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Abstract: Today, climate change combined with the energy crisis is accelerating the worldwide
adoption of renewable energies through incentive policies. However, due to their intermittent and
unpredictable behavior, renewable energy sources need EMS (energy management systems) as well
as storage infrastructure. In addition, their complexity requires the implementation of software and
hardware means for data acquisition and optimization. The technologies used in these systems are
constantly evolving but their current maturity level already makes it possible to design innovative
approaches and tools for the operation of renewable energy systems. This work focuses on the
use of Internet of Things (IoT) and Digital Twin (DT) technologies for standalone photovoltaic
systems. Based on Energetic Macroscopic Representation (EMR) formalism and the Digital Twin
(DT) paradigm, we propose a framework to improve energy management in real time. In this
article, the digital twin is defined as the combination of the physical system and its digital model,
communicating data bi-directionally. Additionally, the digital replica and IoT devices are coupled via
MATLAB Simulink as a unified software environment. Experimental tests are carried out to validate
the efficiency of the digital twin developed for an autonomous photovoltaic system demonstrator.

Keywords: digital twin; internet of things; real-time monitoring; rule-based control; battery;
standalone photovoltaic system

1. Introduction

Renewable energy systems, such as solar panels and wind turbines generate power
from natural resources that are available intermittently. Since they produce variable power,
their effective dissemination can be accelerated by better control and monitoring. Tradition-
ally, data acquisition systems (DAQs), usually centralized, are used for collecting all system
data [1]. However, the cost of commercial DAQs is the most significant barrier for greater
diffusion. IoT (Internet of things) based smart meters have recently gained substantial
popularity for control and measurement data. Indeed, their ability to communicate data
over networks offers a wide range of applications. Therefore, IoT devices can potentially
be useful for real-time energy management. Accordingly, energy production efficiency
and reliability can be significantly improved ([2–4]). This can help reduce dependence on
traditional fossil fuel-based energy sources and promote renewable energy.

However, implementing IoT in renewable energy systems faces several challenges
due to the variety of protocols and devices available in the market [5]. This can make
it difficult to integrate IoT devices while ensuring their compatibility with the existing
infrastructure [6].

On the other hand, defined as the combination of the physical system and its digital
model, the Digital Twin (DT) paradigm can be used to predict energy production and con-
sumption. It also enables predictive maintenance [7]. Therefore, it is crucial to implement
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techniques that provide a wide range of operational data about the actual system [8]. IoT
technology can be associated with DT thanks to their ability of actuation and sensing.

In this work, our objective is to build a DT of a standalone PV system to deal with
real-time energy management challenges. Figure 1 depicts the diagram of the digital twin
as developed in this work:

- Physical system: made up of two PV panels, batteries, DC loads, a solar emulator, and
a weather station.

- Smart sensors and actuators: including devices required for control and monitor-
ing purposes.

- Digital counterpart implemented in MATLAB: including mainly EMR-based model,
Real-Time monitoring, and control systems.
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To experimentally validate the proposed framework, we have developed a lab demon-
strator according to IoT-based architecture for embedded and distributed instrumentation.
Furthermore, to cope with the devices’ heterogeneity, we use MATLAB Simulink. Indeed,
this is a comprehensive software environment that can communicate with sensors and
Programmable Logic Controllers through client/server applications.

This document is structured as follows. First, we present a review of the literature
related to our work. In the second part, we detail our test bench which constitutes the
physical part of the proposed Digital Twin. In the third part, we present an approach
based on the Energetic Macroscopic Representation (EMR) formalism as a numerical
counterpart of our system. Finally, the experimental validation of the resulting digital twin
will be discussed.

2. Literature Review

Several studies have considered photovoltaic systems monitoring. In [9], the authors
used the IoT and MQTT (MQTT: Message Queuing Telemetry Transport) in web-based
monitoring. They implemented this approach to monitor the performance of the solar
panels and the battery system, as well as the energy consumption of a living laboratory.
Similar work is reported in [10]. When compared to other protocols, MQTT has a small
footprint, making it much more suitable for resource-constrained environments. Despite
several benefits, it is important to note that MQTT brokers do not provide the same level
of entity authentication or encryption capabilities [11]. Moreover, IoT devices are often
not interoperable, and it is difficult to integrate external sources of information and cloud
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computing to use energy more efficiently. Indeed, it requires the design and implementation
of hierarchical architectures and standardized solutions to facilitate interoperability. Till
today, no standard solution is established yet [12]. However, most providers share IoT
middlewares, which has fostered the emergence of cross-domain applications.

