force required to generate a unit deflection) at the cantilever tip can be calculated:

ytip =
Ftip

ktip
=

mtotal .a
ktip

= δtip[
mm

mm/s2 ].a[
mm
s2 ] (11)

mtotal
ktip

= δtip =
m1
3EI
L3

+

−
m2L
8EI
L3

(12)

When the cantilever is subjected to harmonic forced vibrations, e.g., earthquake waves,
the cantilever tip will oscillate at the input frequency as an underdamped single degree
of freedom (SDOF) system subjected to base excitation, as shown in Figure 3. A harmonic
force ( f(t)) is applied on the system due to the dynamic acceleration (a(t)) acting upon

the masses m1 and
−
m2. A dynamic deflection wave (u(x,t)) is generated having the same

frequency (ωi) as the input acceleration, but due to response lagging, there will be a phase
shift (∅) between u(x,t) and f(t) [30].
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The cantilever equation of motion can be represented as:

m
..
u + c

.
u + ku = − f(t) (13)

f(t) = ma(t) = maisin
(

ωit +
π

2

)
(14)

where c is the damping coefficient, k is the cantilever spring constant and m is the effective

mass of the system, which equals m1 + 0.25
−
m2L. The solution of Equation (13) [31] is the

sum of the homogeneous (u(x,t)h) and particular (u(x,t)p) solutions given as:

u(x,t) = u(x,t)h + u(x,t)p = U0(x)e
−ζωntsin

√
1− ζ2ωnt + U1(x)sin

(
ωit− φ +

π

2

)
The homogenous solution diminishes with time; therefore, only the particular solution

of the function is considered because it represents the solution due to the effect of the input
signal when the system reaches dynamic stability after passing the transient time. The
deflection (u(x,t)) of the underdamped vibration is given by:

u(x,t) = U1(x)sin
(

ωit− φ +
π

2

)
(15)

The amplitude (Utip) and phase angle (φ) at the tip in Equation (15) are given by:

Utip =
(Fi/k)tip√

(2ζβ)2+(1−β2)
2

φ = tan−1 2ζβ

1−β2

where β is the ratio of the excitation frequency (ωi) to the natural frequency (ωn). At initial
condition (t = 0), the cantilever is still in the static state with zero frequency (ωi = 0) and
β = 0, thus the deflection at the cantilever tip (u(x=L,t=0)) is equal to the static deflec-
tion (ytip) of Equation (10), and since the motion of the cantilever tip is represented by
SDOF, then:

u(x=L,t=0) = Utip = (F/k)tip = ytip (16)

Therefore, from Equation (16), the amplitude (Utip) and the dynamic deflection
(u(x=L,t)) at the cantilever tip at any t and β value are:

Utip =
ytip√

(2ζβ)2+(1−β2)
2

u(x=L,t) =
ytip√

(2ζβ)2+(1−β2)
2
sin
(
ωit− φ + π

2
) (17)

The dynamic angle of deflection (θ(x=L,t)) can be obtained by differentiating the dy-
namic deflection function with respect to dx:

θ(x=L,t) =
du(x,t)

dx

∣∣∣∣
x=L

=
θtip√

(2ζβ)2 + (1− β2)
2

sin
(

ωit− φ +
π

2

)
(18)

The angular velocity (Ω(x=L,t)) is the rate of change of the angle of deflection (θ(x=L,t))
and can be calculated by taking its first derivative with respect to time (dt) (it shows how
quickly the angle changes with time and corresponds to the gyroscope readings):

Ω(x=L,t) =
dθ(x=L,t)

dt
= −

θtip√
(2ζβ)2 + (1− β2)

2
ωisin(ωit− φ) (19)
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The denominator is considered as a dynamic amplification factor, so the angular
velocity (Ω(x=L,t)) can be calculated using Equations (7) and (19):

Ω(x=L,t) =

L2

EI

(
m1
2 +

−
m2L

6

)
√
(2ζβ)2 + (1− β2)

2
ωiaisin(ωit− φ) (20)

