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Abstract: Molecular conformational changes in the collapsing and reswelling processes occurring
during the phase transition at the lower critical solution temperature (LCST) of the polymer are not
well understood. In this study, we characterized the conformational change of Poly(oligo(Ethylene
Glycol) Methyl Ether Methacrylate)-144 (POEGMA-144) synthesized on silica nanoparticles using
Raman spectroscopy and zeta potential measurements. Changes in distinct Raman peaks associated
with the oligo(Ethylene Glycol) (OEG) side chains (1023, 1320, and 1499 cm−1) with respect to the
methyl methacrylate (MMA) backbone (1608 cm−1) were observed and investigated under increasing
and decreasing temperature profiles (34 ◦C to 50 ◦C) to evaluate the polymer collapse and reswelling
around its LCST (42 ◦C). In contrast to the zeta potential measurements that monitor the change in
surface charges as a whole during the phase transition, Raman spectroscopy provided more detailed
information on vibrational modes of individual molecular moieties of the polymer in responding to
the conformational change.

Keywords: Raman spectroscopy; thermoresponsive polymer; conformational change; nanoparticles

1. Introduction

Recent advances in polymer nanoscience have led to the development of thermore-
sponsive polymers with the potential for a multitude of biomedical applications. These
types of polymers fall within a special category of “smart” nanotechnology that can be
tuned by several means of external stimulation, such as temperature, pH, ionic concen-
tration, and irradiation. Smart polymers have been extensively utilized in numerous
biomedical applications, such as drug delivery, hydrogels, and scaffolds supporting cell
growth [1,2]. Within the class of thermoresponsive–smart polymers, self-healing polymers,
such as Poly(oligo(Ethylene Glycol) Methyl Ether Methacrylate), i.e., POEGMA brushes,
have shown significant promise in nano-biosensing and modulated drug delivery [3,4].
POEGMA brushes are composed of a polymerizable methyl methacrylate (MMA) back-
bone, with non-linear, oligo- poly(Ethylene Glycol) (PEG)-analogue (OEG) side chains
(Figure 1). When POEGMA is in aqueous conditions at room temperature, the OEG side
chains are hydrophilic and in an expanded state; however, once the local temperature rises
beyond a side chain’s molecular-weight-dependent critical temperature, termed as the
lower critical solution temperature (LCST), the OEG group undergoes a conformational
change, collapsing in towards the MMA backbone [5,6]. This conformational change results
in a phase transition that creates a new hydrophobic condition of the polymer and can be
further exploited in nanoparticle–polymer conjugates [7,8]. Unlike other thermoresponsive
polymers, such as Poly(N-isopropylacrylamide) (PNIPAM), that undergo a similar phase
transition but do not recover to their original state after cooling, POEGMA has the unique
ability to repetitively collapse and reswell when heated and cooled across its LCST [9–11].
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cooled across its LCST [9–11]. 

 
Figure 1. Polymerization scheme for POEGMA-144. (A) OEGMA monomer that is composed of a 
polymerizable MMA backbone (pink) and a non-linear PEG-analogue side chain (blue): Carbon 
(black), Hydrogen (grey), and Oxygen (red). (B) POEGMA polymer capped with Bromine (blue) 
following ATRP polymerization. 

Although the bulk conformational change of POEGMA brushes have been previ-
ously characterized by our group via a photonic crystal biosensor, as well as by other 
groups with mechanisms such as atomic force microscopy (AFM) and quartz crystal mi-
crobalance dissipation (QCM-D) [3,5–7,12], the corresponding molecular change associ-
ated with the conformational change is still poorly understood. Given that POEGMA’s 
conformation and hydrophilicity is dependent on temperature, a comprehensive chemical 
characterization of this conformational change in the hydrated condition is imperative for 
further applications in nanosensing and polymeric–nano conjugates for drug delivery. 
Studies have been reported to explore the molecular characteristics of the polymers 
through nuclear magnetic resonance (NMR) and Fourier-transform infrared (FT-IR) spec-
troscopy [13,14]. In addition, as Raman spectroscopy requires minimal sample prepara-
tion and is highly sensitive to both physical and chemical changes [15], it is expected to 
serve as an ideal tool for comprehensive studies of molecular behavior under the confor-
mational change. 

