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Abstract: User location is becoming an increasingly common and important feature for a wide
range of services. Smartphone owners increasingly use location-based services, as service providers
add context-enhanced functionality such as car-driving routes, COVID-19 tracking, crowdedness
indicators, and suggestions for nearby points of interest. However, positioning a user indoors is
still problematic due to the fading of the radio signal caused by multipath and shadowing, where
both have complex dependencies on the indoor environment. Location fingerprinting is a common
positioning method where Radio Signal Strength (RSS) measurements are compared to a reference
database of previously stored RSS values. Due to the size of the reference databases, these are often
stored in the cloud. However, server-side positioning computations make preserving the user’s
privacy problematic. Given the assumption that a user does not want to communicate his/her
location, we pose the question of whether a passive system with client-side computations can
substitute fingerprinting-based systems, which commonly use active communication with a server.
We compared two passive indoor location systems based on multilateration and sensor fusion using
an Unscented Kalman Filter (UKF) with fingerprinting and show how these may provide accurate
indoor positioning without compromising the user’s privacy in a busy office environment

Keywords: BLE; fingerprinting; indoor positioning; multilateration; RSSI; privacy

1. Introduction

Indoor positioning of a user is somewhat of a holy grail within context-aware Internet
of Things (IoT) systems. While GNSS [1] allows for accurate outdoor positioning, as long as
we have a free Line of Sight (LoS) to GNSS satellites, locating a user indoors is still an open
research area. The most-common indoor method today is fingerprinting [2], i.e., where
a device compares recently collected signal strength values from various sources, such
as WiFi access points and beacons, using Bluetooth Low Energy (BLE), with a reference
database that is often kept in the cloud. Examples of vendors of such online databases are
Ekahau and Skyhook. This is a robust method because it does not require much adaption
or tuning as long as enough recorded data exist. Given the recent decrease in online
storage and deployment cost, this method works well when supported by large cloud
environments. However, it also comes with a significant loss of privacy for the end-user.
For instance, in cases where the user wants to store a favourite place or a landmark or
view his/her position on an indoor map, he/she needs to upload his/her current RSSI
fingerprint to a server. This is in contrast to being outdoors, as a GNSS receiver, such
as a mobile phone, passively listens to satellite communications and estimates the users’
location on the device. Consequently, the user’s privacy is preserved during outdoor GNSS
use, while fingerprinting for indoor use typically does not allow this as it relies on large
online databases of fingerprints.
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There are many different methods that attempt to solve the indoor positioning prob-
lem, such as magnetic fingerprinting, which relies on a pre-recorded database of magnetic
field measurements for an area [3,4], Pedestrian Dead Reckoning (PDR) [5], which uses
accelerometer and gyro measurements to estimate the path of a user, the angle-of-arrival,
where angular measurements based on the phase shift of signals from several beacons are
used to estimate the user location [6], and Time of Flight (ToF) [4] measurements, which are
often used within Ultra-Wideband (UWB) communication to estimate the distance between
the user and known beacons with high accuracy. Similarly, WiFi-RTT [7] measures the
round trip time to estimate the ToF. However, direct use of ToF measurements requires
bidirectional communication between the device and beacons both for UWB and WiFi-RTT,
although in the latter case, we are usually using access points supporting the Fine Time
Measurement (FTM) extension to IEEE 802.11-2018 [8]. To avoid bidirectional communi-
cation, one may use, e.g., the Downlink Time Difference of Arrival (DTDoA) [9], where
the device uses the time differences between received messages from nearby beacons to
estimate its location in a similar way to how most consumer GPS calculates time differences
between satellite signals. Still, such an approach also introduces new challenges, such as
the need for a time-synchronised beacon infrastructure.

The Angle of Arrival (AoA) [6] is a method where the phase difference of a signal
that hits an array antenna is used to estimate the angle between the beacon and locator.
In an AoA configuration, the mobile device would transmit a signal picked up by several
array antennas, thereby making it an active method. In another configuration, the Angle of
Departure (AoD), an array antenna sends a signal that is picked up by the device. Only the
AoD can be passive if we want the size of the mobile device to be kept reasonably small
due to the required size of the antenna array, but that introduces other requirements, such
as the time synchronisation of anchors, to avoid interference. Unfortunately, both the AoA
and AoD have only recently been added to the Bluetooth SIG specification, Version 5.1, and
are thereby not well supported in existing operating systems such as iOS or Android.

Multilateration [10] or trilateration are also methods that may be used for indoor posi-
tioning. They rely on the position of a device as calculated by using distance measurements
between the device and multiple landmarks, such as BLE beacons. The distance estimates
are either direct measurements of the distances or calculated from other measurements
such as the signal strength, as in [11]. This method only requires known landmark positions
to estimate the device location, making the data size several orders of magnitude smaller
than fingerprinting. This also avoids the time-consuming data collection of signal strength
values at the deployed location to build a reference database.

Methods that utilise signal strength measurements will be heavily affected by multi-
path and shadowing noise. Given that many methods utilise the 2.4 GHz frequency band,
i.e., WiFi and Bluetooth, the amount of multipath and shadowing are very much dependent
on the building, floor, and layout of the current room [12], since a large amount of the
transmitted energy is reflected from surfaces such as walls, ceilings, and furniture.