In [13], the authors developed a Smart Home monitoring system using Power Line
Communication (PLC) which has the advantage of not needing additional communication
cables [14]. This article also demonstrates the potential of using PLCs to monitor individual
photovoltaic panels.

Moreover, the review work [1] provides an overview on the importance of monitoring
systems for photovoltaic plants (electrical and meteorological data). The article reviews
different types of monitoring systems that are currently available for PV plants, including
hardware and software aspects. The authors discuss the advantages and disadvantages of
each type of system and provide examples of commonly used components.

There exist several commercial software for monitoring and simulation of PV systems
such as LabVIEW ([15–18]) and MATLAB Simulink ([19,20]).

Furthermore, studies in [20–24], present an energy management system by using
Programmable Logic Controller. Compared to other hardware control systems, PLCs
have specific advantages as ruggedness, noise immunity, modularity, low cost, and small
footprints [25].

We also reviewed several papers dealing with Digital Twins. This concept is partic-
ularly popular in the context of industry 4.0, where it is mainly implemented for man-
ufacturing systems [26]. Nowadays, there is a significant trend to apply this concept to
the electrical energy field [27]. That said, there are few concrete applications. Moreover,
as there are several misconceptions about digital twin definition [28], it is important to
distinguish the digital twin, the digital model, and the digital shadow. In fact, the digital
model is defined as a digital copy of a physical system without any data exchange and
is generally used for simulation and design purposes. Likewise, the Digital Shadow is a
combination of a physical system and its digital model with a one-way data exchange.

Although some authors claim to use the concept of the Digital Twin as just defined
above, most of the articles deal with the “digital model” or “digital shadow”. For instance,
authors in [27] study the digital twin possibilities for fault diagnosis purpose of PV system.
However, they use a digital shadow instead of digital twin. We find the same confusion in
the articles [29–33].

Relatively to our contribution, Table 1 summarizes the state of art of the current
literature dealing with digital twin applications.

In this work, we propose a Digital Twin of a complete photovoltaic system using
MATLAB software as a unified environment. This framework is suitable to address the
following topics:

- Real-time access to multi-protocol data for monitoring purposes.
- Modelling, simulation, and real-time control of PV systems
- Implementing of innovative energy management systems
- Reporting

In other words, this experimental platform can be used to compare simulation results
and monitored data in real time. Indeed, it could be used to develop new approaches for
fault detection and prediction issues. This integrated environment allows on the one hand
to have a large panel of toolboxes (modelling, code generation, machine learning, advanced
control, cloud computing . . . ). Therefore, it could be easily used for advanced control and
optimization purposes.
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Table 1. Literature review related to IoT and DT usage for energy management.

Reference IoT
Capability

Multi-
Protocols

Energy
Management Monitoring Digital

Model
Digital

Shadow Digital Twin

[34] 3 3 7 3 7 7 7

[29] 3 - 7 3 3 3 7

[35] 7 7 7 3 3 3 7

[9] 3 3 3 3 7 7 7

[36] 3 3 7 3 7 7 7

[37] 3 3 7 3 7 7 7

[16] 7 3 7 3 7 7 7

[30] 3 - 7 3 3 3 7

[38] 3 3 7 3 7 7 7

[39] 7 - 3 3 7 7 7

[10] 3 - 3 3 - - 7

Proposed 3
Unified

environment 3 3 3 3 3

3. Materials and Methods

The concept of the digital twin, object of this work, is implemented on a test rig.
In this section we describe the structure of the demonstrator, its instrumentation and
control system.