Raman spectroscopy has previously been used to characterize several thermorespon-
sive polymers at their transition temperatures, including PNIPAM [11,16]; however, no 
such characterizations exist for the conformational change/phase transition of POEGMA, 
to the authors’ knowledge. Previous studies showed Raman spectroscopy being utilized 
to confirm the incorporation of silver nanoparticles into anti-fouling POEGMA brushes 
for analyzing enhanced antibacterial activities rather than for characterization of confor-
mational changes of the polymer itself [17,18]. In the study reported here, we synthesized 
POEGMA-144 brushes on silica nanoparticles (SNPs) and conducted Raman spectroscopy 
in a temperature range across its LCST to characterize the conformational collapse and 

Figure 1. Polymerization scheme for POEGMA-144. (A) OEGMA monomer that is composed of
a polymerizable MMA backbone (pink) and a non-linear PEG-analogue side chain (blue): Carbon
(black), Hydrogen (grey), and Oxygen (red). (B) POEGMA polymer capped with Bromine (blue)
following ATRP polymerization.

Although the bulk conformational change of POEGMA brushes have been previously
characterized by our group via a photonic crystal biosensor, as well as by other groups
with mechanisms such as atomic force microscopy (AFM) and quartz crystal microbalance
dissipation (QCM-D) [3,5–7,12], the corresponding molecular change associated with the
conformational change is still poorly understood. Given that POEGMA’s conformation and
hydrophilicity is dependent on temperature, a comprehensive chemical characterization of
this conformational change in the hydrated condition is imperative for further applications
in nanosensing and polymeric–nano conjugates for drug delivery. Studies have been
reported to explore the molecular characteristics of the polymers through nuclear magnetic
resonance (NMR) and Fourier-transform infrared (FT-IR) spectroscopy [13,14]. In addition,
as Raman spectroscopy requires minimal sample preparation and is highly sensitive to both
physical and chemical changes [15], it is expected to serve as an ideal tool for comprehensive
studies of molecular behavior under the conformational change.

Raman spectroscopy has previously been used to characterize several thermorespon-
sive polymers at their transition temperatures, including PNIPAM [11,16]; however, no
such characterizations exist for the conformational change/phase transition of POEGMA,
to the authors’ knowledge. Previous studies showed Raman spectroscopy being utilized
to confirm the incorporation of silver nanoparticles into anti-fouling POEGMA brushes
for analyzing enhanced antibacterial activities rather than for characterization of confor-
mational changes of the polymer itself [17,18]. In the study reported here, we synthesized
POEGMA-144 brushes on silica nanoparticles (SNPs) and conducted Raman spectroscopy
in a temperature range across its LCST to characterize the conformational collapse and
reswelling of POEGMA-144. Multiple observed Raman peaks showed different tempera-
ture dependence. This study revealed the changes in the vibrational modes of the molecular
moieties of POEGNA-144 during its phase transition.
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2. Materials and Methods

In this study, we synthesized POEGMA-144 grafted silica nanoparticles (SNPs)
(POEGMA@SNPs) and analyzed their thermoresponse behavior in the temperature range
from 34 ◦C to 50 ◦C. Raman spectroscopy was utilized to characterize the polymer collapse
about the theoretical LCST at 42 ◦C of POEGMA-144. Zeta potentials of the synthesized
POEGMA@SNPs were measured at temperatures below and above the LCST of POEGMA-
144. While both the Raman and zeta potential measurements showed clear evidence of
the polymer collapse above its LCST, they provided complementary information. The zeta
potential measurement reported the change in the particle surface charge property as a
whole, while the Raman spectroscopy provided more detailed information of the effects of
the phase transition on different moieties of the side chains and backbone of the polymer.