Sensor fusion combines position estimates with sensor data from an Inertial Mea-
surement Unit (IMU). The measurements from, e.g., MEMS gyroscopes are very accurate.
An IMU for wearables, such as the Bosch BMI270, has an angular measurement error of
±0.4 % and a bias of ±0.5 dps. These IMUs generally estimate a device’s pose in the short
term. However, they will accumulate bias over time, which needs to be mitigated. This
bias can be reduced by using the signal broadcast from stationary beacons. A family of
common sensor fusion methods is Kalman filters, such as the original Kalman filter [13], the
extended Kalman filter, and the unscented Kalman filter by [14]. Other approaches use a
particle filter [15] or a neural network combined with a Kalman filter [16]. Kalman filters are
state-space models, defined by a transition model xt+1 = Fxt + Gwt, where the new state
is estimated to be a linear transition operation from the previous state with an additional
noise term Gwt, and a measurement model Yt+1 = Hxt + vt, where the measurement
is a linear transform of the current state xk with an additional noise term vt. In indoor
navigation scenarios, the state usually includes the current x, y, and heading in the local
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coordinate system for the building, but may also include the first-order derivative of the
state, i.e., movement and turning speed. The next state is then predicted given sensor data
such as the IMU. Finally, the state is updated by comparing the predicted state with other
sensor measurements, such as distances to beacons nearby, and then correcting the current
state information. Particle filters also estimate the state of a system. However, instead
of applying a linear operation on a single state, the state is represented as a distribution
based on many particles. All particles have their own state estimate, and the next state is
predicted based on the current state. The observation at time t is used to weigh the particles’
likelihood, which is then resampled according to their probability. In general terms, the
particle filter allows the estimation of more complex distributions, such as multimodal
distributions, compared to Kalman filters, but at the cost of computational resources.

For some of the methods mentioned above, it is either needed or required to use
bidirectional communication with either other local devices or the server, thereby requiring
the device to transmit information. Suppose a person’s location data are available for a
third party, e.g., by letting a server compute the user location based on the RSSI values.
In that case, it can also be used to infer sensitive information such as a user’s health,
religion, gender, and sexual orientation [17], which may result in privacy violations, for
instance physical threats. Location data can also be used for the de-anonymisation of an
individual, as multiple locations can be combined into unique fingerprints. It has been
shown by DeMontjoye et al. [18] that location data are highly discriminative and as few as
four coarse location data points can identify 95% of the users. Considering the growing
number of personal data breaches over the last decade [19], where some breaches expose
billions of personal data records, there is an imminent need for methods that reduce the
amount of online data that can be used for de-anonymisation of users.

We identified a lack of literature focusing on comparative studies for passive posi-
tioning methods based on the same dataset and environment. This is also evident in the
article by Potortì et al. [20], where the EvAAL framework was introduced for evaluating
the accuracy of indoor positioning methods. This is the framework used by the yearly IPIN
competitions. However, there is a lack of BLE-based datasets for evaluation. Considering
that the majority of the papers published evaluate fingerprinting, multilateration, sensor
fusion, or a combination thereof, we wanted to see how fingerprinting and multilateration
compare with sensor fusion using the exact same dataset. The choice of the dataset is
important, as indoor positioning is quite complex and highly dependent on the exper-
imental setup, and results from one study are hard to compare directly to another. By
adequately evaluating the methods, especially by using data collected in an office during
busy hours, we contribute to the understanding of the potential to increase privacy by
shifting to completely passive methods under real-life conditions, which inherently have
lower privacy-invasive characteristics.

This paper investigated the tradeoffs between using a passive on-device approach ver-
sus an active online-based approach for indoor positioning. Throughout the paper, we refer
to communication as passive if it only listens to broadcasts and active, where bidirectional
communication is needed. We implemented fingerprinting, multilateration, and finally,
a sensor fusion model based on an Unscented Kalman Filter (UKF) and compared their
strengths and weaknesses on the same dataset.

Previous Work

Over the last decade, fingerprinting has become the dominant method for estimating
indoor positions. A large part of the research on indoor positioning is related to fingerprint-
ing methods. In order to quantify the amount of research performed using each method,
we used EBSCO [21] to search for papers that included the terms indoor and either position
or location in their title, abstract, or keywords. Then, we categorised the 3728 entries by
searching the metadata to identify if the paper should be associated with fingerprinting,
multilateration, ultra-wideband, machine learning, sensor fusion or other. The logic for the
associations follows Table 1, where the category is defined by the first match in the table.
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Table 1. Rules processed top down to assign categories. The asterisk * matches any metadata.

Metadata Related to Assigned Category

Fingerprinting and Multilateration Fingerprinting and Multilateration
Ultra-Wideband Ultra-Wideband
Multilateration Multilateration
Fingerprinting Fingerprinting

ML Machine Learning
Sensor Fusion Sensor Fusion

* Other

Care was taken to allow many different variants of spelling and naming, such as
“fingerprint”, “knn”, and “cluster” to be assigned to “fingerprinting”. We chose this
categorical classification because we wanted to see how many papers focused on both
fingerprinting and multilateration, as these are methods that can be applied to the exact
same measurements if we are using BLE beacons. If a paper did not address both, we
moved out all ultra-wideband-related articles to a separate category, as UWB usually is
based on either ToF or TDoA measurements or, sometimes, both. We prioritised labelling
multilateration and fingerprinting for the remaining articles before their machine-learning-
based approaches. The reason for this is that many machine learning approaches utilise
fingerprints, so these categories overlap, but if the paper utilised both fingerprints and
machine learning, we found it more suitable to assign the latter category. Finally, the sensor
fusion approach captured papers discussing particle filters, Kalman filters, sensor fusion,
and unscented Kalman filters.