3.1. PV System Description

The stand-alone system is composed of the following elements (Figure 2):

• Solar emulator as artificial light source,
• 2 × 215 Wp photovoltaic panels (SunPower Co., San José, CA, USA),
• 28 Ah batteries as storage system (Victron Energy B.V., Almere, The Netherlands),
• DC loads.
• Power converters (Victron Energy B.V., Almere, The Netherlands).
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3.2. Sensors and Data Aquisition

Developing a digital twin for renewable energy systems requires constant data collec-
tion and monitoring [40]. Therefore, it is necessary to implement techniques that provide a
wide range of data:

- Weather data (temperature, irradiance, wind speed . . . );
- Real time electrical data (energy, currents, voltages, batteries’ state of charge . . . ).

The experimental platform is equipped with sensors of various technologies that do
not use the same communication protocol. To transmit measurement data to a unified
software environment, we have developed a hardware and software architecture based on
the following components:

- An IoT architecture combining smart sensors for electrical data [41] and a weather sta-
tion. As IoT, these devices use heterogeneous communication protocols [42], including
Modbus TCP/IP, HTTP, and PROFINET;

- MATLAB Simulink, as an integrated environment concentrating all the operational
data of the system, constitutes the core of the digital twin.

Figure 3 depicts the demonstrator overview and its control system architecture.
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3.3. Control System

At first level, the embedded control system is based on a S7-1200 PLC which controls
solar emulator and relays. This allows experimental tests to be carried out according to
real-time weather data or with historical data.

At the second level, the overall control of the PV system is performed within MATLAB
Simulink programs using the embedded PLC as a slave. Data communication is carried
out using OPC-UA and Industrial Communication Toolbox™.

Figure 4 describes the unified architecture proposed in this work.
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4. PV System Modeling

This section details our approach to modeling the PV system. The aim is to develop
the digital replica counterpart of the Digital Twin.

4.1. Solar Panels

A photovoltaic (PV) power system consists of two solar panels (SPR-215-WHT). PV
parameters of each panel are given in Table 2.

Table 2. Parameters of the SPR-215-WHT solar panel at STC form datasheet.

Parameter Value

Maximum power Pmax 215 Wp
Voltage at maximum power point Vmp 39.8 V
Current at maximum power point Imp 5.40 A

Open circuit voltage Voc 48.3 V
Short Circuit Current Isc 5.80 A

Voltage temperature coefficient βoc −136.8 mV/◦C
Current temperature coefficient αsc 3.5 mA/◦C

Number of cells per module ns 72

PV panel is composed of several cells. Each PV cell is made up of semiconductor
materials which can convert solar irradiance into electrical energy. Based on the electronics
theory of semiconductor p-n junction, it can be described by a current source. The studied
panel model in this work is represented by an equivalent circuit. It consists of a single
diode for the cell polarization function and two resistors (series and shunt) for the losses
(Figure 5). The equivalent circuit is composed of an ideal current source Iph in parallel,
reverse diode, series resistance Rs and parallel resistance Rsh.
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The Ipv = f
(
Vpv
)

characteristic of this model is given by the following equation:

Ipv = Iph − ID −
(

Vpv + Rs Ipv

Rsh

)
(1)

where:

- Ipv is the current generated by solar panel;
- Iph is the photocurrent, which is linearly proportional to irradiance and depends on

the temperature as shown in the following equation:

Iph = (I phn + αsc∆T)
G
Gn

# where ∆T = T − Tn (Tn = 25◦C), G is the incident of irradiation on the solar
panel, and Gn (1000 W/m2) at standard conditions (STC);

- ID is the diode current:

ID = I0[exp
(

qVpv

AKT

)
− 1] (2)

# where: I0 is the PV cell reverse saturation current that mainly depends on the
temperature, q is the electronic charge of an electron (1.6 × 1019 C), T is the
temperature of the PV cell, k is Boltzmann’s constant (1.38 × 1023 J/K), and A
is the diode ideality factor.