2.1. Materials

Silica nanoparticles were purchased from Skynanoparticles and used as received, with-
out additional purification. Trimethoxy-silylpropyl 2-Bromomethyl Propanoate (BPME)
ATRP Initiator, Copper(I) Chloride, and 2-2′ Bipyridine (Bpy) were purchased from TCI
America and used as received. Oligo(Ethylene Glycol) Methyl Ether Methacrylate) OEGMA-
144 monomer was purchased from Sigma and purified via inhibitor removal column
(SIGMA 306312).

2.2. BPME Initiator Assembly onto SNPs

BPME was used as an Atom Transfer Radical Polymerization (ATRP) initiator for
POEGMA brush grafting from the SNPs. BPME was chosen for its α- and ω-terminals
of trimethoxy silane and 2-Bromo-2-methylpropanoate, respectively. The α-terminal is
responsible for polymer attachment to a specific substrate, silica in this case, while the
ω-terminal is responsible for donating a free radical during polymerization to extend the
polymer chain of POEGMA. The BPME immobilization procedure of silanization (Scheme 1)
was adopted from a previously reported protocol [6]. Briefly, a 2 mg/mL aqueous solution
of SNP was exposed to Ultra Violet Light-C (UVC light) (700 mA) for 1 min to activate
surface hydroxyl groups on the SNPs. Next, BPME was introduced dropwise to the SNP
solution to a final concentration of 5.66 mM and allowed to react for 16 h under gentle
stirring. After this time, the Trimethoxy-silane α-terminal of the BPME initiator was bound
to the surface of the SNPs to form BPME@SNP. Excess initiator was removed from the
sample by a double wash in methanol via centrifugation (8500× g × 20 min).
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Scheme 1. Assembly scheme for conjugations of POEGMA@SNPs. The initiator BPME is attached to
SNPs via silanization, followed by ATRP of POEGMA-144.

2.3. Surface-Initiated Atom Transfer Radical Polymerization of POEGMA-144

POEGMA-144 polymer brushes were synthesized from the BPME initiator via Surface-
Initiated Atom Transfer Radical Polymerization (SI-ATRP) in this polymerization reaction
based on a previously described protocol [12]. Briefly, 1.99 mg of copper (I) chloride
(Cu(I)Cl) was combined with 6.36 mg of Bpy and purged under a constant stream of N2
for 1 h. Simultaneously, POEGMA-144 monomer was added to a final concentration of
1.55 M, with 2 mL of Methanol (MeOH) and BPME@SNPs and purged with N2 for 1 h.
Once purged, the two reactive containers were combined with a stir bar to form a dark
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brown yet translucent monomer solution that reacted for 30 min while spinning at 70 rpm
and continuous nitrogen purging. The solution was then sealed and allowed to further
react for 24 h.

Upon completion of the polymerization, the solution turned a bright blue color indi-
cating oxidation of the Cu(I)Cl species and completion of the reaction. The synthesized
POEGMA@SNPs were then purified of unused reactants by centrifugation 4× g in MeOH
and 2× g in deionized water. The POEGMA@SNPs (Scheme 1) were finally resuspended in
DI water and stored for characterization.

2.4. Instruments for Characterization of POEGMA@SNPs

A JOEL JEM-ARM 200F transmission electron microscope (TEM) was used to im-
age POEGMA@SNPs. Zeta potentials were measured with a Zetasizer Nano ZS system
(Malvern Instruments Ltd., Malvern, UK). Raman spectra were obtained using a Horiba
LabRAM HR Evolution-confocal Raman spectroscopy system. Temperature control was
achieved by use of an ITC-106RH Inkbird PID Thermostat controller.

2.5. Preparation for Raman Spectroscopy and Thermal Heating Apparatus

Samples were prepared for Raman spectroscopy via centrifugation and removal of
the supernatant, leaving a highly concentrated pellet that was resuspended in 50 µL DI
water. The samples were then loaded into a heating apparatus and affixed to the translation
stage of the Raman system. For the temperature-dependent study, 30 µL silicon wells
with Raman-inert, conductive aluminum bottom surface was connected to a proportional–
integral–derivative (PID) controller that remotely controlled the local temperature of the
sample. A thermal probe was attached to the top of the heating block to monitor the
samples temperature in real time and create a feedback loop to control the heating rate.