For an overview of these technologies, Deak et al. [22] gave a survey on many different
indoor positioning approaches, including device-free methods that do not require the user
to carry an electronic device, while [23] focused on learning-based fingerprinting location
methods. Note that active and passive in [22] refer to whether the user carries an electronic
device or not. Deak et al. [24] gave a survey on smartphone-based methods, noting that
there is a lack of standardised procedures for positioning accuracy evaluation and that
real-life performance is usually significantly worse than the 1–2 m accuracy reported in
some studies. One of the reasons mentioned is that the experiments are often performed
in a small area filled with beacons. Duan et al. [25] relaxed this requirement and defined
passive as “application free” in their approach, where they located a user by measuring the
data rate between the user device and access points in a WiFi network. These definitions
differ from ours, where we define passive as whether the user device transmits data. Some
papers covered hybrid approaches between fingerprinting and multilateration, and these
were classified into separate categories. Figure 1 shows the distribution of articles per year,
and Table 2 shows the total. It is evident that fingerprinting is overwhelmingly dominant,
corresponding to 32% of the total amount of publications addressing indoor positioning.
However, fingerprinting databases are quite large, making it more convenient to store the
databases and run positioning calculations online, requiring clients to upload data such as
RSSI measurements.

Table 2. Number of published papers within indoor positioning 2006–2021.

Method # of Papers %

Fingerprinting 1177 32
Fingerprinting and Multilateration 116 3
Machine Learning 159 4
Multilateration 329 9
Other 727 20
Sensor Fusion 563 15
Ultra-Wideband 657 18

Total 3728
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Figure 1. Papers published related to indoor positioning.

One approach to overcome or reduce the privacy concern is to rely on dummy location
requests generated randomly within a certain distance from the user [26]. This hides the
actual user location for one location request. However, this approach is susceptible to side-
channel attacks when there are several requests, and the attacker has some side-channel
knowledge of the likelihood of the specific trajectory at each location [27].

Another approach is to apply cryptography to preserve the privacy of both the user
and the server. There have been attempts to use different encryption mechanisms to
enhance fingerprinting privacy, with [28] being one of the most-referenced. The cipher is
homomorphic in the Paillier crypto scheme, which enables computations such as addition
and subtractions on encrypted data without decrypting them first. In a positioning scenario,
the user device sends encrypted landmark fingerprint samples from his/her environment
to the server, which computes the distances between known landmarks in its database and
the encrypted fingerprints. The user device can then decrypt the result from the server to
determine the position. Paillier’s crypto scheme is used in the Privacy-preserving WiFi
Fingerprint Localisation scheme (PriWFL) by [29] and Lightweight Privacy-Preserving
Scheme (LWP) [30]. Li et al. focused on four types of attack patterns, as seen in Table 3.
However, Reference [31] published an attack on the PriWFL scheme, where specially crafted
messages sent to the server could reveal the whole landmark database. Overall, it is hard to
design a generic encryption scheme that thwarts all types of known and unknown attacks.
Consequently, published methods are usually narrow in scope, focusing on specific use
cases [32].

The scope of our study is limited to methods that use passive communication, thereby
eliminating the location privacy attacks given in Table 3, as no information is ever trans-
mitted from the user device. The secrecy of the server database was not considered in
this research as the database consists of only beacon IDs and their corresponding local x
and y locations in meters, and the beacons have no relation to other infrastructure in the
buildings.

Table 3. Attack types as described by [29].

Type of Attack

Location Privacy Attack I The attacker obtains client position directly from the query
Location Privacy Attack II The attacker infers client position from the client RSSI data
Data Privacy Attack I The attacker obtains the fingerprinting database from the server

Data Privacy Attack II The attacker obtains a fingerprinting database that is similar to
the one stored on the server
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2. Materials and Methods

To investigate the tradeoffs between using different passive, on-device approaches
for indoor positioning, we used two of the most-common methods, fingerprinting and
multilateration, as a baseline for BLE-RSSI-based positioning. These were then compared
with a passive sensor fusion method based on the BLE signal strength and inertial data
from a mobile device. One important aspect of our experiment was that the data collection
was performed in a busy office environment, representing actual, real-life conditions. The
2.4 GHz spectrum, where Bluetooth and WiFi are situated, is quite crowded, especially
during busy workdays in an office. In order to compare the methods, the measured beacon
data and device sensor data were collected once, and the three different methods were
subsequently applied offline. From a conceptual point of view, the processes of collecting
and using BLE or WiFi for fingerprinting are very similar. Both use the 2.4 GHz band and
can be captured with consumer devices such as mobile phones using the same antenna,
and we collected the signal strength at known locations. However, through the iBeacon [33]
protocol, BLE has additional information attached, such as the beacon ID and transmission
strength, which allows the client to estimate the distance based on the Received Signal
Strength Indicator (RSSI). In Table 4, we show an overview of the three methods configured
only to use passive communication.

An important difference between fingerprinting and multilateration is their sensitivity
regarding radio signal shadowing, where large objects such as walls or furniture can
considerably reduce the received signal strength. This may be a benefit when using
fingerprinting, as it increases the uniqueness of a specific location, making the signal
strength significantly different from other locations. For multilateration, shadowing is
problematic, as the most-used distance estimation formula, the log distance path loss
model (see Section 2.2), only has a single coefficient to adjust the path loss to a specific
environment. Sensor fusion can utilise, e.g., an IMU to stabilise the path, reducing the effect
of severe local shadowing.