A PV panel is made up of numerous identical PV cells connected in series to provide a
higher voltage. A PV module composed of ns identical cells in series can also be represented
by the equivalent circuit shown Figure 4a but the circuit needs to be modified [43] as follows
(Figure 5b):

Rs_ns = nsRs, Rsh_ns = nsRsh, Ans = nsn, I0_ns = I0, Iph_ns = Iph (3)

The solar panel datasheet does not include some important parameters, such as Rs
and Rsh. To obtain them, we used the PV array tool of Matlab by setting the PV parameters
of the studied solar panel. Table 3 shows the extracted parameters.

Table 3. Parameters of the SPR-215-WHT solar panel at STC form datasheet.

Parameters Values

Rs_ns 0.72262 Ω
Rsh_ns 198.7727 Ω

I0 3.8896 × 10−15A
Ans 0.74816
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The mathematical model of the studied solar panel is then implemented under MAT-
LAB Simulink and the results are compared to datasheet data as shown in Figure 6.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 23 
 

 

  
(a) (b) 

 
(c) 

Figure 6. Actual data vs. data computed by the model: (a) I-V characteristics from datasheet; (b) 
actual I-V characteristics vs. computed I-V characteristics; (c) actual P-V characteristics vs. com-
puted P-V characteristics. 

The dotted curves in Figure 5 represent data from the datasheet and the continuous 
ones come from the mathematical model. These results show a good correlation between 
the model and the solar panel manufacturer’s data. 

To assess the model’s effectiveness, we conducted indoor tests of the PV panel. The 
PV panel was illuminated using an artificial light source, while its output was connected 
to a rheostat. To obtain the I-V curves, measuring instruments were integrated, as depicted 
in Figure 7a. 

 
 

(a) (b) 

Figure 7. Experimental test and comparison of I-V curves: (a) experimental components of the tested 
PV panel; (b) comparison between real test and the mathematical model. 

Figure 7b shows the simulation and experimental results, confirming the accuracy of 
the implemented mathematical model. 

  

0 5 10 15 20 25 30 35 40 45 50

Voltage (V)

0

1

2

3

4

5

6

7

C
ur

re
nt

 (A
)

1000 w/m²

800 W/m²

800 W/m²

1000 w/m² at 50C°

0 5 10 15 20 25 30 35 40 45 50

Voltage (V)

0

50

100

150

200

Po
w

er
(W

)

500 W/m²

800 W/m²

1000 W/m²

1000 W/m² at 50°

0 5 10 15 20 25 30 35 40 45 50

Voltage(V)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
ur

re
nt

(A
)

Simulation result

Experimental result

G = 220 W/m²
Tc = 50 °C     

Figure 6. Actual data vs. data computed by the model: (a) I-V characteristics from datasheet;
(b) actual I-V characteristics vs. computed I-V characteristics; (c) actual P-V characteristics vs.
computed P-V characteristics.

The dotted curves in Figure 5 represent data from the datasheet and the continuous
ones come from the mathematical model. These results show a good correlation between
the model and the solar panel manufacturer’s data.

To assess the model’s effectiveness, we conducted indoor tests of the PV panel. The
PV panel was illuminated using an artificial light source, while its output was connected to
a rheostat. To obtain the I-V curves, measuring instruments were integrated, as depicted in
Figure 7a.
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Figure 7b shows the simulation and experimental results, confirming the accuracy of
the implemented mathematical model.

4.2. Batteries Bank

Due to the inherent variability of PV power, the battery plays a crucial role in stand-
alone PV systems. In this system, two 12 V AGM batteries are installed and connected
in a series configuration. The utilization of AGM batteries provides additional benefits,
as they facilitate recombination and effectively mitigate gas emissions during overcharge.
Consequently, the demand for room ventilation is reduced, and the batteries do not emit
any acid fumes during normal discharge operations [44].

The battery model in Figure 8 considers a constant internal resistance. This resis-
tance is connected in series with the internal voltage source which depends on various
parameters [45].
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Figure 8. Nonlinear Battery model.

The terminal voltage of the battery is given by:

Vbat = E − RIbat(t) (4)

where:

• R: is the internal resistance;
• Ibat: is the battery current.