Figure 4 shows graphical representations of the input acceleration (Equation (14)) as
well as the output deflection (Equation (17)) and angular velocity (Equation (20)) responses
at the cantilever tip at input frequencies of 1, 10, 40 and 120 (Hz) and an acceleration of 1 (G)
for a short period of 0.5 (s). Representations are constructed considering a cantilever of a
natural frequency of 120 (Hz) (3 times the seismic frequency of 0.1~40 (Hz)) and arbitrary
geometrical and material parameters. In all cases, the effect of the homogeneous solution
diminishes after a very short period, hence the neglection of the homogeneous solution. In
addition, at the same input acceleration (acceleration acts as a scaling factor) as the input
frequency increases, the increase in the deflection amplitude is small. However, the increase
in the angular velocity is more significant, hence the suitability of the gyroscope in sensing
the input.

Equation (20) represents the gyroscope reading at the cantilever tip, and this value
was utilized to measure the sensitivity of the jerk sensor (Sa) to the input acceleration (a(t))
and, similarly, the jerk sensor sensitivity (Sj) to the input jerk (j(t)), as given in Equations
(21) and (23), respectively.

Sa =

∣∣∣Ω(L,t)

∣∣∣
max∣∣∣a(t)∣∣∣max

=

L2

EI

(
m1
2 +

−
m2L

6

)
ωi√

(2ζβ)2 + (1− β2)
2

(21)

j(t) =
∣∣∣−jωia(t)

∣∣∣ = ωiaicos
(

ωit +
π

2

)
= −ωiaisin(ωit) (22)

Sj =

∣∣∣Ω(L,t)

∣∣∣
max∣∣∣j(t)∣∣∣max

=

L2

EI

(
m1
2 +

−
m2L

6

)
√
(2ζβ)2 + (1− β2)

2
(23)

From Equation (21), the jerk sensor sensitivity (Sa) to input acceleration (a(t)) does
not depend on the amplitude of the input acceleration; therefore, Sa is a constant value
for all acceleration amplitudes of the same frequency. However, Sa is significantly affected
by any variation in the excitation angular frequency (ωi). Nevertheless, the variation is
deemed linear at small (β) ratios less than 0.3~0.2. Similarly, Equation (23) shows that
the jerk sensor sensitivity (Sj) to the input jerk (j(t)) does not depend on the amplitude
of the input acceleration. In addition, ωi is cancelled from the numerator; therefore, Sj is
only affected by the variation of ωi that is introduced through β = ωi/ωn. Consequently,
the effect of variation of ωi on Sj can be further reduced by controlling β. In other words,
controlling the cantilever’s natural frequency (ωn) to be 3~5 times the measurable excitation
frequency range enables us to design a jerk sensor with an almost constant Sj, which will
be demonstrated in Section 3. Equations (21)–(23) also give the theoretical calibration of the
jerk sensor sensitivity as follows:

Sj =
Sa

ωi
(24)

j(t) =
|Ω|
Sj

=
|Ω|×ωi

Sa
(25)

It is clear from Equations (24) and (25) that Sj is less than Sa, and the estimated jerk
(j(t)) is greater than the input acceleration (a(t)). Therefore, this sensor is very efficient in
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sensing any variation in the input signal with a small amplitude. Regarding Section 2.5, an
accelerometer was used once to determine the calibration sensitivity curves Sa and Sj. After
that, the jerk value was obtained with direct measurement from the angular velocity sensor
only. There is no need to use an accelerometer or any differentiation of the acceleration
signal with respect to time.
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2.3. Sensor Design

It is known that the natural frequency of the cantilever is a function of its geometry,
material density and elastic modulus, as expressed in Equation (26). The desired dimensions
and natural frequency ( fn) of the cantilever were designed to have a natural frequency
3~5 times the seismic vibration range (0.1~40 (Hz)) [32–34], which provides good-quality
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earthquake measurements. In other words, the excitation to the natural frequency ratio β,
in Equation (23), was 0.33~0.20, which ensures Sj to be constant over the seismic vibration
range. It is worth mentioning that the frequency range 0.1~40 (Hz) also covers the ASTM-
E606 low-cyclic fatigue test.