Multipath fading, where the same broadcast signal interferes with itself, can increase
or decrease the received signal strength. However, if we are utilising a carrier frequency
of 2.4 GHz, the half wavelength is about λ/2 = 6.3 cm. This means that our received
signal strength can change considerably by moving the receiver 6 cm. Puccinelli and
Haenggi et al. [34] analysed multipath fading in sensor networks, but with a carrier fre-
quency of 433 MHz. Due to the nature of multipath fading, it is often modelled as noise
instead of creating very detailed local propagation models. Thus, in contrast to shadowing,
multipath fading is a problem for all three methods, although, as before, the stabilising
properties of sensor fusion reduce the effect.

Given the common use of WiFi RSSI fingerprinting, we note that BLE RSSI finger-
printing is very similar to WiFi fingerprinting. The main difference between WiFi access
points and BLE beacons is that the BLE beacons are usually more densely populated than
the WiFi access points. Lindemann et al. [32] published a study comparing the differences
in WiFi and BLE fingerprinting accuracy, concluding that the higher density of the BLE
beacons resulted in higher location accuracy. Sadowski and Spachos [35] concluded in
their experiment that they gained very little by using more than five beacons to estimate a
location using Non-Linear Least Squares (NLLS).

For this study, we assumed that beacon locations either exist in an online database or
that there is a fingerprinting database of RSSI values that can be distributed to the client
before running the indoor location algorithms on a device. It should be noted that this
method does not provide complete user anonymity. The user must download the beacon
location database, so his/her IP address will be revealed. This could be mitigated in several
ways, e.g., by preloading the data in the device, downloading the database through a
trusted proxy or Virtual Private Network (VPN), using encrypted peer-to-peer services
such as Tor, or by downloading many simultaneous location databases and, thereby, hiding
the actual location, among others. As this study was limited to establishing the location
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performance once the landmark database is known, we did not take such measures in our
experiments. A summary of the data use in the methods can be found in Table 4.

Table 4. Comparison between the three indoor positioning methods.

Sensor Fusion Multilateration Fingerprinting

Downloaded data Beacon positions Beacon positions
Fingerprinting
database

Uploaded data None None None

Sensor data collection
Accelerometer 3-axis @ 50 Hz
Gyroscope 3-axes @ 50 Hz
Magnetometer 3-axes @ 20 Hz

None None

On-device calculations Medium Medium Very low
Database size Small Small Large

2.1. Fingerprinting

Fingerprinting requires collecting RSSI data from many known locations within the
building, which is labour-intensive. A dense collection of fingerprints improves the location
accuracy, as our k-Nearest Neighbour (k-NN) algorithm [36] returns the sample with the
smallest Euclidean distance compared to the input fingerprint. Due to the magnitude of
data needed to achieve good location accuracy [37], the database is often stored online and
then queried to find the closest matches to the user-provided RSSI fingerprint. The data
storage requirements grow linearly with the amount of collected fingerprinting data, but it
may be reduced by calculating the mean or median value of the RSSI samples on a grid
applied to the ground truth locations. Then, the granularity of the grid and the number
of beacons decides the fingerprinting database size. In our case, we set the grid size to
1 × 1 m. We define the RSSI of a landmark as lt,i for time t and landmark ID i. The input
values, where X is a T by I matrix,

X =


l0,0 l0,1 · · · l0,I−1
l1,0 l1,1 · · · l1,I−1

...
... · · · · · ·

lT−1,0 lT−1,1 · · · lT−1,I−1

 (1)

and the target labels Y are a T by two matrix, containing the x and y locations of the
fingerprinting grid:

Y =


x0 y0
x1 y1
...

...
xT−1 yT−1

 (2)

where T is the number of time steps and I is the number of landmarks.
When calculating k-NN using the landmark matrix (1), we need to remove missing

values, as the KNeighboursRegressor cannot handle these. This can be performed in several
ways, such as deleting landmarks with missing values or imputations. In location scenarios,
most landmarks have missing values at some point, making the deletion of these landmarks
an inefficient strategy. The many missing values are caused partly by the low duty cycle
of the beacons of 1 Hz, making it likely to miss a broadcast due to interference, but it
can also be caused by beacons being too far away from the receiver. A higher sampling
frequency than 1 Hz in the receiver will result in more time windows with missing data.
The RSSI values were sampled in a grid using a median filter over a sliding time window
to impute missing values. If there were still missing values, these were imputed with a
constant RSSI; however, the size of the sliding time window and the imputed constant
RSSI need to be tuned. Localisation using the fingerprinting database was performed
by first locating the k closest matches in the database, based on the Euclidean distance
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with uniform weights, and then calculating the mean of the associated target labels, in
our case the x and y position of the cells in the grid. The method was implemented as
KNeighboursRegressor in Scikit-Learn [38].

2.2. Multilateration

Multilateration uses distance measurements between the device and known landmark
positions, such as beacons, to estimate the user’s location. In contrast to the extensive
data collection needed for fingerprinting, this approach only requires known landmark
positions. This is often performed using Gauss–Newton iteration to solve the non-linear
least squares equations that define the multilateration problem. However, as we lacked
direct distance measurements, we converted the RSSI measurements to true range estimates
as in [39] by applying the log-distance-path-loss model [40].

