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Abstract: Colorimetric characterization is the basis of color information management in color imaging
systems. In this paper, we propose a colorimetric characterization method based on kernel partial least
squares (KPLS) for color imaging systems. This method takes the kernel function expansion of the
three-channel response values (RGB) in the device-dependent space of the imaging system as input
feature vectors, and CIE-1931 XYZ as output vectors. We first establish a KPLS color-characterization
model for color imaging systems. Then we determine the hyperparameters based on nested cross
validation and grid search; a color space transformation model is realized. The proposed model is
validated with experiments. The CIELAB, CIELUV and CIEDE2000 color differences are used as
evaluation metrics. The results of the nested cross validation test for the ColorChecker SG chart
show that the proposed model is superior to the weighted nonlinear regression model and the neural
network model. The method proposed in this paper has good prediction accuracy.

Keywords: color imaging system; colorimetric characterization; color space conversion; partial
least squares

1. Introduction

Color imaging systems have been widely used in industrial manufacturing, medicine,
geology exploration, art and other fields. Color characterization [1–3] is an important
means to evaluate the color characteristics of color imaging systems; it establishes the
transformation relationship between the device-dependent RGB color space and the device-
independent color space of the color imaging systems, and realizes the color consistency
from color information acquisition to color information output [4]. Colorimetric charac-
terization is very important for image high-fidelity display, colorimetric measurement,
color reproduction, color analysis, color management of different devices [5] and color
appearance prediction [6], and the requirements for the accuracy and stability of color
characterization are increasing for different applications. Color analysis [7–10] plays a
very important role in the evaluation of the performance of many technologies including
paper-based devices that use colorimetric reactions and that researchers have used with
respect to different color spaces such as weighted RGB, greyscale, etc.

According to international standards, color characterization can be generally divided
into two categories: spectral response-based and target color-based characterization meth-
ods [11–13]. The spectral response-based characterization method is to find out the rela-
tionship between the spectral response and the CIE color-matching function under the
condition of knowing the three-channel spectral response of the color imaging system, and
establish the transformation relationship between the device-dependent RGB color space
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and the device-independent CIEXYZ color space [14]. However, measurement for the three-
channel spectral response of the imaging system not only requires special experimental
equipment and measurement equipment, but also requires professional measurement meth-
ods [15]. Monochromators and radiometers are among the measurement equipment used,
and experts are required to manage the operation in the laboratory [16]; the operation is dif-
ficult for general device users. The advantage is that if the spectral response is known, the
tristimulus values of objects under any known spectral conditions of a light source can be
predicted, and the estimation methods of camera spectral response characteristics are also
constantly explored [17]. The target color-based color-characterization method establishes
the mapping relationship between the input and output color spaces based on samples,
including interpolation methods, regression models, etc. The method has low requirements
for experiments and is widely used in practice. In the early stages of color characterization,
interpolation methods were widely used [18]. One of the common color-characterization
methods at that time was the three-dimensional lookup table method [19,20]. Based on
different regression models, common target color-based color-characterization methods
include least squares polynomial regression method [21,22], neural network [23–27], sup-
port vector machine [28], etc.; from the perspective of input features of the model, these
methods can also incorporate different feature-selection and optimization techniques. RGB
cross-polynomial features have been widely used in color measurement, information man-
agement and color correction for their high conversion accuracy and low computational
cost [29–33]. Essentially, this is a technique that uses the nonlinearity of input features to
perform dimensionality increase. In addition to polynomial expansion, other kernel-based
increasing dimension techniques also need further exploration in the field of colorimetric
characterization. There are many research methods based on the ordinary least squares
method with RGB cross-polynomial dimensionality increase. In 2000, Hong et al. proposed
a polynomial regression method [34], which uses different combinations of multiple in-
puts of R, G and B cross-terms. In 2007, Bianco proposed a pattern search optimization
algorithm [35] to study the conversion from RGB to CIEXYZ space. It uses pattern search
optimization of the least squares method for 3× 3 RGB to XYZ conversion. Meanwhile,
for the problems of medium color spectral reflectance reconstruction and training sample
validity in color measurement, various improved algorithms of the ordinary least squares
method have also been applied in different studies. In terms of color spectral reconstruction,
in 2010, Shen et al. proposed that the partial least squares regression (PLS) method can
also be used to build a regression model based on the correlation between response values
and spectral reflectance [36]. In 2013, Heikkinen et al. proposed a kernel ridge regression
(KRR) method for spectral reflectance [37]. Essentially, KRR is a method that nonlinearly
transforms low-dimensional camera responses to high-dimensional feature space; and it
performs regularized least squares regression on the reflectance data in the feature space.
In 2019, Xiao et al. proposed a new method for spectral reflectance reconstruction based
on kernel partial least squares regression (KPLS) [38]. The problem of colorimetric charac-
terization is different from that of color spectral reflectance reconstruction. Although the
spectral reflectance of the object surface is a high-resolution expression of the object color,
the spectral reflectance of the object surface needs to be combined with the light source
to show the color information. And the spectral reflectance of the object surface cannot
be directly used for colorimetric characterization and color space conversion; meanwhile,
this method uses RMSE for parameter tuning without considering visual color difference,
and cannot accurately optimize model parameters for visual color difference. In terms of
training sample validity, in 2018, Amiri et al. proposed a weighted nonlinear regression
method (WT-NONLIN), which enables commercial digital RGB cameras to be used for
spectral and colorimetric color reproduction [39].