2π fn =

√
k
m
∼=

√√√√ k1+k2
2

m1 +
−
m2L

(26)

where k1 = 3EI/L3 is the cantilever stiffness due to the gyroscope point mass (m1) and

k2 = 8EI/L3 is the cantilever stiffness due to its distributed self-mass (
−
m2); stiffness is

derived from Equation (12).
To study the effect of cantilever dimensions on the first mode natural frequency,

18 dimension sets were studied to estimate the first mode natural frequencies ( fn) using
Equation (26). The first mode natural frequency was also estimated from an FE modal
analysis for the 18 cantilever dimension sets. Table 1 summarizes the estimated natural
frequencies of the 18 cantilever dimension sets as obtained from Equation (26) and FEA.
The 10th dimension set denoted by L-35 was selected since it satisfied the recommended
design criteria.

Table 1. First mode natural frequency of 18 cantilever dimension sets as estimated from Equation (26)
and modal FEA.

Model
Length

(L) (mm)
Width

(w) (mm)
Thickness

(t) (mm)

First Mode Natural Frequency (fn)
(Hz)

Equation (26) FEA

1

30

15
0.5 166.55 162.21

2 1 419.01 425.81
3 1.5 700.13 724.35

4
20

0.5 184.37 183.61
5 1 453.30 474.7
6 1.5 746.52 798.0

7

35

15
0.5 127.27 122.82

8 1 316.34 321.95
9 1.5 524.49 548.05

10 * (L-35)
20

0.5 140.23 138.95
11 1 340.35 358.44
12 1.5 556.22 602.68

13

40

15
0.5 100.90 96.932

14 1 248.06 253.52
15 1.5 408.52 431.38

16
20

0.5 110.69 109.56
17 1 265.61 281.76
18 1.5 431.27 473.34

* Dimensions set that meet the design criteria (3~5 times 40 (Hz)).

2.4. Sensor FE Modeling and Simulation Work

The L-35 jerk sensor simulation model was constructed and analyzed using ANSYS
2020R2 FE software. Modal and Harmonic analyses were performed to obtain the theoretical
sensitivities and calibration curves. A flow chart of the simulation work is illustrated in
Figure 5.
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2.4.1. Material Properties

The stainless steel mechanical properties of the L-35 cantilever model are listed in
Table 2. Among these properties, Young’s modulus, density and damping ratio were
the most important properties affecting the natural frequency of the cantilever. For this
purpose, the material chosen was high resilience spring stainless steel to store more elastic
energy and reduce the energy loss due to vibration as much as possible.

Table 2. Mechanical properties of L-35 stainless steel cantilever.

Property Value Unit

Density 7969 (kg/m3)
Young’s Modulus 195 (GPa)
Poisson’s Ratio 0.27
Bulk Modulus 141.3 (GPa)
Shear Modulus 76.772 (GPa)
Tensile Yield Strength 252.1 (MPa)
Tensile Ultimate Strength 565.1 (MPa)
Damping Ratio [35] 0.02
Constant Structural Damping Coefficient [35] 0.04 (kg/m3)

2.4.2. Geometrical Model

Based on the design criteria, the L-35 cantilever geometrical model of dimensions
35 × 20 × 0.5 (mm3) was constructed and attached to a fixed base of dimensions 5 × 20
× 10 (mm3), as shown in Figure 6. The printed circuit board (PCB) size for the suggested
MPU9250 gyroscope mounted on the cantilever free tip was 25.5 × 15.4 × 1.5 (mm3). This
size was considered when representing the affecting area of the PCB mass. An optimum
mesh sized at 1800 three-dimensional cubic elements of length 1 (mm) was enough to have
an absolute error of less than 1% compared to the analytical solution (Equation (17)).