PL = PL0 + 10γ log10
d
d0

+ Xg (3)

where PL is the measured total path loss in dB, PL0 is the measured path loss at the
reference distance d0, γ is a path loss exponent, and Xg is a Gaussian random variable
with zero mean, representing fading of the signal. The variable Xg has a significant effect
on the estimated distance, and the standard deviation of the term is roughly 2–3 dB in
2.4 GHz channels [41,42], but heavily dependent on the environment. This can translate to
tens of meters in the calculated distance difference between consecutive readings between
stationary transmitters and receivers.

If we assume that PL0 is measured at 1 m and that our shadowing noise Xg is Gaussian
with zero mean, then d0 = 1. Solving for d gives us

d = 10
PL−PL0

10γ (4)

or, if we prefer to use RSSI values instead of path loss:

d = 10
RXd−RX0

10γ (5)

where RX0 and RXd are the measured signal strengths in dBm at one meter and d meters.
Once we had the estimated ranges, we estimated the position by optimising a cost

function using the Limited-memory Broyden–Fletcher–Goldfarb–Shannon Bound algo-
rithm (L-BFGS-B) [43], where the constraints are the physical dimensions of the room. We
define the vector Ut = [xt, yt] as an estimate of the current user position at time t and the
N × 2 matrix B as the known beacon positions:

B =


x0 y0
x1 y1
...

...
xN−1 yN−1

.

Finally, we define a measurement vector D, which is the set of collected RSSI values

converted to distances, D = 10
PL0−R

10γ , where R = [rssi0, rssi1, . . . , rssiN−1]. We define our
cost function c f (U, B, D) for the non-linear optimisation target as

arg min
U

c f (U, B, D) =
N−1

∑
i=0

(||Ui − Bi||2 − Di)

DiW
(6)

where W =
N−1

∑
i=0

1/Di (7)
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The cost function represents the difference between the estimated distance to beacons
using RSSI values and the estimated distance to beacons using the user location vector Ut.
The inverse of the distance measurement is used to weigh the values, as we have lower
confidence in measurements from beacons far away, as the amount of noise in the RSSI
measurements increases with distance.

2.3. Sensor Fusion

When there are multiple noisy sources of information, such as sensor readings, we
may apply sensor fusion to achieve a result that has less noise than each source separately.
The Kalman Filter (KF) and its variants, the Extended Kalman Filter (EKF) and Unscented
Kalman Filter (UKF), are common methods for sensor fusion. Whereas the Kalman filter
is an optimal linear estimator, the EKF and UKF allow non-linear functions representing
the predicted next state. The UKF allows the capture of higher-order moments than the
EKF and removes the need to calculate the Jacobian of the transfer function, as it relies on
sampling using the unscented transform instead. The approach used in this paper was
the same as the specific configuration in [44], where the beacon locations are known. The
unscented Kalman filter fuses sensor data by combining a Pedestrian Dead Reckoning
(PDR) algorithm based on inertial sensor data with RSSI measurements. The PDR was
used by Team Sony in IPIN 2018 [45]. In essence, Kalman-based sensor fusion consists of
cyclic prediction and update stages, where in this case, the PDR was used to estimate the
trajectory of the user to predict a new state, and then, the beacon distance measurements
were used to update the state.

This type of sensor fusion is more resilient to noisy data, as it continuously tracks the
user position. In contrast, multilateration and fingerprinting are memoryless in their basic
forms, making them more sensitive to outliers. This may often occur in indoor location
scenarios due to the very noisy nature of the received signal strength, especially if only a
small number of received RSSI values exist.

Filter Configuration

The initial state is defined as x0 = [x, y, θ] = [0, 0, 0], where the first two elements
represent our position and θ is the direction. As we have no information regarding the
starting position or direction, the matrix P, which represents the covariance of the state,
was set to

P =

1002 0 0
0 1002 0
0 0 π2


Our process noise was set to

Q =

0.02 0 0
0 0.02 0
0 0 π

4


An update with a single beacon measurement uses a measurement covariance matrix:

R =


d2

(
e

σ2

2η2 − 1

)
e

σ2

2η2 0

0
(

π
6
)2

,

where d is the estimated distance based on the log distance path loss Equation (4). The
signal strength measured at a certain location is affected by many factors, such as user
location, distance to the beacon, and how people are walking around, among many other
things. We used a single path propagation model and, thus, a single σ and η for the
whole experiment, knowing that this is a simplification of a complex environment. A more
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complex filter could be set up to not just track the user state, but also the location and
covariance of all beacons at the expense of more calculations and memory usage. This type
of configuration was used in [44] to locate beacons automatically.

If we assume the same σ and η, which represent environment noise and path loss for
all beacons, most of the expression can be replaced with a constant K, and we can simplify
the expression to

R =

[
d2K 0

0 (π
6 )

2

]
When there are N simultaneous beacon distance measurements d1 . . . dN , these can be

used in the update stage of the filter by configuring the measurement noise covariance as

R =


d2

1K · · · 0 0
· · · · · · 0 0
0 0 d2

NK 0
0 0 0 (π

6 )
2


In the UKF, certain parameters are needed for configuring the sigma points used in

the unscented transform. These parameters are kept to the same values as recommended
in [46], with κ = 0, β = 2, and α = 10−3.