The controlled voltage source E is described by the following equation:

E = E0 − K
Q

Q −
∫

Ibat(t)dt
+ Aexp(−B

∫
Ibat(t)dt) (5)

where:

• E0 : Fully charged voltage;
• K: polarization voltage (V);
• Q : battery capacity (Ah);
• A: exponential zone amplitude (V);
• B: exponential zone time constant inverse (Ah).

The parameters of this equivalent circuit can be identified by considering the discharge
characteristics with a nominal current.

We use a lead-acid battery, which features a nominal voltage of 12 volts (E0), a capacity
of 14 Ah (Q), a rated current of 0.7 A, and an internal resistance of 14 mΩ (Table 4).

Table 4. Parameters of an AGM battery from datasheet.

Capacity Nominal Voltage Internal Resistance Weight

14 Ah/0.7 A 12 V 14 mΩ 4.05 kg
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The model parameters (K = 0.12, A = 0.66, B = 7) are obtained through graphical
estimation based on the rated current discharge characteristic curve. The simulation results
are depicted in Figure 9. The Q-V discharge curve is composed of three sections. The
first section represents the exponential voltage drop if the battery is initially fully charged.
The second phase represents the charge that can be extracted from the battery until the
voltage drops below the battery nominal voltage. Finally, the third section represents the
total discharge of the battery, when the voltage drops quickly. The width of these sections
depends on the battery type.
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Figure 9. (a) Discharge curve (Q-V); (b) Discharge curve (Hours-V).

To estimate the state of charge of the battery (SoC), the well-known Coulomb counting
method is used due to its simplicity. It relies on measuring the current and the estimation
of the initial state of charge of the battery.

SoC(t) = SoC0 −
1

Cnom

∫ t

t0

ibatt(t)dt ∗ 100 (6)

4.3. Power Electronics

Figure 10 illustrates the simplified PV system architecture, comprising a solar panel,
a battery for energy backup, and power converters (MPPT regulator) that connect these
components to the DC load.
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We determined the converter topology based on the current state of the art since it
was not specified by the manufacturer. Photovoltaic energy harvesting relies primarily
on irradiance and solar panel temperature, resulting in variable PV voltage. Therefore,
implementing Maximum Power Point Tracking (MPPT) is essential to maximize power
extraction regardless of weather conditions. A DC-DC converter is used to enable voltage
adjustment from the photovoltaic panels to match the battery voltage. This converter
performs step-up and step-down functions by controlling the input-to-output voltage
ratio through the variation of the converter switching device’s on-off duty cycle. Another
converter is required to supply and regulate the voltage for the DC load. In the literature,
this configuration is commonly referred to as a two-stage DC-DC converter (Figure 11), as
reported in [46].
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4.4. EMR Representation of the Digital Replica

In the proposed system, the battery imposes a constant voltage, and the PVs relates to
the battery through the buck converter. It enables effective Maximum Power Point Tracking
(MPPT) control for the PV panels. Moreover, RC (Rcpv, Cpv) and RL (Rlpv, Lpv) filters are
inserted between the PV and the buck converter to reduce voltage and current ripple. Finally,
the battery is connected with the DC Load via a chopper and a RL (Rldc, Ldc) filter.

EMR (Energetic Macroscopic Representation) is a graphical formalism for organizing
models and control of subsystems within a complete system [47]. The advantage of the
EMR formalism lies in its ability to provide a comprehensive and systematic approach for
modeling and analyzing complex energy systems. Firstly, each component is translated
into EMR elements, and their inputs and outputs are defined according to the causality
principle (action/reaction). Moreover, the system is decomposed into basic subsystems
with interactions using colored pictograms (orange and green). Furthermore, the control
blocks are depicted as blue parallelograms. Table 5 depicts the main EMR elements.

Table 5. Some elements of EMR and of control pictograms [48].

Pictrograms Pictograms Significance
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Based on the information on all parts of the demonstrator and hypothesis, the EMR
(Energetic Macroscopic Representation) of the studied system is designed. The modeling
methodology and the EMR organization method are provided in [49]. In Figure 12, the
entire EMR organization of the Digital model is depicted.
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The tuning paths (yellow lines in Figure 14) are defined according to the follow-
ing objectives:

1. Extract the maximum of the solar power by acting on chopper 1 to find the optimal
solar panels voltage;

2. Satisfy the DC load demand by acting on chopper 2.

The control scheme of the hybrid system is obtained by inverting the EMR element by
element according to the tuning chains (see lower part of Figure 14).