The accuracy of color space conversion is constrained by the regression model, the
training samples and the feature extraction. The effectiveness of feature extraction is the
key to improving the accuracy. We propose a new method for colorimetric characterization
of color imaging systems based on KPLS. The method establishes the mapping relationship
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between the three-channel response kernel function of the color imaging system and the
CIE1931 tristimulus values. Through canonical correlation analysis, the direction vector
with the strongest correlation between input and output is determined. Based on different
direction vectors, a multivariate nonlinear regression model is established. The method
considers the relevance between the input vector and the output vector; this method can
promote predictive ability when a feature vector is selected. It can effectively solve the
multicollinearity problem caused by kernel function expansion, and eliminate irrelevant
input variables. It makes the model more concise and stable. It is proved that this method
is an effective colorimetric characterization method by using two nested cross-validation.

2. Theory and Method
2.1. Colorimetric Characterization of Color Imaging System Based on KPLS

The basic idea of the colorimetric characterization method for a color imaging system
is to establish the mapping relationship between the device-dependent space RGB and
the device-independent space XYZ, so as to realize the transformation model from RGB to
XYZ. In order to obtain the colorimetric characterization mapping from RGB to XYZ, it is
usually necessary to use a standard color chart as a measurement sample, and measure its
three-channel response values and tristimulus values at the same time, so as to obtain a
series of calibration data pairs of XYZ and RGB. In this study, the KPLS method is used for
modeling research. Firstly, the RGB dataset is expanded via the kernel function, then the
dataset is divided. Next, the PLS regression model is trained. Finally, using color difference
as evaluation indicators, the trained model is used to predict on the test set and evaluate
the performance of the algorithm. The colorimetric characterization method based on KPLS
proposed in this paper is shown in Figure 1.
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2.2. Kernel Expansion of the RGB Color Value

A series of data pairs of (R, G, B) and (X, Y, Z) are obtained by simultaneously mea-
suring the three-channel response values and the three-stimulus values. The input matrix
N =

(
nij
)

m×3 and the output matrix U =
(
uij
)

m×3 are composed of m groups of data,
where ni = (Ri, Gi, Bi), i = 1 · · ·m, ui = (Xi, Yi, Zi), i = 1 · · ·m. In order to deal with the
nonlinear characteristics between variables, we use a nonlinear mapping function ∅ to
map the input matrix to the input matrix P in the high-dimensional feature space. That is,(

nij
)
→ ∅

(
nij
)

. The matrix after dimensionality reduction is shown in Equation (1).

P = [∅(n1),∅(n2), · · · ,∅(nm)]
T (1)

where ∅() denotes the basis function.
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Since the dimension of ∅ can be arbitrarily large or even infinite, we usually define
the following kernel matrix K to avoid explicitly using ∅

K = PPT (2)

where the element ki,j of the ith row and jth column of K is

ki,j =
〈
∅(ni)

T ,∅
(
nj
)〉

= fker
(
ni, nj

)
(3)

where 〈 〉 denotes the inner product operation, and fker is the kernel function. In this paper,
we use three kernel functions, which are polynomial kernel, root polynomial kernel and
Gaussian kernel, to perform dimensionality enhancement; these kernel functions are shown
in Equations (4)–(6)

fker−P

(
nT

i , nj

)
=

d

∑
s=0

d!
s!(d− s)!

((
nT

i , nj

)s
+ s

s−1

∑
t=1

(
nT

i , nj
)t

t!
+ 1

)
(4)

fker−R

(
nT

i , nj

)
=

d

∑
s=0

d!
s!(d− s)!