2.4. Experimental Setup

Within an office environment, 12 × 72 m in size, we mounted 20 BLE beacons at 1.2 m
above the floor. These beacons had a broadcast frequency of 1 Hz, and the received signal
strength at 1 m was –65 dBm, i.e., PL0 = −65. Specifying the measured signal strength on
the receiver side at 1 m removes the need for modelling specific antenna coefficients on
both the transmitter and receiver, and this parameter is commonly named the TX power in
the iBeacon standard [33]. A constraint of 1 Hz in beacon advertising frequency is required
in scenarios where the infrastructure is supposed to be battery-powered for years, using
only a small coin battery, such as a CR2032. Increasing the advertising frequency to 10 Hz
would increase the accuracy [47], but at the expense of replacing all the batteries in the
beacons every few months. We sampled the BLE RSSI and IMU data using a Sony Xperia
8 Android phone running Android 9 and using a Qualcomm Snapdragon 630 chipset.
The data collection was performed by walking around in the environment for 22 min at
noon on 4 December 2020. This was a time when the office was fairly busy. The IMU data
consisted of accelerometer, gyroscope, and magnetic field measurements, i.e., 9 Degrees
of Freedom (DoF) were sampled at 50 Hz. Once the data collection was completed, the
results were offloaded and processed on a computer. The collected data were split into a
training and a testing dataset, where the first 18 min were used for training and the last
4 min for testing. As there was very little difference in time between the collected training
and testing datasets, we avoided the effect of slow-moving shifts in signal strength caused
by, e.g., the different amount of people at the office or rearranged furniture.

The window size for grouping measurements into feature vectors was set to 2 s, and
the imputed distance measurements required by fingerprinting were set to 10.5 m. This
distance equals an RSSI value of −106 dBm, which is below the receiver’s noise threshold
of approximately −105 dBm. The purpose was to impute values that were not captured,
with a distance just outside the noise threshold.

Multilateration requires at least 3 valid RSSI measurements from different beacons to
calculate a position. This is in contrast to fingerprinting, where we can estimate a location
from a single RSSI measurement that is matched against the fingerprinting database. To
enable the calculation of more locations using multilateration, we applied data aggregation
in 2 s time slices when running multilateration. No aggregation was performed for sensor
fusion or fingerprinting.
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Regarding human mobility in the area, about 25 people were working at their desks
within the experimental area, all utilising WiFi connections with their laptops and some
also using Bluetooth headphones, thereby occupying part of the bandwidth of the 2.4 GHz
spectrum shared with the BLE beacons.

Given these experiment conditions, the device cannot capture all advertised beacon
messages. This can be the result of several reasons, such as:

• The signal may be below the noise threshold of the receiver.
• Other units in the 2.4 GHz spectrum, such as other beacons, Bluetooth, or WiFi devices,

may interfere.
• The Bluetooth stack of the capturing device may be unable to process all broadcast

messages.

Boosting the TX power of beacons or the sensitivity of the receiving antenna would
possibly reduce the amount of missed BLE messages, but we did not conduct such experi-
ments as we used off-the-shelf hardware components. In our experience and based on the
manufacturer’s claim of range, this type of beacon typically has a range between 10 and
30 m, depending on the environment and receiver used.

As an approximation, we can use the path loss Equation (4), the provided TX of
−65 dBm, and an assumed environment constant γ = 2.8, i.e., we assumed the same path
loss constant as in [42], which, as we also did, placed both receiver and transmitters at
1.2 m height. We applied the path loss formula, but added the constraint −105 dBm as the
noise floor of the receiver:

105 > 65 + 10× 2.8 log10 d (8)

d / 27 (9)

Under these assumptions, beacons will not be heard at distances d ≈ 27 m or more,
due to the path loss. Considering that the total height of the map was roughly 70 m, we
should expect to only receive a fraction of the transmitted messages and almost never more
than 10 beacons at the same time. For the signal to reach 70 m in these conditions, our
signal strength would have to be boosted by B dB:

105 > (65− B) + 10× 2.8 log10 70 (10)

B ' 12 (11)

As WiFi shares the same 2.4 GHz antenna and receiver module as BLE, it was turned
off during the study. Otherwise, the communication methods were time slotted, reducing
the amount of time BLE had for scanning nearby beacons.

To study the effect of the missed captured messages, augmented RSSI measurements
were added to the dataset by drawing samples from the log-normal distribution Xg in
Equation (4).

The ground truth data of the x and y location of the user were collected simultaneously
by using the Microsoft HoloLens, as seen in Figure 2. This method of collecting the ground
truth gives a location error of less than 0.1 m. Other studies, e.g., by [48], estimated a
relative positioning error of 0.016 m using the HoloLens. These were used as the reference
data for fingerprinting and to estimate the positioning error when evaluating the methods.
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Figure 2. Ground truth using HoloLens.
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The variance of the Gaussian shadowing noise Xg was measured by placing a phone
on top of a table in the middle of a room, far away from the walls, to avoid multipath
propagation as much as possible. We had 707 BLE beacons available and used all these to
calculate the variance of the RSSIs. Even though all beacons were not in the exact same spot,
the shadowing noise parameter Xg that we wanted to estimate was not distance-dependent;
thus, we used the pooled variance:

s2 =
∑k

i=1(ni − 1)s2
i

∑k
i=1(ni − 1)

(12)

where s2
i is the RSSI variance for the ith beacon and ni is the number of samples for the ith

beacon. Using Equation (12), the estimated shadowing noise was Xg = N (0, 20.5).
While collecting data in the experiment, the user was always moving without any

movement or turning speed restrictions. The movement and turning speed were continu-
ously estimated by the PDR and UKF. This problem was more challenging than a stationary
user, but provided a more realistic scenario. Even though a stationary user may move
his/her hands and arms, it would require very specific motions to make the PDR detect this
as a walking pattern, so a stationary user moving his/her arms is not as much of a problem
as a walking user that simultaneously is moving his/her arms and hands unrelated to the
actual walking motion. An added difficulty comes from the beacons only broadcasting once
per second, which means the user will have moved quite far between the RSSI readings.
The user had slightly different restrictions while collecting the training and testing data.
When collecting the training data, the user was not allowed to enter the two horizontal
corridors, while he/she was allowed to do so when collecting the testing data. This was to
simulate a scenario where most, but not all, of the area was covered by the training data,
which we deemed more realistic than having 100% coverage, especially if we consider
larger installations.