Conversion elements are inverted directly as they have no time-dependence behavior.
The accumulation elements (rectangle with forward slash) cannot be inverted physically to
avoid derivation. Thus, an indirect inversion is made by using IP controller. Table 6 shows
three examples of direct and indirect inversion.
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The MPPT (Maximum Power Point Tracking) algorithm is widely used in PV systems.
In this study, the Perturb and Observe (P&O) method is implemented. As shown in
Figure 15a, the power curves versus the PV panels output voltage present maximum power
points (empty circles). A Perturb and Observe Maximum Power Point Tracking strategy [51]
is implemented to define the reference voltage imposed on PV panels to obtain the maximal
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PV power whatever the irradiance and temperature are (Figure 15b). The P&O algorithm
begins by sensing PV voltage and current voltage. The value of the current power (V(k) X
I(k)) is then compared to the previous power measurements. If the difference between the
two measurements is equal to zero, then the value of the voltage is used as a reference to
control the PV voltage thanks to the chopper. If the value of the difference is not equal to
zero and if an increase in PV voltage generates an increase in power, this means that there
is a convergence to MPP (Maximum Power Point). However, if the power decreases, the
PV voltage reference must be reduced to converge to the MPP. The developed algorithm is
implemented by the MPPT strategy block (dark blue block) as shown in Figure 15a.
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Figure 15. (a) PV Power versus solar panel voltage for different irradiance (T = 25◦) (b) Flowchart of
perturb and observe algorithm.

The following figure (Figure 16) presents the implemented digital model under MAT-
LAB Simulink thanks to a Simulink library containing the EMR basic pictograms.
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Figure 16. MATLAB Simulink model of the studied hybrid system and its control.

To evaluate the effectiveness of the developed digital model, simulations have been
carried out with real-time solar irradiance and temperature data (Figure 17a) for a typical
day (30 June 2022). The digital model can be run and connected to real time weather
conditions thanks to Simulink Desktop Real Time. This latter provides a real-time kernel
for executing Simulink models on a laptop or desktop running Windows or Mac OS X.
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Figure 17. (a) Monitored irradiance and temperature profiles; (b) PV, battery, and load power curves.

Figure 17b shows simulation results of Ppv, Pbat, PDCl . PV panels cannot provide
enough energy to feed the DC load (Ppv < PDCl = 10 W) before the time 0.1 s, 6:30 a.m.
Thus, the battery provides the DC load during this period. After 6:30 a.m., the photovoltaic
panels begin to produce electricity and the battery provides the difference to satisfy the
battery. When PV power exceeds the load demand, the battery is charging.

Figure 18a shows simulation results for Ipv, Ibat, IDCl while Figure 18b shows the state
of charge of the battery. The battery is discharging when PV panels output is insufficient,
and it is charging when PV power is higher than DC load demand.
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5. Experimental Results and Discussion

Real-time measurements were carried out to show the effectiveness of the proposed
unified framework, where the three electromagnetic relays are activated. These measure-
ments are subsequently compared in real time with the digital model data, as outlined in
Figure 1.

The applied solar irradiance is presented in Figure 19. From the figure, we can see
that the artificial source causes a slight delay and behaves like a first-order system with
non-linear behavior depending on the increase or decrease in light. This is due to the
light dimmer.
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Figure 19. Applied solar irradiance (artificial light source).

Figure 20 represents the measured PV current and the PV numerical model, highlight-
ing a slight deviation observed in the illumination levels around 300 W/m2. This difference
is due to both the approximation of the mathematical model and the non-uniform illumina-
tion of the PV panels. Furthermore, it should be noted that the maximum relative error is
approximately 6%, and the maximum absolute error is around 0.1, which is considered low.
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Figure 20. Digital model PV current vs measured PV current.