2.4.3. Boundary Conditions

The base of the L-35 cantilever model was fixed at the bottom surface by applying
a surface fixed constrain, which included fixed displacement and rotation, as shown in
Figure 6. The gyroscope mass is represented by a 5 (gm) point mass with a pinball region
with a 5 (mm) radius. Thus, the gyroscope center is located 5 (mm) apart from the cantilever
tip at the middle of the width. Nine input acceleration levels in the range from 0.1 to 2 (G)
were applied to the cantilever model in 9 separate simulation runs to study the effect of
input excitation.
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2.4.4. Simulation Details

In the beginning, a modal analysis of the L-35 cantilever model was conducted once
under fixed geometrical boundary conditions to determine the natural frequency and select
the proper frequency range for the harmonic analysis. After that, the harmonic analysis
was conducted 9 times under a constant material density, elastic modulus and damping
ratio, as well as the geometrical boundary conditions, to predict the frequency response
of the L-35 jerk sensor. The nine individual simulation runs were performed under input
accelerations of 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0 (G), respectively, whereas a
variable frequency ranging from 0 to 300 (Hz) was applied in each run. For each input
acceleration, the response spectrum (frequency response) and phase angle of the deflection,
angle of deflection and angular velocity at the cantilever tip were predicted.

2.4.5. Post-Processing of Data

From FE results, the output angular velocity at the L-35 cantilever tip (Ωtip) was
predicted, and the acceleration sensitivity (Sa) was calculated by dividing the angular
velocity (Ωtip) by the input acceleration (ai). The jerk sensitivity (Sj) was obtained by
dividing the acceleration sensitivity (Sa) by the input frequency (ωi) as in Equation (24).
The input jerk (j(t)) was calculated by dividing the angular velocity (Ωtip) by the jerk
sensitivity (Sj) as in Equation (25).

As a result, the sensitivities of the L-35 jerk sensor to acceleration (Sa) ((deg/s)/(G))
and the jerk (Sj) ((deg/s)/(G/s)) were obtained as a function of frequency based on the
angular velocity response spectrum predicted after each simulation run. To move from the
mechanical domain (deg/s) to the electrical domain (mV), the output angular velocity (Ωtip)
(deg/s) was multiplied by the sensitivity of the MPU9250 gyroscope suggested for measur-
ing the angular velocity at the cantilever tip (MPU9250 has a sensitivity of 5 (mV/(deg/s))
at the measuring range of ±250 (deg/s)). As a result, the L-35 jerk sensor sensitivities Sa
and Sj are expressed in the electrical domain in (mV/G) and (mV/(G/s)), respectively.

Based on the FE results and with the help of Equations (21), (24) and (25), the FE
theoretical calibration curve of the L-35 jerk sensor, which relates the input jerk (j(t)) with
the gyroscope output volt (V) in the electromechanical domain, was then constructed for
the seismic frequency range 0.1~40 (Hz), and its slope (sensitivity) was calculated.

In practical application, the experimental calibration curve is obtained by directly
measuring the input acceleration (ai) using the accelerometer mounted at the fixed end of
the L-35 cantilever (as shown in Figure 1). At the same time, the angular velocity (Ωtip)
is measured directly from the gyroscope mounted at the L-35 cantilever tip. A shaker is
used to control the input frequency (ωi) and acceleration (ai). It is worth noting that the
accelerometer and the shaker are used only once for experimental calibration.
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2.5. Experimental Work

The L-35 jerk sensor practical model was fabricated and calibrated using an electrody-
namic shaker. A harmonic analysis was performed to obtain the experimental sensitivities
and calibration curves.

2.5.1. Sensor Fabrication

The experimented L-35 jerk sensor consisted of four parts: a cantilever strip of dimen-
sions 35 × 20 × 0.5 (mm3), a base of dimensions 30 × 30 × 15 (mm3), a gyroscope and an
accelerometer of dimensions 25.5 × 15.4 × 1.5 (mm3), as shown in Figure 7. All body parts
were made of austenitic spring stainless steel 304. The cantilever strip was fixed to the base
inside a built-in grove with a thickness of 0.6 (mm) and depth of 5 (mm) using 3 M5 bolts.
The fixation method was designed to facilitate the trial testing of different cantilevers. The
mass of the gyroscope was 3 (gm). The gyroscope was installed on the cantilever where the
z-axis direction was out of the plane, as shown in the left photo of Figure 7.
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2.5.2. Sensor Setup