2.6. Raman Characterization of POEGMA-144 Conformational Change at LCST

A continuous laser beam was focused to a spot size of ~7.5 µm in diameter to the
bottom of the 30 µL well through a 10X objective (NA = 0.25, 154 mW) with an excitation
wavelength of 532 nm. Ten Raman spectra with a 3 s acquisition time were taken between
200–4000 cm−1. Raman scans were taken at increasing and decreasing temperatures
between 34–50 ◦C at 2 ◦C steps. The experiment was conducted in triplicate.

2.7. Raman Spectral Processing

The 200–2000 cm−1 range was extracted from entire spectra, and background fluores-
cence was removed using a 5th-order polynomial baseline. Then, spectra were processed
with a 2nd-order Savitzky–Golay (S-G) algorithm with window size of 20 to smooth the
spectra by fitting a polynomial curve to the spectral data within a set window size.

2.8. Selection of Raman Peaks Characteristic to POEGMA-144 Conformational Change at LCST

OEGMA macromers can be broken down into two easily definable subsections
(Figure 1). First, the backbone consists of an MMA monomer that continuously prop-
agates during polymerization via free radicals. The second section of OEGMA consists of
a tunable, non-linear PEG analogue that varies in molecular weight (and length) on the
basis of applications. This is the subsection that is expected to undergo a conformational
change and is primarily responsible for the phase transition at the LCST. Transition tem-
peratures increase with side chain length/molecular weight. Characteristic Raman peaks
of polymethyl methacrylate (PMMA) and PEG have been used to identify subsections of
POEGMA; however, much of the polymer is composed of CH2 and CH3 sections, making
clear identification of peaks a non-trivial task [11,17,19–21]. In this study, relative changes in
distinct peaks associated with OEG side chains (1023, 1320, and 1499 cm−1) with respect to
MMA backbone (1608 cm−1) were evaluated. Observed spectrum assignments were based
on previous studies of POEGMA [21] and its derivatives (PEG [22] and PMMA [23,24]).
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Polymer collapse and reswelling were characterized via linear-corrected integrated
area (IA) ratios of the OEG side chains/MMA backbone (1035 cm−1/1608 cm−1,
1323 cm−1/1608 cm−1, etc.) at every temperature tested. The linear corrected IA were cal-
culated and utilized to minimize the effects due to variance in sample fluorescence. As the
1608 cm−1 peak corresponded to the sp2 hybridization of carbon and was a property unique
to the backbone of POEGMA [25], it was used as the normalization factor. Temperature
profiles for each IA ratio were generated for comparisons.

2.9. Statistical Analysis

For zeta potential measurements, one-tailed paired t-tests were conducted to validate
polymerization and to assess statistical significance of polymer collapse once heated over its
LCST. The Raman spectroscopy measurements were conducted in three rounds, allowing
us to take an average at each temperature and calculate the standard errors. A percent
reduction was calculated for the 1023 cm−1, 1320 cm−1, and 1499 cm−1 peaks normalized
to the 1608 cm−1 peak from the backbone below and above the LCST temperature. The
values were obtained and analyzed for both the heating and cooling phases.