In Figure 21, the measured and digital model load currents are depicted. The tests
were initiated by activating a single lamp and subsequently both lamps. This led to an
increase in the DC current from 0.23 A to 0.46 A.
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Measured and digital model battery currents are depicted in Figure 22. A positive
current refers to a battery discharge, while a negative current refers to the charging phase.
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Figure 22. Digital model battery current vs measured battery current.

Figure 23 represents PV power, battery power and DC load power, respectively. From 0
to 50 s, the demanded power is higher than the PV power. The battery is then in discharging
mode. However, when the PV power is higher than the demanded DC power, the battery
is charging. The comparison between real data and the digital model data shows a good
correlation between them. Indeed, the maximum relative deviations between the real and
digital model data are 8% for PV power, 12% for battery power, and 2% for load power.
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To establish a feedback loop between the virtual and real word of the digital twin, we
implement an energy management algorithm in MATLAB Simulink. The rule-based energy
management algorithm sends control signals to the PLC (s7 1200). The advantage of using
a rule-based control approach is its ease of implementation in real-time [52]. The flowchart
of the energy management algorithm is illustrated in Figure 24. It receives measurement
data as inputs and generates relay control signals as outputs, which are subsequently
transmitted to the PLC.
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The energy management system generates five different modes. They are described in
Table 7.
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Table 7. Different modes of the energy management system.

Modes Load Chopper 1 Chopper 2 Battery

Mode I: When the battery SOC reaches 96%, which indicates a nearly
full charge, the system is operating in float mode. At this point, the PV
power output is greater than the load demand. Therefore, the battery
should not continue to charge, and the Victron regulator automatically
switches to a lower charge voltage mode called float mode to maintain
the battery charge level and prevent overcharging.

ON FLOAT ON Float

Mode II: This mode is activated when the battery’s SOC is within the
normal range of 40 to 96 % and the power generated by the PV panels is
lower than the load demand. In such a scenario, the PV panels alone are
unable to meet the load requirement, and hence the battery is used to
supplement the power supply. The battery operates in the discharge
mode, while the PV converter operates in the MPPT mode, and the load
remains connected.

ON MPPT ON Discharge

Mode III: This mode is activated when the battery’s SOC is within the
normal range of 40 to 90 percent and the power generated by the PV
panels is higher than the load demand. In such a scenario, the load is
powered solely by the PV panels, and any surplus power is utilized to
charge the battery. The battery operates in the charging mode, while the
PV converter remains in the MPPT mode.

ON MPPT ON Charge

Mode VI: This mode is activated when the battery’s SOC drops below
40%, and the power generated by the PV panels is higher than the
minimum power required, which is a fixed small value. In such a
scenario, the load demand exceeds the PV power output, and the fully
discharged battery cannot supplement the power supply. However, the
PV panels can still generate power, which can be used to charge the
battery after the load is disconnected. In this mode, the PV converter
operates in the MPPT mode, and the battery is charging, while the load
remains disconnected.

OFF MPPT OFF Charge

Mode V: This mode occurs when irradiance is very low or non-existent.
In this case, the system goes into complete off mode until solar
radiation starts again. The battery charges during the day and is ready
to supply the load in case of absence of solar radiation.

OFF OFF OFF OFF

To assess the effectiveness of the energy management system, the initial load is set
to 112 W. Figure 25 displays the recorded external solar irradiance for a one-hour period
on a cloudy day. Subsequently, these data are transmitted to the dimmer, enabling the
generation of adjustable artificial lighting.
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Figure 25. Measured irradiance.
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Initially, the total power required by the load is provided by both the battery and solar
power sources, as the PV alone cannot fully support the load (Figure 26). During the period
from 0 to 757 s, the system operates in mode II.
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Figure 26. Measured PV, battery, and load power.

Between 757 s and 876 s, as well as from 932 s to 1317 s, the solar irradiance remains
below 50 W/m2, leading the system to switch to mode V (system OFF). From 1317 s to
3508 s, the system once again operates in mode II. During the period from 3508 s to 3600 s,
the load demand gradually decreases from 111 W to 60 W, causing the battery to generate
less power to meet the load requirements.