Two 9-Axis MEMS sensors of type MPU9250 were attached to the L-35 jerk sensor,
as shown in Figure 7. One was fixed at the cantilever free tip and was set up to output
angular velocity data (i.e., gyroscope), while the other was fixed at the base and was set up
to output acceleration data (i.e., accelerometer). MPU9250 can measure an angular velocity
up to ±2000 (dps) with a sensitivity of 16.4 ± 3% (LSB/dps) and an acceleration up to
±16 (G) with a sensitivity of 2048 ± 3% (LSB/G). An Arduino Uno Rev 3.0 board was
chosen as the data acquisition system (DAQ), which can read from 5 analogue channels
and 14 digital channels at a baud rate up to 115,200 (bps). The gyroscope was configured to
measure in the range of ±250 (dps) with a digital low-pass filter (DLPF) at a bandwidth of
92 (Hz) and an output delay of 3.9 (ms). The accelerometer was configured to measure in
the range of ±2 (G) with a DLPF of 92 (Hz) and an output delay of 7.8 (ms). Arduino IDE
V1.8.13 software running a customized C++ code was used to write the configurations and
simultaneously read the gyroscope output in the y-axis and the accelerometer output in the
z-axis. The Arduino code sampling frequency was 250 (Hz). We should emphasize that the
accelerometer was used only once for determining the sensitivity curves Sa and then Sj. In
this manner, the jerk value was obtained directly from the experimental calibration curve.

2.5.3. Experimental Work Details

The experimental harmonic analysis of the L-35 jerk sensor was performed using
a high-excitation computer-controlled electrodynamic shaker. The shaker consisted of a
linear voice coil actuator (VCA), a uniaxial stage mounted on 4 roller bearings guided by
2 parallel rail guides, a DC servo drive controller with an I/O board and a power supply.
A photo of the testing device is shown in Figure 8. The shaker can achieve a maximum
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mechanical frequency of 120 (Hz), a stroke distance of 25.4 (mm) and a continuous stall
force of 185 (N) capable of generating an acceleration of 5 (G) at a payload mass of 3.5 (Kg).
The mechanical frequency and amplitude were controlled using MotionLab V2.0 software
installed on a laptop.
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Figure 8. Photo of the high-excitation computer-controlled shaker for testing the L-35 jerk sensor and
obtaining its calibration curve.

The L-35 jerk sensor was subjected to 24 frequencies in the bandwidth of 5~120 (Hz).
At each frequency, 5 accelerations were generated by altering the shaker stroke through
adjusting the torque at 20, 40, 60, 80 and 100%. At each frequency and acceleration, the
corresponding gyroscope signal was recorded using Arduino IDE V1.8.13 software for
a time span of 60 (s). Three data samples of 10 s each were extracted from the total
60 s of the recorded signal at the start, middle and end as shown in Figure 9. Similarly,
the accelerometer data-samples were extracted. The data samples were analyzed by the
Fast Fourier Transformation (FFT) toolbox under MATLAB R2021a software to obtain the
amplitude spectrum of the accelerometer and gyroscope signals in the frequency domain.
The harmonic analysis results were used to construct the experimental sensitivity curves as
previously discussed in Section 2.4.5.
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For calibration, the jerk sensor was subjected to 40 input accelerations in the range of
0.1~1.2 (G). The input accelerations were generated at 20, 40, 60, 80 and 100% torque at each
frequency of 5, 10, 15, 20, 25, 30, 35 and 40 (Hz). Then, the experimental calibration curve
of the L-35 jerk sensor was constructed by plotting the output gyroscope voltage versus the
input jerk for all the 40 input signals recorded in the frequency range of 5~40 (Hz).

3. Results
3.1. FE Results
3.1.1. Modal Analysis

Six modes of natural frequencies of the L-35 cantilever model are shown in Figure 10
as obtained from the modal analysis. This number of vibration modes is sufficient since
the ratio between the sixth and first mode is about 40 times, whereas the ratio between
the second and first mode is about 10 times. These ratios imply that the dominant mode
of vibration is the first mode at 139 (Hz). This mode has been selected for studying the
harmonic response since the deflection at the cantilever tip is a maximum that is very useful
for the response of the angular velocity sensor at excitation frequencies below 139 (Hz).
As shown in Figure 10, the shape mode at the first natural frequency is fairly linear. The
second shape mode is due to torsion vibration, which is not recommended for the angular
velocity sensor since the deflection at the midpoint of the tip is zero. The third mode is
rejected since it is non-linear and maximum deflection occurs at the middle of the cantilever
length. The fourth, fifth and sixth shape modes are complex and not recommended for
working in the linear measurement zone. In addition, the first mode frequency is within
3~5 times the required range for the seismic vibration.