((
nT

i , nj

)s
+ s

s−1

∑
t=1

(
nT

i , nj
)t

t!
+ 1

)1/s

(5)

fker−G

(
nT

i , nj

)
=

exp
(
−
∥∥ni − nj

∥∥)2

2σ2 , i, j ∈ m (6)

2.3. Color Space Conversion Based on KPLS

To enhance the accuracy of the conversion model between the source color space (RGB)
and the target color space (XYZ), we use a kernel function to expand the feature vector
for regression. Taking into account the correlation among the expanded feature vectors,
we apply the PLS method. PLS regression is related to principal component regression.
However, instead of finding a hyperplane of maximum variance between the response and
independent variables, it finds a linear regression model by projecting both the predicted
and observed variables to a new space. First, the data are normalized. E0 =

((
nij − nj

)
/Snj

)
m×m

F0 =
((

uij − uj
)
/Suj

)
m×3

(7)

P is normalized to E0, and U is normalized to F0. To consider the correlation between
the input and output vectors, we decomposed them and modeled the two direction vectors
with the highest correlation [40]. The first component u1 is extracted from the independent
variable matrix E0, and the first component t1 of the dependent variable matrix F0 is ex-
tracted. Namely, t1 = E0w1, where w1 is the direction vector. Because E0 is the normalized
matrix, w1 is the unit vector. It denotes the direction of the first axis in decomposition of
E0. That is, wT

1 w1 = 1. Similarly, u1 = F0c1. The objective function can be described as in
Equation (8)

max
w1,c1
〈E0w1, F0t1〉, s.t

{
wT

1 w1 = 1
cT

1 c1 = 1
(8)

Using the Lagrange multiplier method to solve, we obtain w1 and c1. Then we can
obtain the components t1=E0w1 and u1 = F0c1. Then, we find the regression equations of
E0 and F0 with respect to t1, respectively.

E0 = t1hT
1 + E1 (9)

F0 = t1rT
1 + F1 (10)



Sensors 2023, 23, 5706 5 of 18

where E1 and F1 are the residual matrices of two regression equations, and the regression
coefficient vectors are

h1 =
ET

0 t1

‖t1‖2 (11)

r1 =
FT

0 t1

‖t1‖2 (12)

To meet the accuracy requirement, we continued to search for the second pair of
direction vectors with the highest correlation. The residual matrices E1 and F1 replace
E0 and F0. We find the second directions of the axis w2, c2 from E1 and F1, and then we
obtained the second components t2, u2. Continuing this calculation, if the mathematical
rank of P is a, then Equations (13) and (14) can be eventually obtained

E0 = hT
a t1 + hT

a t2 + · · ·hT
a ta, (13)

F0 = rT
a t1 + rT

a t2 + · · · rT
a ta + F, (14)

where h1, h2 · · ·ha, r1, r2 · · · ra are the regression coefficient.
t1, t2 · · · ta can be expressed as a linear combination of the vectors of the standardized

vector. Based on Equation (14), we can obtain the regression form as follows

F0 = r1E0w∗1 + · · ·+ raE0w∗a + F (15)

where w∗a =
h−1
∏
j=1

(
I −wjhj

)
wa, I is the unit matrix. Then we can obtain

F∗ = ∑
j
λ∗

j
x∗j + F (16)

where λ∗j = ∑
a

raw∗aj. Finally, following the standardized inverse process, the regression

equation of F∗ is reduced to the regression equation of P to U.
The color space conversion algorithm based on KPLS is shown in Figure 2.
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2.4. Evaluation Metrics

We chose three different color difference formulas according to different application
domains to evaluate our model. CIEDE2000 is a widely used color difference formula that
considers the needs of different fields [41]. CIELAB color space can better describe the
psychological effects of object colors, and it is suitable for materials such as dyes, pigments
and inks when the color difference is larger than the visual recognition threshold but smaller
than the color difference between adjacent colors in the Munsell system [42,43]. CIELUV
is also a relatively perceptually uniform color space, and it is suitable for applications of
spectral colors and color vision. The CIELUV color difference formula performs better
than other methods when predicting the color difference of illumination stimuli, especially
when using a black background [44–46]. We used CIELAB, CIELUV and CIEDE2000 color
differences to evaluate the generalization ability and prediction accuracy of the KPLS
model [47–49].

3. Experiment
3.1. Experimental Scheme

To validate the proposed model, we first constructed a dataset using the RGB and
XYZ values of the color samples. To verify the colorimetric characterization accuracy of
the model proposed in this paper, we further divided the dataset into training and testing
sets. We trained different colorimetric characterization models based on the training set,
and evaluated these models based on the testing set. Finally, we compared the colorimetric
characterization effects of different models. The experimental scheme is shown in Figure 3.
The color samples used in the experiment are selected from the internationally common
ColorChecker SG color chart (X-Rite, Grand Rapids, MN, USA); a D65 light booth (Data-
color, Lawrenceville, GA, USA) was used as the light source. A PR715 spectroradiometer
(Photo Research, Syracuse, NY, USA) was used to measure the tristimulus values (CIE XYZ)
of 96 non-neutral color patches in the SG color chart. A Canon EOS 1000D was used in
manual operation mode. Its resolution was 3888 × 2592 (22.2 mm × 14.8 mm), the ISO was
800 and the F number was 10. When obtaining the color block image, RAW format image
was used to capture RGB values. A total of 96 pairs of data were obtained in the experiment,
and we divided the 96-group dataset into training and testing sets in accordance with
ten-fold cross-validation.
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The measured sample dataset is shown in Figure 4. Figure 4a,b show the sample
distribution, and Figure 4c,d show the chromaticity distribution.
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3.2. Correlation Analysis of Input and Output Vectors