3. Results and Discussion
3.1. Characterization of POEGMA@SNPs with Zeta Potential Measurements

The SI-ATRP process of POEGMA grafting from the SNPs allows for a highly control-
lable polymerization rate and uniform coating on the grafting substrate [26–29]. The silica
atom transfer radical polymerization (SI-ATRP) process is illustrated in Figure 2A. The
result from the zeta potential measurements confirmed the successful grafting of POEGMA
on SNPs (Figure 2B), while Figure 2C shows the TEM image of POEGMA@SNP network.
The zeta potential of POEGMA@SNPs was measured as −21.5 mV, which was changed
from a zeta potential of −25.5 mV for bare silica nanoparticles in an aqueous solution. This
shift in zeta potential confirmed the presence of POEGMA on the surface of the SNPs.
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Figure 2. Characterization of POEGMA@SNPs. (A) The synthesis process for grafting POEGMA from
SNPs. (B) Different zeta potentials of uncoated SNPs and POEGMA@SNPs, signifying a successful
coating. Changes in zeta potentials of POEGMA@SNPs at the temperatures below and above its
LCST were also observed. (C) TEM image of POEGMA@SNP network.
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The zeta potential of POEGMA@SNPs was measured at 25 ◦C and 45 ◦C as represen-
tative temperatures below and above the LCST, respectively. After heating the sample to
45 ◦C beyond the LCST (42 ◦C for POEGMA-144), a shift in the zeta potential was observed
from −21.5 mV to −19.5 mV (p = 0.0341 based on a one-tail statistical t-test). The change in
the zeta potential may have been attributed to the inherent change in steric hindrance of
the polymer as the phase transitioned from hydrophilic to hydrophobic for the side chains
of POEGMA. The change in the zeta potential was relatively small, which may have been
limited by the short side chain length (OEGMA-144 monomer) used in this study. It was
to be expected that with longer side chains (e.g., OEGMA-300, or OEGMA-2000), a larger
difference in zeta potential would be seen during the phase transition, as there would be a
larger difference in steric hinderance between the side chains. Nevertheless, the change
in the zeta potential observed here below and above the LCST indicated the POEGMA
collapse due to the phase transition.

3.2. Determination of Characteristic Raman Peaks of POEGMA@SNPs

The primary range of interest was determined to be 1000–1800 cm−1. Initial Raman
scans of POEGMA@SNPs displayed five characteristic peaks that could be associated with
POEGMA, as the Raman signal from the pure SNPs as a control did not show significant
peaks compared with the Raman signal strength from POEGMA@SNPs within this spec-
tral range. The characteristic peaks 1035 cm−1, 1323 cm−1, 1499 cm−1, 1575 cm−1, and
1608 cm−1 are shown in Figure 3. As the broad water signal in the 1500–1700 cm−1 range
overwhelmed the 1575 cm−1 CH peak signal, it was not further investigated; instead, we
focused on the other four peaks.
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Figure 3. Averaged representative Raman spectra of an aqueous solution of POEGMA@SNPs at
34 ◦C (blue) and 50 ◦C (red), respectively. Changes with the peaks at 1035 cm−1, 1323 cm−1, and
1499 cm−1 normalized to the 1608 cm−1 backbone peak were apparent above and below the LCST.
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The integrated area (IA) under the curve of the characteristic peaks of 1035 cm−1,
1323 cm−1, and 1499 cm−1 were normalized to that of the 1608 cm−1 peak. The reason
for choosing the 1608 cm−1 peak for the normalization was because this peak could be
assigned to the sp2 hybridization of carbon, which is a property unique to the backbone of
POEGMA that is not expected to vary with the temperature [25].

3.3. Raman Detection of Conformational Change

Raman spectroscopy detects vibrational modes of molecular bonds; thus, the change in
Raman signals can be associated with specific types of molecular interactions. POEGMA@SNPs
displayed several characteristic peaks that were analyzed to determine the Raman signal as
a function of temperature to investigate the conformational change of the polymer due to
the phase transition. With the peaks at 1035 cm−1, 1323 cm−1, and 1499 cm−1 normalized
to the 1608 cm−1 backbone peak, we found visible changes in the IA ratio as a function of
the temperature (Figure 4). POEGMA@SNPs were measured over a range of increasing
and decreasing temperatures to observe the collapse and reswelling of the polymer. For
the heating process, all the three IA ratios for the 1035 cm−1, 1323 cm−1, and 1499 cm−1