3.1.2. Harmonic Analysis of the L-35 Cantilever

The combined effect of different magnitudes and frequencies of input acceleration
on dynamic deflection and angular velocity at the tip of the L-35 stainless steel cantilever
is shown in Figure 11a,c, respectively. These results were obtained from the FE-damped
harmonic response analysis under the acceleration range of 0.1~2 (G) and the frequency
range of 0~300 (Hz), which included the first mode natural frequency, 139 (Hz). In the
meantime, the damping ratio of the stainless steel cantilever material was taken as equal
to 0.02 [35]. Regarding Figure 11a, it can be seen that for all input accelerations, the
deflection increased slightly as the excitation frequency increased up to 110 (Hz), whereas
it started to increase rapidly as the frequency approached the natural frequency of the L-35
cantilever. After that, peak values were achieved at 139 (Hz), whereas deflection drastically
decreased again when the excitation frequency increased beyond 139 (Hz). At a 2 (G) input
acceleration, the maximum elastic deflection value was 0.8 (mm), which was still within
the elastic limit of the cantilever material. Angular velocity values at the cantilever tip
showed similar trends under the same input frequency and acceleration conditions, as
shown in Figure 11c. It is worthy to note that the angular velocity at the cantilever tip
did not exceed 28 (deg/s) at 2 (G) and 40 (Hz), which is very suitable for commercial
small-sized gyroscopes utilized for seismic measurement.
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Harmonic deflections at 0 (Hz) have the same values as the static deflections, which
ensure the validity of the harmonic model [36], and in turn, the angular velocity at the
cantilever tip under different excitation accelerations can be accurately obtained. Table 3
lists deflection and angular velocity amplitudes at the tip of the L-35 cantilever as obtained
from the FE harmonic analysis at 1, 40 and 139 (Hz) under different input accelerations. It
is found that the angular velocity significantly changes with the input frequency, especially
at the smallest amplitude. For instance, in Table 3 row 1, for a 0.1 (G) input acceleration
generated at frequencies 1, 40 and 139 (Hz), the output angular velocity was 0.03, 1.38 and
102.61, respectively. However, at a 1 (Hz) constant input frequency with a variable input
acceleration of 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2 (G), the measured angular velocity
at the L-35 cantilever tip at 2 (G) reached 20 times the corresponding angular velocity value
at 0.1 (G). This result confirms the great enhancement and high sensitivity of the designed
L-35 cantilever.
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Figure 11. The combined effect of different magnitudes and frequencies of input acceleration on
(a) the dynamic deflection with (b) a zoomed view into 0~40 (Hz), and (c) the angular velocity with
(d) a zoomed view into 0~40 (Hz) at the tip of the L-35 stainless steel cantilever with damping ratio
of 0.02.

Table 3. Deflection
(

Utip

)
and angular velocity

(
Ωtip

)
amplitudes at the tip of the L-35 cantilever as

obtained from FE harmonic analysis at 1, 40 and 139 (Hz) under different input accelerations.

Input Acceleration
(G)

1 (Hz) 40 (Hz) 139 (Hz)
Utip

(mm)
Ωtip

(deg/s)
Utip

(mm)
Ωtip

(deg/s)
Utip

(mm)
Ωtip

(deg/s)

0.10 0.002 0.03 0.002 1.38 0.039 102.61
0.25 0.004 0.08 0.005 3.44 0.098 256.53
0.50 0.008 0.16 0.009 6.88 0.196 513.05
0.75 0.013 0.24 0.014 10.32 0.295 769.58
1.00 0.017 0.32 0.018 13.76 0.393 1026.11
1.25 0.021 0.39 0.023 17.21 0.491 1282.63
1.50 0.025 0.47 0.027 20.65 0.589 1539.6
1.75 0.029 0.55 0.032 24.09 0.687 1795.69
2.00 0.034 0.63 0.037 27.53 0.789 2052.21