The input vector is the kernel function expansion of RGB. Therefore, there is multi-
collinearity among input feature variables. The Variance Inflation Factor (VIF) represents
the magnification of model parameter estimation variances between non-collinearity and
multi-collinearity. It can be calculated with Equation (17)

Vj =
(

1− R2
j

)−1
(17)

where Vj represents VIF corresponding to jth variable; R2
j is the complex measuring

coefficient of regression between dependent variables xj and other independent variables
xi. The VIF of the input feature variables is shown in Figure 5. If it is more than 100 times
larger than that of non-collinearity, the confidence interval is too wide, and the significance
test is not credible. Those results reflect the severe collinearity of the R, G and B kernel
function expansion.
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The correlation between input and output vectors directly affects the accuracy of the
regression model; therefore, we analyze the RGB kernel function expansion and its correla-
tion with X, Y and Z. The absolute value of the correlation coefficient reflects the degree
of correlation. When the absolute values of the correlation coefficient are greater than 0.6,
that means high correlation between the two vectors. The Pearson correlation coefficients
between each term and X, Y and Z are shown in Figures 6, 7 and 8a–c, respectively. We can
see that the input vectors are highly correlated with X, Y and Z, respectively. Moreover, we
applied principal component analysis (PCA) to reduce the multicollinearity among terms
of input vectors. The VIF of each component after PCA is approximately 1. The Pearson
correlation coefficients between each component after PCA and X, Y and Z are shown in
Figures 6, 7 and 8d–f, respectively. There is only one component whose absolute value of the
correlation coefficient is greater than 0.6. It suggests that most principal components have
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a low correlation with X, Y and Z. As shown in Figures 5–8, RGB kernel function expansion
has a high degree of information overlap and low information validity. It represents high
multicollinearity, which affects the accuracy of parameter estimation and the robustness of
the model. Although PCA can eliminate collinearity, it also reduces the correlation with the
dependent variable.
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Figure 6. The correlation between XYZ and the polynomial kernel function expansion of RGB:
(a) Correlation between X and features; (b) Correlation between Y and features; (c) Correlation
between Z and features; (d) Correlation between X and features after principal component analysis;
(e) Correlation between Y and features after principal component analysis; (f) Correlation between Z
and features after principal component analysis.
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Correlation between X and features; (b) Correlation between Y and features; (c) Correlation between
Z and features; (d) Correlation between X and features after principal component analysis; (e)
Correlation between Y and features after principal component analysis; (f) Correlation between Z
and features after principal component analysis.
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Correlation between X and features; (b) Correlation between Y and features; (c) Correlation between
Z and features; (d) Correlation between X and features after principal component analysis; (e)
Correlation between Y and features after principal component analysis; (f) Correlation between Z
and features after principal component analysis.

3.3. Hyperparameter Selection

In this paper, we perform kernel expansion on the input features of the KPLS model
using the polynomial kernel function, the Gaussian kernel function and the root polynomial
kernel function. We optimize and evaluate their hyperparameters. The hyperparameters
include the order of the polynomial, σ which represents the width parameter of the radial
basis function and the numbers of components of the PLS model. Unlike the traditional
k-fold cross-validation method, we use a nested cross-validation method to select the
optimal hyperparameters and evaluate the performance of the model at the same time. We
perform two-layer cross-validation. First, we split the training set and test set. Then we split
each training set into training set and validation set. The validation set is used for model
hyperparameter selection, and the test set is used for accuracy evaluation. The 10-fold
cross-validation procedure for model hyperparameter optimization is nested inside the
10-fold cross-validation procedure for accuracy evaluation. The inner loop cross-validation
applies grid search to find the optimal hyperparameters within the preset parameter range,
so as to minimize the average CIEDE2000 color difference on the validation set; then we
use this set of optimal hyperparameters to evaluate the model performance on the test set
in the outer loop. Finally, we obtain the CIELAB, CIELUV and CIEDE2000 color differences
on the test set. Table 1 shows the optimal hyperparameter combinations selected via the
KPLS model based on polynomial kernel expansion, Gaussian kernel and root polynomial
kernel expansion in ten training sets. Figure 9 shows the change in CIEDE2000 color
difference on the test set under different hyperparameter combinations on the first training
set. Figure 10 shows the correlation coefficients between the dependent variable and
independent variable obtained via the KPLS model based on polynomial kernel expansion,
Gaussian kernel expansion and root polynomial kernel function expansion, respectively.
It can be seen that the KPLS model effectively eliminates the problem of multicollinearity
between independent variables.
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Table 1. The Hyperparameter optimization results of KPLS model in cross-validation.