The data were split into a training and testing dataset, where the first 4/5 of the data
collected were used as the training data and the last 1/5 as the testing data. We ran the
k-NN using k = 14. Processing was performed in Python 3 [49] and supporting packages
such as Pandas [50], Numpy [51], Scikit-Learn [38], and Matplotlib [52]. The UKF and PDR
are proprietary implementations in Rust [53] and C [54].

3. Results

Fingerprinting was, as mentioned in Section 2.4, implemented by a k-NN classifier,
which was trained on 80 % of the dataset and then split by timestamps. There was no
information added to the k-NN classifier regarding the beacon locations, and it was purely
based on the sampled RSSI values and the ground truth of the user position, defined by the
HoloLens data capture. Given that the beacons broadcast their iBeacon messages with only
a 1 Hz frequency, there were only a few samples to use for querying the database unless
we aggregated the RSSI values over several seconds. This made the fingerprinting method
sensitive to outliers in the test data, even if the training data were thoroughly collected.

In this experiment, there were 2933 raw RSSI samples available as training data. We
note that this represents only a fraction of the broadcast messages, which we estimated to be
≈26,400 during the time frame. In other experiments, we saw that the mobile phone used in
this particular experiment was unable to process more than 5–10 BLE messages per second,
compared to other models that seem to be able to capture above 100 messages per second.
We attributed the differences to the processing capabilities and Bluetooth stack running in
mobile phones. Given the saturation of the number of processed messages, adding more
beacons to the environment would likely not improve the accuracy of the system, which is
in line with previous studies [35,55], where the authors in independent experiments saw
little increased positional accuracy if the number of BLE beacons that could be sampled at a
given time exceeded 6–8 beacons. To evaluate the possible accuracy improvement given a
more capable Bluetooth stack, the augmented dataset added measurements with the same
noise characteristics as the already collected data; see Section 3.1.
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After aggregation into two-second time windows for multilateration, there were still
1537 samples recorded in the database. This reduction was mainly caused by replacing
multiple RSSI values from a single beacon with the mean RSSI value. Multilateration only
requires a list of beacon IDs, their position, and an estimate of γ. No such aggregation was
necessary for sensor fusion or fingerprinting.

The accuracy of multilateration is slightly higher than fingerprinting using k-NN, as
we see in the Empirical Cumulative Distribution Functions (ECDFs) in Figure 3. At 80%
confidence, the errors of fingerprinting were less than 5.1 m, while the multilateration
errors were less than 4.4 m at the same confidence level. Although fingerprinting had
similar accuracy to multilateration, the method requires substantially more effort to collect
and store data. Of particular relevance is that the sensor fusion approach using UKF+PDR
outperformed both methods by a large margin, with an 80 % confidence of 2.2 m.
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Figure 3. CDF of the positioning errors in meters.

3.1. Data Augmentation

We suspect that the inability of the mobile device to process all BLE transmissions had a
great effect on the positioning accuracy. To study the effect of data starvation, we augmented
the dataset by adding simulated RSSI measurements with the same amount of noise as
the already collected data. The effect of the data starvation is apparent in Table 5, when
we compare the positioning methods with and without augmented data. The augmented
dataset represents a perfect environment where all BLE messages are received as long as
the beacons are close enough to the receiver. In the collected dataset, all beacons were
missing data at some point. In the augmented dataset, for each missing RSSI value, another
RSSI was simulated instead unless the simulated RSSI was lower than −105 dBm, which
was below the receiver’s sensitivity in the device and, consequently, treated as missing
data. The augmented data improved the multilateration and fingerprinting datasets with
an 80% CDF of 4.4→ 2.7 m and 5.1→ 3.0 m, respectively.

However, even when augmenting the data, neither multilateration nor fingerprinting
surpassed the accuracy of the sensor fusion that only used the sampled data; see Table 5.
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Table 5. Location errors in m at CDF = 50% and CDF = 80%.

Augmented
No Yes

Method CDF50 CDF80 CDF50 CDF80

UKF + PDR 1.58 2.23 - -
Multilateration 3.03 4.37 1.64 2.71
Fingerprinting 3.19 5.09 1.82 3.04

4. Discussion

In this paper, we set out to address some design considerations in an indoor position
system. The presently dominating and robust approach of fingerprinting requires little
adaption or tuning if there is enough recorded data, but has implications in terms of
end-user privacy. Given the sensitive nature of location data, comparing fingerprinting
accuracy with the alternative methods of multilateration and sensor fusion that handle data
differently to infer the user location becomes relevant. Although all can technically run on
an embedded device, the fingerprinting method in practice often uses online databases and
computation. This is because fingerprinting databases tend to become larger than what is
suitable for embedded devices, as the databases may span tens or hundreds of MBs. An
example is the UjiIndoorLoc [56] dataset of 42 MB, which was used in the indoor positioning
competition at IPIN 2015 [57]. In comparison, a beacon database used for multilateration
for the same location would require less than 10 kB. The accuracy that fingerprinting can
deliver thus comes at implied costs that may be too great for many embedded devices
in context-aware IoT systems. The result is that fingerprinting systems often use active
communication with a server that computes the location from fingerprinting data, such as
Skyhook [58], Google Geolocation API [59], and Combain [60].