3.1.3. Theoretical Sensitivity of the L-35 Jerk Sensor

In the log–log scale, Figure 12a,c show the predicted bode diagram of the jerk sensor
sensitivity for input acceleration (Sa) and the jerk (Sj) in the frequency range of 0~300 (Hz),
respectively. The peak value is observed at the natural frequency of 139 (Hz). From
Figure 12a, it is found that the jerk sensor sensitivity for acceleration (Sa) is a linear function
of frequency within the frequency range of 0.1~40 (Hz), and there is a 90 (deg) phase shift
between the input and output up to 139 (Hz). The slope of the linear part represents the
jerk sensor sensitivity for the input jerk (Sj), as denoted previously in Equation (24). Over
the same range of frequency in Figure 12c, it is found that the jerk sensor sensitivity for the
jerk (Sj) is a constant value of 0.052 ((deg/s)/(G/s)) and has a zero phase shift between
the input jerk and output angular velocity. This implies that the jerk sensor reading (j(t))
will be stable in the frequency range of 0.1~40 (Hz), which is very suitable for the desired
seismic measurements. In addition, this sensitivity is almost five times the sensitivity value
obtained by [26], which confirms the sensitivity enhancement of the L-35 cantilever-based
jerk sensor.
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In the electrical domain, Figure 13a,c illustrate the jerk sensor sensitivity for input
acceleration (Sa) and the input jerk (Sj) over the frequency range of 0~300 (Hz), respec-
tively. Figure 13b,d show zoomed views of the linear parts of Sa and Sj. In the frequency
range of 0.1~40 (Hz), it is seen that the jerk sensor sensitivity for the jerk (Sj) has a con-
stant value of 0.258 (mV/(G/s)), whereas Sa is a linear function of the input frequency.
These trends of sensitivities are in very good agreement with the analytical equations
(Equations (21) and (23)).
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3.1.4. Theoretical Calibration Curve of the L-35 Jerk Sensor

Figure 14 illustrates the theoretical calibration curve of the L-35 jerk sensor for the
input jerk at a frequency range of 0.1~40 (Hz) and an acceleration range of 0.1~2 (G).
Thirty-six data points were fitted using a linear model based on Sj. The slope of the
theoretical calibration curve, which represents the sensitivity of the L-35 jerk sensor model,
is found to have an r-squared value of 0.99 and a ±1 linearity percentage. The theoretical
maximum jerk of the L-35 model is found to be 4844 (G/s) or 47,512 (m/s3) at a 19 (G)
input acceleration (ai) and 40 (Hz) excitation frequency (ωi). The theoretical jerk limit is
based on the gyroscope’s reference voltage limit of ±1250 (mV) at the measuring range of
±250 (deg/s).
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0.1~40 (Hz) and acceleration range of 0.1~2 (G) as predicted from the FE model.

3.2. Experimental Verification
3.2.1. Experimental Harmonic Analysis

Figure 15 shows the FFT analysis of a sample of the accelerometer and gyroscope
signals recorded at 60 (Hz) and 100% torque. It is observed that while the dominant
frequency is the input frequency, a few lower peaks appeared in the gyroscope signal
spectrum and are attributed to some local frequencies of the shaker. Figure 16 shows
the maximum FFT peaks of all the accelerometer and gyroscope signals recorded in the
frequency range of 5~60 (Hz). The L-35 jerk sensor achieved the maximum output angular
velocity response at the input frequency of 110 (Hz), about three times the required range
for the seismic vibration. The experimental cantilever’s natural frequency is lower than
that predicted by the FE modal analysis (139 (Hz)); this variation can be attributed to the
presence of wires that affected the cantilever’s stiffness and was not considered during
the simulation.
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frequency range of 5~60 (Hz).