The Series
of Fold

P-Kernel G-Kernel RP-Kernel

Order Components DE2000 σ Components DE2000 Order Components DE2000

1 3 17 0.862 176 21 0.863 3 8 0.752
2 3 18 0.895 285 22 0.858 3 8 0.756
3 3 17 0.897 196 21 0.880 3 8 0.742
4 3 18 0.947 400 20 0.940 5 11 0.759
5 3 17 0.941 267 22 0.896 5 12 0.764
6 3 17 0.794 236 23 0.882 5 8 0.769
7 4 18 0.825 230 22 0.773 3 8 0.670
8 3 18 0.838 226 22 0.749 3 9 0.699
9 3 18 0.898 225 22 0.861 5 11 0.720

10 4 17 0.840 245 23 0.738 5 8 0.707
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Figure 9. Color difference of CIEDE2000 based on KPLS model under different hyperparameter
combinations: (a) Based on polynomial kernel function expansion; (b) Based on Gaussian kernel
function expansion; (c) Based on root polynomial kernel function expansion.
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3.4. Experimental Results of This Paper

To assess the performance of the KPLS model in colorimetric characterization, we use
three different color difference formulas—CIEDE2000, CIELAB and CIELUV—to calculate
the average color difference on the test set in the outer loop. We collect the test set data
from each fold of the cross-validation. We obtain a regression analysis of 96 pairs of actual
and predicted data. Figures 11–13 show the regression results of the KPLS model based
on polynomial kernel expansion, Gaussian kernel expansion and root polynomial kernel
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expansion on the test set in the 10-fold cross-validation. Table 2 gives the average color
difference of the model prediction on the test set of each fold.
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3.5. Comparison with Other Methods

Polynomial regression model [21,22] and neural network model [23–27] are used
in colorimetric characterization methods commonly. We compare the KPLS model with
the weighted nonlinear polynomial regression model, neural network model and root
polynomial regression model [32]. The comparison results are shown in Figures 14 and 15.
MLP represents the neural network model. In the MLP model, the hidden layer is 10, the
learning rate is 0.1 and the learning target is 0.00001. WT-NONLIN_1, WT-NONLIN_2,
WT-NONLIN_3 and WT-NONLIN_4 represent the weighted regression model which uses
four different formulae for calculating the distance here [39]. RP-OLS represents the root
polynomial regression model. We choose 3 as the degree of the polynomial. The same
dataset is used in this experiment. After dividing the dataset by nested cross-validation,
color differences predicted by each model are compared. In Figure 14, the ten test sets
are collected together. There are 96 samples. We compare the average color differences
of different models under the same sample. In Figure 15, we compare the average color
differences of different models of each fold test set. The CIELAB, CIELUV and CIEDE2000
color differences of the test set are calculated and compared. The experimental results are
shown in Table 3. Table 3 shows the average color difference of the model prediction on the
test set of each fold with different algorithms.
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Table 3. The average color difference of different algorithms.

Model
CIELAB

Color
Difference

CIELUV
Color

Difference

CIEDE2000
Color

Difference

KPLS P-kernel 1.5447 1.3335 0.8356
KPLS G-kernel 1.4779 1.3372 0.8631
KPLS RP-kernel 1.3836 1.2643 0.7598

RP-OLS [32] 1.4221 1.2933 0.7775
MLP 4.052 4.4166 2.8895

WT-NONLIN formula 1 [39] 1.7977 1.5839 1.0207
WT-NONLIN formula 2 [39] 1.7272 1.5343 0.9858
WT-NONLIN formula 3 [39] 1.7242 1.5429 0.9799
WT-NONLIN formula 4 [39] 1.5878 1.4017 0.8847

4. Discussion

We observed a large color difference point in the colorimetric characterization results
of the KPLS model and the weighted nonlinear polynomial regression model. This point
is the 60th pair of data, corresponding to the 6th fold of the ten-fold data. The sample
distribution of the training and test sets for this group of data are shown in Figure 16. The
red points are the training set; the blue points are the test set, and the blue square point is
the 60th pair of data. We can see that these data are far away from the training set samples
in the test set. They belong to the extrapolation prediction of the model. They exhibit a
large difference in comparison with the data in the training set, so we cannot accurately
predict them. Therefore, how to increase the coverage range of the color gamut of the
training dataset or improve the accuracy of the model to enhance the prediction ability of
the extrapolation points is the next research direction.
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5. Conclusions