Figure 27a shows the battery voltage waveform, while Figure 27b displays the battery
State of Charge. The battery primarily operates in discharging mode, except during periods
when the system is not in operation (mode I).

Sensors 2023, 23, x FOR PEER REVIEW 21 of 23 
 

 

  
(a) (b) 

Figure 27. (a) Battery voltage; (b) Battery state of charge. 

6. Conclusions 
In this work, we discussed the challenges of implementing IoT in renewable energy 

systems and the potential of digital twins for predicting energy production and consump-
tion. We proposed a framework that combines the use of Internet of Things (IoT) and Dig-
ital Twin (DT) technologies for standalone photovoltaic systems. The digital twin is de-
fined as the combination of the physical system and its digital model, allowing for bidi-
rectional data communication. Furthermore, we designed a digital model of the PV sys-
tem by using Energetic Macroscopic Representation formalism. Experiments performed 
in real time and their analysis demonstrate the effectiveness of the proposed framework. 
As future work, we plan to use this platform to explore machine learning’s potential to 
enhance energy management of PV systems. 

Author Contributions: Conceptualization, L.C. and A.S.; Formal analysis, L.C., A.S. and A.R.; Meth-
odology, L.C.; Investigation, L.C., A.S. and A.R.; Software, L.C. and A.S.; Supervision, L.C.; Writ-
ing—original draft, L.C.; Experimental tests, L.C., Writing—review and editing, L.C., A.S. and A.R. 
All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Madeti, S.R.; Singh, S. Monitoring system for photovoltaic plants: A review. Renew. Sustain. Energy Rev. 2017, 67, 1180–1207. 

https://doi.org/10.1016/j.rser.2016.09.088. 
2. Motlagh, N.H.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the Energy Sector. Energies 2020, 13, 494. 

https://doi.org/10.3390/en13020494. 
3. Shrouf, F.; Miragliotta, G. Energy management based on Internet of Things: Practices and framework for adoption in production 

management. J. Clean. Prod. 2015, 100, 235–246. https://doi.org/10.1016/j.jclepro.2015.03.055. 
4. Adhya, S.; Saha, D.; Das, A.; Jana, J.; Saha, H. An IoT based smart solar photovoltaic remote monitoring and control unit. In 

Proceedings of the 2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC), Kolkata, 
India, 28–30 January 2016; pp. 432–436. https://doi.org/10.1109/CIEC.2016.7513793. 

5. Baidya, S.; Potdar, V.; Ray, P.P.; Nandi, C. Reviewing the opportunities, challenges, and future directions for the digitalization 
of energy. Energy Res. Soc. Sci. 2021, 81, 102243. https://doi.org/10.1016/j.erss.2021.102243. 

6. Mukhopadhyay, S.C.; Suryadevara, N.K. Internet of Things: Challenges and Opportunities; Springer: Berlin/Heidelberg, Germany, 
2014; Volume 9, pp. 1–17. https://doi.org/10.1007/978-3-319-04223-7_1. 

7. Yu, W.; Patros, P.; Young, B.; Klinac, E.; Walmsley, T.G. Energy digital twin technology for industrial energy management: 
Classification, challenges and future. Renew. Sustain. Energy Rev. 2022, 161, 112407. https://doi.org/10.1016/j.rser.2022.112407. 

Vo
lta

ge
[V

]

St
at

e 
of

 C
ha

rg
e[

%
]

Figure 27. (a) Battery voltage; (b) Battery state of charge.

6. Conclusions

In this work, we discussed the challenges of implementing IoT in renewable energy
systems and the potential of digital twins for predicting energy production and consump-
tion. We proposed a framework that combines the use of Internet of Things (IoT) and
Digital Twin (DT) technologies for standalone photovoltaic systems. The digital twin is
defined as the combination of the physical system and its digital model, allowing for
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bidirectional data communication. Furthermore, we designed a digital model of the PV
system by using Energetic Macroscopic Representation formalism. Experiments performed
in real time and their analysis demonstrate the effectiveness of the proposed framework.
As future work, we plan to use this platform to explore machine learning’s potential to
enhance energy management of PV systems.
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