3.2.2. Experimental Sensitivity Curves

Figure 17a,c show the experimental jerk sensor sensitivity curves for input acceleration
(Sa) and the input jerk (Sj), respectively. From Figure 17d, the L-35 jerk sensor sensitivity
for the input jerk (Sj) is almost constant in the range of 0.1~40 (Hz) with an average value
of 0.263 (mV/(G/s)) or 0.053 ((deg/s)/(G/s)). This trend is in very good agreement with
the theoretical sensitivity curve in Figure 13d. The validity test confirms that the enhanced
L-35 cantilever-based jerk sensor is very efficient in sensing any variation in the input signal
with a small amplitude.
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Figure 17. L-35 jerk sensor sensitivities for (a) input acceleration with (b) a zoomed view into
1~40 (Hz), and (c) input jerk with (d) a zoomed view into 1~40 (Hz).

3.2.3. Experimental Calibration Curve

Figure 18 shows the experimental calibration curve of the L-35 jerk sensor for the input
jerk at a frequency range of 0.1~40 (Hz) and an acceleration range of 0.1~1.2 (G). The linear
fitting model is based on the average sensitivity for the input jerk and has a coefficient of
determination (R2) value of 0.97 with a high correlation coefficient (r2) value of 0.98.
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3.3. Performance Comparison of the L-35 Jerk Sensor

Table 4 summarizes the performance of the L-35, A [26], B [26] and JW-1 [21] jerk
sensors in terms of the sensitivity, bandwidth, measurable range and linearity percentages.
The enhanced L-35 jerk model gives a sensitivity 5 times higher than model A and 13 times
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higher than model B. The measurable jerk range of L-35 is five times wider than that of
model JW-1, three times wider than model B and two times wider than model A. The
linearity percentage is identical for all models and is ±1%. This comparison ensures the
remarkable enhancement in the measurement performance of the L-35 cantilever-based
jerk sensor presented in this study.

Table 4. Comparison between performance of L-35, A, B and JW-1 jerk sensor models.

Property L-35 A * B * JW-1 **

Dimensions (mm) 35 × 5 × 0.5 145 × 30 × 5 20 × 30 × 1.2 N/A
Material Stainless steel 304 Aluminum Aluminum N/A
Natural frequency (Hz) 111 90 160 N/A
Sensitivity ((deg/s)/(G/s)) 0.053 0.01 0.004 N/A
Gyroscope sensitivity (mV/(deg/s)) 5 25 25 N/A
Sensitivity (mV/(m/s3)) 0.03 0.02 0.01 0.08
Bandwidth 0.1–40 0.1–60 0.1–60 0.3–100
Measurable Range (m/s3) 47,000 14,000 35,000 10,000
Linearity (%) ±1 ±1 ±1 ±1

* Models A and B by Tamura et al. [26]; ** Model JW-1 by Xueshan et al. [21].

4. Summary and Conclusions

In this study, a cantilever-based sensor was proposed for the direct measurement of
the jerk. The jerk sensor was analytically modeled, simulated by FEA and experimentally
verified to enhance its measurement performance in terms of sensitivity and the jerk
measurable range in the seismic frequency bandwidth. The sensor structure consists
of an austenitic stainless steel 304 cantilever and an angular velocity meter (gyroscope)
mounted on the cantilever tip. The L-35 cantilever of dimensions 35 × 20 × 0.5 (mm3)
was selected and fabricated to work in the bandwidth of seismic measurements (0.1~40
(Hz)), and its natural frequency was experimentally found to be 111 (Hz). Analytical and
FE analyses of the L-35 jerk sensor were performed to predict the theoretical sensitivity (Sj)
and calibration (j(t)) curves. The L-35 was tested on a high excitation computer-controlled
shaker to obtain the experimental sensitivity and calibration curves. The jerk sensor’s
theoretical and experimental calibration curves were found to be linear in the bandwidth of
0.1~40 (Hz) with a linearity r-squared value of 0.99 and 0.98, respectively. The experimental
and theoretical jerk sensitivity (Sj) was found to be in excellent agreement with a ±2%
error and had a constant value of 0.05 ((deg/s)/(G/s)) for the excitation frequencies
below 40 (Hz). The sensitivity of the enhanced jerk sensor has reached five times the
sensitivity of the cantilever-based jerk sensor reported in [26], with a wider jerk measurable
range of 47,000 (m/s3). The sensor can be utilized in other applications that require direct
measurement of the force rate of change such as detection of discontinuities in signals
during low cyclic fatigue testing.
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