This paper studies a colorimetric characterization method for color imaging systems
based on KPLS. The method uses device-dependent RGB space as input features and
expands the feature vectors with kernel functions. According to feature analysis and canon-
ical correlation analysis, a KPLS colorimetric characterization model for color imaging
systems is established. The hyperparameters of the model are determined via nested
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cross-validation and grid search, and the color space conversion model is constructed. The
experimental verification is carried out by using a Canon 1000D commercial digital camera
to shoot the SG color card, and CIELAB, CIELUV, CIEDE2000 color differences are used for
evaluation. The results show that the color difference of the KPLS colorimetric characteriza-
tion model based on root polynomial function expansion is better than that of the weighted
nonlinear regression model, the neural network model and the root polynomial regression
model. The colorimetric characterization method for color imaging systems based on KPLS
is an effective method with good prediction accuracy and nonlinear fitting ability, which
can support the cross-media color management of color imaging systems well.

Author Contributions: Conceptualization, N.L. and Q.L.; methodology, S.Z. and X.X.; software, S.Z.,
Z.F. and L.L.; validation, S.Z. and X.X.; writing—original draft, S.Z. and X.X.; writing—review and
editing, S.Z. and X.X. All authors have read and agreed to the published version of the manuscript.

Funding: National Natural Science Foundation of China (Nos. 61975012).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available on request
from the corresponding author.

Acknowledgments: We are particularly grateful to the reviewers for their rigor and erudition. The
proposal of the root kernel function in this paper was inspired by the reviewer.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mou, T.; Shen, H. Colorimetric characterization of imaging device by total color difference minimization. J. Zhejiang Univ. Sci. A

2006, 7, 1041–1045. [CrossRef]
2. Ma, Y.; Liu, H.; Liu, X. A research on the color characterization of digital camera. J. Beijing Inst. Graph. Commun. 2006, 14, 9–12.
3. Zhang, X. Study of Color Reproduction Theory and Method for Digital Image; Zhejiang University: Hangzhou, China, 2010.
4. Fu, S.; Cui, C.; Zhang, R. Colorimetric characterization modeling software for digital imaging device. Opto. Electron. Eng. 2010,

37, 88–92.
5. Green, P. Color Management: Understanding and Using ICC Profiles; Wiley: Hoboken, NJ, USA, 2010; pp. 20–34.
6. Danny, C.R. Publication CIE 159: A colour appearance model for colour management systems: CIECAM02. Color Res. Appl. 2006,

31, 156–159.
7. Charbaji, A.; Heidari-Bafroui, H.; Rahmani, N.; Anagnostopoulos, C.; Faghri, M. Colorimetric Determination of Nitrate after

Reduction to Nitrite in a Paper-Based Dip Strip. Chem. Proc. 2021, 5, 9.
8. Berlina, A.N.; Ragozina, M.Y.; Komova, N.S.; Serebrennikova, K.V.; Zherdev, A.V.; Dzantiev, B.B. Development of Lateral Flow

Test-System for the Immunoassay of Dibutyl Phthalate in Natural Waters. Biosensors 2022, 12, 1002. [CrossRef]
9. Kim, J.-H.; Lee, Y.-J.; Ahn, Y.-J.; Kim, M.; Lee, G.-J. In situ detection of hydrogen sulfide in 3D-cultured, live prostate cancer cells

using a paper-integrated analytical device. Chemosensors 2022, 10, 27. [CrossRef]
10. Pomili, T.; Gatto, F.; Pompa, P.P. A Lateral Flow Device for Point-of-Care Detection of Doxorubicin. Biosensors 2022, 12, 896.

[CrossRef] [PubMed]
11. ISO 17321-1:2012; Graphic Technology and Photography-Colour Characterisation of Digital Still Cameras (DSCs)—Part 1: Stimuli,

Metrology, and Test Procedures. International Organization for Standardization: Geneva, Switzerland, 5 November 2012.
12. ISO 17321-1:2012; Graphic Technology and Photography-Colour Characterization of Digital Still Cameras (DSCs)—Part 2:

Methods for Determining Transforms from Raw Dsc to Scene-Referred. International Organization for Standardization: Geneva,
Switzerland, 12 October 2012.

13. IEC 61966-9:200; Colour Measurement and Management-Multimedia Systems and Equipment-Part 9: Digital Cameras. Interna-
tional Electrotechnical Commission: Geneva, Switzerland, November 2003.