We still recognise that one argument for using fingerprinting instead of multilateration
is that the positioning accuracy is often higher in such systems, as exemplified by [61]. One
explanation for this is that the measured fingerprints include the distortions of the beacon
signals at that specific location. In contrast, ranging-based methods, such as multilateration,
are parametric with only a rough approximation of the signal propagation conditions.
However, fingerprinting requires the sampled fingerprints to cover all possible locations.
In our experiment, some parts of the test data were collected outside the path included
in the training data. As a result, that part of the test path was completely void of any
estimates needed for accurate fingerprinting results, as seen in Figure 4, where a small
part of the ground truth was collected in two of the corridors at the far left of the map. In
the conditions of our experiment, with infrequent beacon advertisements similar to how
environments in practice are likely to be set up to preserve beacon lifespan, multilateration
had similar accuracy as fingerprinting while only requiring the reference positions of the
beacons instead of a complete database of fingerprints. When considering practical impact
in realistic scenarios, multilateration may, thus, be a more suitable approach as it does not
have the same privacy concerns.

If it is possible, given the device capabilities and constraints, to continuously sample
the accelerometer and gyroscopic data together with the RSSI measurements, sensor fusion
is a viable approach, as shown in the studies by [62,63]. Sensor fusion requires the same
beacon database as multilateration uses, i.e., only beacon locations are needed, resulting
in modest database sizes. When we used an unscented Kalman filter to combine PDR
with the RSSI measurements, it was highly effective at compensating the sparse beacon
advertisements and achieved higher accuracy than fingerprinting and multilateration.
While using only the collected data, without augmentation, the sensor fusion method was
still more accurate than both the augmented variant of multilateration and fingerprinting.
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Figure 4. Estimated user positions. (A) UKF + PDR, (B) multilateration, (C) multilateration + augmenta-
tion, (D) fingerprinting, and (E) fingerprinting + augmentation. Ground truth is the red path and the
blue circles are the estimated positions.

In other words, for privacy-aware users that do not want to share their location,
all three methods can technically be run on-device to calculate user position. However,
whereas fingerprinting is easy to implement, it requires substantial amounts of stored
reference data covering most, if not all, possible locations. In contrast, multilateration and
sensor fusion only require known beacon locations. Of these two, sensor fusion achieves
much higher accuracy in real-life conditions where beacon samples are sparse, making it
the preferred method if it is possible to sample sensor data. Furthermore, if the positions
of each beacon could be embedded in the actual beacon advertisements, privacy would
additionally increase. This could be possible in both the multilateration and sensor fusion
methods and would completely remove the need for downloading a database, making the
system entirely passive and privacy-preserving. The drawback would be that the person
installing the system would have to know the exact location of each beacon at installation
time instead of measuring it.

As we mentioned at the beginning, contact tracing for COVID-19 has become common,
and many different applications can be downloaded for this purpose. Sowmiya et al. [64]
wrote a survey of the security and privacy aspects of contact tracing applications. However,
most approaches are based on all devices transmitting randomised IDs at all times, with
one exception being the approach by [65], where RFID tags and receivers are used and the
information is stored in a blockchain to preserve anonymity. A possible similar approach
could be to, with user consent, upload the time and coordinates of when a COVID-19-
infected person visited a specific location to the blockchain. If someone wants to know if
his/she is likely to have been in contact with a contagious person, he/she could compare
his/her local location history with information from the blockchain.

This paper evaluated indoor positioning methods that are often used with BLE bea-
cons or WiFi access points. If we consider the number of new articles targeting UWB,
which in our search amounted to 18% of all published articles between 2006 and 2021
(see Figure 1), we expect the privacy aspect to be of equal importance for that technology.
In contrast to BLE broadcasting, many UWB protocols require two-way communication
or complex infrastructures to enable positioning. This requirement poses an interesting
challenge within UWB deployments, which we hope to target in future work. We also
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see Deep Neural Networks (DNNs) as possible candidates for replacing fingerprinting,
especially if combined with knowledge distillation approaches such as by [66], to reduce
the network size.

5. Conclusions

For indoor positioning, fingerprinting is the most-common approach and is often
considered the gold standard. Due to storage and computational requirements, finger-
printing databases are often stored outside the user’s device, on a local server, or in the
cloud. However, indirectly streaming the users’ location by submitting fingerprints is
privacy-invasive. Given the complexity of making server-side location computations secure
through, e.g., homomorphic encryption, we instead explored if passive sensor fusion can
replace fingerprinting and multilateration methods for pedestrian indoor positioning. We
validated this by setting up an experiment with commonly available hardware in a busy
office building. Sensor fusion does not only require much smaller data storage, but can also
give substantial accuracy improvements in busy environments. It can also be much faster
to install, as it does not require complete fingerprinting databases. Our results showed that
using a passive approach for indoor positioning is feasible and has the potential to respect
the user’s privacy without compromises.
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