peaks increased slowly with increasing temperature before reaching the LCST (42 ◦C). A
clear drop of the IA ratio was observed around the LCST, as indicated with a green line in
Figure 4. After the temperature passed the LCST, the IA ratio began to decrease gradually
with an increase in the temperature, in sharp contrast to the behavior in the temperature
range below the LCST. The change in the temperature dependence of the Raman signals
indicated the phase transition of POEGMA. Since POEGMA brushes went through a con-
formational change at the LCST, the brushes curled towards the carbon backbone [5,6,16].
The side chain changed into hydrophobic from hydrophilic when the temperature was
above the LCST. This phase transition resulted in the changing hydrogen bonding between
the side chain and the surrounding water molecules, which may have been responsible for
the observed changes in the Raman signals from different vibrational modes of individual
molecular moieties of the side chain when the temperature passes the LCST. In addition,
Figure 4 also shows the IA ratios in the cooling process. It can be seen that the Raman
signals recovered when the sample was cooled below its LCST. This experimental finding
indicated that the polymer collapse during the heating phase above its LCST was reversible
in the cooling phase below its LCST, signaling a reswelling of the polymer.

Previous studies of the phase transition of various types of POEGMA and copoly-
merized OEGMAs have been reported in detail with different techniques, such as QCM-
D, FT-IR, differential scanning calorimetry (DSC), dynamic light scattering (DLS), and
ultraviolet–visible spectroscopy (UV-vis). Piechocki and Kozanecki characterized the FT-IR
vibrational modes of several lengths of POEGMA side chains in hydrogels as a function
of the hydration state [30]. Additionally, Ramírez-Jiménez et al. investigated the effects
of copolymerizing OEGMAs with various side chain lengths on cloud point and glass
transition temperatures via UV-vis spectroscopy and DSC, respectively [31]. Lutz et al.
also explored the thermal behavior of P(MEO2MA-co-OEGMA) hydrogels via DLS and
turbidimetry [32]. The results presented in this study further the knowledge associated
with POEGMA on the individual molecular moieties associated with the phase transition
at the LCST. Our results are also in consistence with a recent report that investigated the
conformational change of POEGMA using a QCM-D [6]. POEGMA brushes grafted from
the surface of a QCM-D sensor showed the reversible phase transition nature of the coating.
The QCM-D technique detected the conformational change on the basis of monitoring the
dissipation factor that is primarily related to the viscoelasticity of the sample [33]. In con-
trast, Raman spectroscopy allows the study of the dynamic thermoresponse of individual
molecular moieties of the polymer, thus reporting a different aspect of the phase transition
of POEGMA for the temperature crossing its LCST.
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Figure 4. Ratios of integrated areas (IA) of different Raman peaks from the side chains over the
1608 cm−1 peak from the backbone of the POEGMA. (A) IA ratio of 1023 cm−1/1608 cm−1, (B) IA
ratio of 1320 cm−1/1608 cm−1, and (C) IA ratio of 1499 cm−1/1608 cm−1 peaks measured at different
temperatures. The Raman spectroscopy measurements were conducted in both heating (red) and
cooling (blue) processes. The drop of the IA ratio around the LCST is marked in green.

4. Conclusions

This paper reports the study of thermoresponsive POEGMA grafting from SNPs via
Raman spectroscopy. The temperature dependence of multiple Raman peaks correspond-
ing to different molecular moieties of the polymer was obtained and analyzed, which
clearly indicated a phase transition of POEGMA at its LCST. In addition, zeta potential
measurements were conducted to detect the change in surface charges of the synthesized
POEGMA@SNPs at temperatures below and above the LCST of POEGMA-144, which also
showed a phase transition in agreement with the results from the Raman spectroscopy.
This study demonstrated the possibility of utilizing Raman spectroscopy for characterizing
the thermoresponsive properties of POEGMA in detail for designing future applications
that require molecular specificities. This study also gave rise to the need to specifically
identify the Raman peak assignments of the subregions of both the polymerizable MMA
backbone and the non-linear PEG analogue side chains found within POEGMA-144 and
its derivatives.
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