14. Verdu, F.M.; Pujol, J.; Capilla, P. Calculation of the color matching functions of digital cameras from their complete spectral
sensitivities. J. Imaging Sci. Technol. 2002, 46, 15–25. [CrossRef]

15. Chouikha, M.B.; Placais, B.; Pouleau, G. Benefits and drawbacks of two methods for characterizing digital cameras. In Proceedings
of the IS&T CGIV 2006 3rd European Conference on Colour in Graphics, Imaging, and Vision, Leeds, UK, 19–22 June 2006; Society
for Imaging Science and Technology: Springfield, VA, USA, 2006; pp. 185–188.

https://doi.org/10.1631/jzus.2006.A1041
https://doi.org/10.3390/bios12111002
https://doi.org/10.3390/chemosensors10010027
https://doi.org/10.3390/bios12100896
https://www.ncbi.nlm.nih.gov/pubmed/36291033
https://doi.org/10.2352/J.ImagingSci.Technol.2002.46.1.art00004


Sensors 2023, 23, 5706 17 of 18

16. Lee, S.H.; Choi, J.S. Design and implementation of color correction system for images captured by digital camera. IEEE Trans.
Consum. Electron. 2008, 54, 268–276. [CrossRef]

17. Rump, M.; Zinke, A.; Klein, R. Practical spectral characterization of trichromatic cameras. ACM Trans. Graph. 2011, 30, 170.
[CrossRef]

18. Hung, P.C. Colorimetric calibration in electronic imaging devices using a look-up-table model and interpolations. J. Electron.
Imaging 1993, 2, 53–61. [CrossRef]

19. Balasubramanian, R. Reducing the cost of look up table based color transformations. J. Imaging Sci. Technol. 2000, 44, 321–327.
[CrossRef]

20. Johnson, T. Methods for characterizing colour scanners and digital cameras. Displays 1996, 16, 183–191. [CrossRef]
21. Rowlands, D.A. Color conversion matrices in digital cameras: A tutorial. Opt. Eng. 2020, 59, 110801. [CrossRef]
22. Jing, J.; Fang, S.; Shi, Z.; Xia, Q.; Li, Y. An efficient nonlinear polynomial color characterization method based on interrelations of

color spaces. Color Res. Appl. 2020, 45, 1023–1039.
23. Liu, Y.; Yu, H.; Shi, J. Camera characterization using back-propagation artificial neutral network based on Munsell system. Proc.

SPIE 2008, 6621, 66210A.
24. Li, Y.; Liao, N.; Li, H.; Lv, N.; Wu, W. Colorimetric characterization of the wide-color-gamut camera using the multilayer artificial

neural network. J. Opt. Soc. Am. 2023, 40, 629–636. [CrossRef] [PubMed]
25. Liu, L.; Xie, X.; Zhang, Y.; Cao, F.; Liang, J.; Liao, N. Colorimetric characterization of color imaging systems using a multi-input

PSO-BP neural network. Color Res. Appl. 2022, 47, 855–865. [CrossRef]
26. Miao, H.; Zhang, L. The color characteristic model based on optimized BP neural network. China Acad. Conf. Printing Packaging

2016, 369, 55–63.
27. Wang, P.; Chou, J.; Tseng, C. Colorimetric characterization of color image sensors based on convolutional neural network

modeling. Sens. Mater. 2019, 31, 1513–1522. [CrossRef]
28. Yang, B.; Chou, H.; Yang, T. Color reproduction method by support vector regression for color computer vision. Optik 2013, 124,

5649–5656. [CrossRef]
29. Gong, R.; Wang, Q.; Shao, X.; Liu, J.J. A color calibration method between different digital cameras. Optik 2016, 127, 3281–3285.

[CrossRef]
30. Wu, X.; Fang, J.; Xu, H.; Wang, Z. High dynamic range image reconstruction in device-independent color space based on camera

colorimetric characterization. Optik 2017, 140, 776–785. [CrossRef]
31. Molada-Tebar, A.; Lerma, J.L.; Marques-Mateu, Á. Camera characterization for improving color archaeological documentation.

Color Res. Appl. 2018, 43, 47–57.
32. Finlayson, G.; Mackiewicz, M.; Hurlbert, A. Color correction using root-polynomial regression. IEEE Trans. Image Process. 2015,

24, 1460–1470. [CrossRef]
33. Yamakabe, R.; Monno, Y.; Tanaka, M. Tunable color correction for noisy images. J. Electron. Imaging 2020, 29, 033012. [CrossRef]
34. Hong, G.; Luo, M.; Rhodes, P.A. A study of digital camera colorimetric characterization based on polynomial modeling. Color Res.

Appl. 2015, 26, 76–84. [CrossRef]
35. Bianco, S.; Gasparini, F.; Russo, A.; Schettini, R. A new method for RGB to XYZ transformation based on pattern search

optimization. IEEE Trans. Consum. Electron. 2007, 53, 1020–1028. [CrossRef]
36. Shen, H.; Wan, H.; Zhang, Z. Estimating reflectance from multispectral camera responses based on partial least-squares regression.

J. Electron. Imaging 2010, 19, 020501. [CrossRef]
37. Heikkinen, V.; Mirhashemi, A.; Alho, J. Link functions and matérn kernel in the estimation of reflectance spectra from rgb

responses. J. Opt. Soc. Am. A 2013, 30, 2444–2454. [CrossRef] [PubMed]
38. Xiao, G.; Wan, X.; Wang, L.; Liu, S. Reflectance spectra reconstruction from trichromatic camera based on kernel partial least

square method. Opt. Express 2019, 27. [CrossRef] [PubMed]
39. Amiri, M.M.; Fairchild, M.D. A strategy toward spectral and colorimetric color reproduction using ordinary digital cameras.

Color Res. Appl. 2018, 43, 675–684. [CrossRef]
40. Abdi, H.; Williams, L.J. Partial least squares methods: Partial least squares correlation and partial least square regression. In

Computational Toxicology: Volume II; Springer: Berlin/Heidelberg, Germany, 2013; pp. 549–579.
41. Georgoula, M. Assessing colour differences of lighting stimuli using a visual display. PhD Thesis, University of Leeds, Leeds, UK, 2015.
42. Commission Internationale de l’Eclairage (CIE). Recommendations on Uniform Color Spaces—Color Difference Equations, Psychometric

Color Terms; CIE Publication: Vienna, Austria, 1978.
43. Liu, H.; Cui, G.; Huang, M. Color-difference threshold for printed images. Appl. Mech. Mater. 2013, 469, 236–239.
44. Luo, M.; Cui, G.; Georgoula, M. Colour difference evaluation for white light sources. Light Res. Technol. 2015, 47, 360–369.

[CrossRef]
45. Wen, S. P-46: A color space derived from CIELUV for display color management. SID Symp. Dig. Tech. Pap. 2012, 42, 1269–1272.

[CrossRef]
46. Schanda, J. CIE u′, v′uniform chromaticity scale diagram and CIELUV color space. In Encyclopedia of Color Science and Technology;

Luo, M.R., Ed.; Springer: Berlin/Heidelberg, Germany, 2015.
47. Hill, B.; Fw, V.; Roger, T. Comparative analysis of the quantization of color spaces on the basis of the CIELAB color difference

formula. ACM Trans. Graph. 1997, 16, 109–154. [CrossRef]

https://doi.org/10.1109/TCE.2008.4560085
https://doi.org/10.1145/2070781.2024204
https://doi.org/10.1117/12.132391
https://doi.org/10.2352/J.ImagingSci.Technol.2000.44.4.art00008
https://doi.org/10.1016/0141-9382(96)01012-8
https://doi.org/10.1117/1.OE.59.11.110801
https://doi.org/10.1364/JOSAA.481547
https://www.ncbi.nlm.nih.gov/pubmed/37133047
https://doi.org/10.1002/col.22772
https://doi.org/10.18494/SAM.2019.2271
https://doi.org/10.1016/j.ijleo.2013.04.036
https://doi.org/10.1016/j.ijleo.2015.12.003
https://doi.org/10.1016/j.ijleo.2017.05.016
https://doi.org/10.1109/TIP.2015.2405336
https://doi.org/10.1117/1.JEI.29.3.033012
https://doi.org/10.1002/1520-6378(200102)26:1&lt;76::AID-COL8&gt;3.0.CO;2-3
https://doi.org/10.1109/TCE.2007.4341581
https://doi.org/10.1117/1.3385782
https://doi.org/10.1364/JOSAA.30.002444
https://www.ncbi.nlm.nih.gov/pubmed/24322947
https://doi.org/10.1364/OE.27.034921
https://www.ncbi.nlm.nih.gov/pubmed/31878671
https://doi.org/10.1002/col.22231
https://doi.org/10.1177/1477153514539696
https://doi.org/10.1889/1.3621066
https://doi.org/10.1145/248210.248212


Sensors 2023, 23, 5706 18 of 18

48. Melgosa, M.; Trémeau, A.; Cui, G. Colour Difference Evaluation; Springer: Berlin/Heidelberg, Germany, 2013; pp. 59–77.
49. Zhang, X.; Qiang, W.; Li, J. Estimating spectral reflectance from camera responses based on CIE XYZ tristimulus values under

multi-illuminants. Color Res. Appl. 2017, 42, 68–75. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/col.22037

	Introduction 
	Theory and Method 
	Colorimetric Characterization of Color Imaging System Based on KPLS 
	Kernel Expansion of the RGB Color Value 
	Color Space Conversion Based on KPLS 
	Evaluation Metrics 

	Experiment 
	Experimental Scheme 
	Correlation Analysis of Input and Output Vectors 
	Hyperparameter Selection 
	Experimental Results of This Paper 
	Comparison with Other Methods 

	Discussion 
	Conclusions 
	References

