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Abstract: This paper presents a multi-agent reinforcement learning (MARL) algorithm to address
the scheduling and routing problems of multiple automated guided vehicles (AGVs), with the goal
of minimizing overall energy consumption. The proposed algorithm is developed based on the
multi-agent deep deterministic policy gradient (MADDPG) algorithm, with modifications made to
the action and state space to fit the setting of AGV activities. While previous studies overlooked
the energy efficiency of AGVs, this paper develops a well-designed reward function that helps to
optimize the overall energy consumption required to fulfill all tasks. Moreover, we incorporate the
ε-greedy exploration strategy into the proposed algorithm to balance exploration and exploitation
during training, which helps it converge faster and achieve better performance. The proposed MARL
algorithm is equipped with carefully selected parameters that aid in avoiding obstacles, speeding
up path planning, and achieving minimal energy consumption. To demonstrate the effectiveness
of the proposed algorithm, three types of numerical experiments including the ε-greedy MADDPG,
MADDPG, and Q-Learning methods were conducted. The results show that the proposed algorithm
can effectively solve the multi-AGV task assignment and path planning problems, and the energy
consumption results show that the planned routes can effectively improve energy efficiency.

Keywords: automated guided vehicles; multi-agent reinforcement learning; task assignment; path
planning; energy consumption

1. Introduction

Automated guided vehicles (AGVs) are autonomous portable robots that navigate
predetermined paths using various sensing technologies [1,2]. They play a vital role in
modern manufacturing and logistics systems by facilitating the transportation of raw
materials and finished products [3,4]. To optimize their performance, it is necessary to
integrate the scheduling control system of AGVs with existing production management
systems, such as manufacturing execution systems (MES), enterprise resource planning
(ERP), warehouse management systems (WMS), logistics control systems (LCS), and Radio-
Frequency IDentification (RFID) [5–8]. The AGV scheduling system receives request
messages from the MES, dispatches AGVs to transport raw materials or finished products,
and designs routes for AGVs to follow. However, the task assignment and path planning
problem for multiple AGVs is challenging, as the number of decision variables and safety-
related constraints grows significantly with the number of AGVs [9].

To address this issue, several optimization-based approaches have been proposed, such
as integer programming [10–12], heuristic algorithms [13–15], and metaheuristics [7,16–19].
However, these methods have limitations in dealing with the dynamic and uncertain nature
of the industrial environment. Therefore, machine learning-based methods, particularly
reinforcement learning (RL), have emerged as a promising approach to solving the prob-
lem [20,21]. RL is a subfield of machine learning that involves an agent learning from its
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interactions with the environment to maximize a cumulative reward signal. Multi-agent
reinforcement learning (MARL) is an extension of RL that involves multiple agents learning
to coordinate with each other to achieve a common objective [22]. MARL has been shown
to be effective in solving complex problems that involve coordination and competition
among multiple agents [8].

Compared with existing studies, the key contributions of this paper are summarized
as follows: (1) We propose an ε-greedy MADDPG algorithm which is able to converge
faster and achieve better performance during training by balancing exploration and ex-
ploitation. (2) Modifications are made to the action and state space to fit the setting of
AGV activities, while a well-designed reward function is incorporated into the proposed
algorithm that optimizes energy consumption while fulfilling all tasks. (3) The effectiveness
of the proposed algorithm is demonstrated through numerical experiments, which show
that it outperforms other methods in improving energy efficiency while addressing the
multi-AGV task assignment and path planning problem.

The remainder of this paper is organized as follows. Section 2 presents a literature
review about AGV scheduling algorithms with MARL. Section 3 presents the background
of reinforcement learning, followed by a description of the proposed algorithm and model
in Section 4. Section 5 presents the simulation results and analyses. Section 6 concludes
this paper and discusses some open issues and future work.

2. Literature Review

Reinforcement learning (RL) has become a promising solution to the AGV scheduling
and routing problems, while many researchers have carried out much pioneering work
with the application of RL [23].

For example, the Markov decision process (MDP) formulation was combined with the
asynchronous deep Q network (DQN) to solve the routing problem in real time and obtain
high-quality solutions [24]. A decentralized framework for multiple AGVs was proposed
in [25] for multi-task allocation with attention (MTAA), which uses the DNN network
and the A3C and MTAA-DQN path planning techniques to achieve task assignment
equilibrium. Aside from this application, RL was used to solve the routing problem in
a bidirectional transport network for the purpose of avoiding deadlocks and obtaining
collision-free trajectories [26]. The deep Q network (DQN) was used in [27] to learn a
transportation strategy with breakpoint continuation and hierarchical feedback, which can
calculate and further modify a transportation schedule in a short time to accommodate
dynamic factors. That aside, the authors of [28] tried to teach a neural network to allocate
transportation duties to AGVs and design routes for them in accordance with the rewards
computed by the network. An enhanced DQN was suggested in [29] to find appropriate
navigational approaches for certain current road circumstances, which limits the Q output
of specific actions and incorporates their outcomes using calculations based on experience-
based pooling.

Moreover, a state space filter was proposed in [30] to improve the negotiation rules
between different agents that adjust their routes when probable collisions are identified.
Li et al. [31] proposed a deep learning approach that concurrently addresses task assignment
and path planning concerns, and it uses the Markov decision chain to formulate the
challenge of finding the shortest path without running afoul of other AGVs. In addition,
De Ryck et al. [1] gave a general overview of the control algorithms and methods applied to
the first-generation and latest AGV systems. Xue et al. [32] used an RL approach to solve a
multi-AGV flow-shop scheduling problem, where AGVs communicate comprehensive data
about each machine’s current state and running jobs. In other words, users are able to make
decisions based on knowledge of the entire flow shop. Nagayoshi et al. [33] presented a
decentralized autonomous strategy for controlling a large number of AGVs in response
to ambiguous delivery requests, where the AGVs are equipped with transportation route
plans that are intended to save travel time while avoiding collisions. Sierra-Garcia et al. [34]
presented an intelligent hybrid control scheme that combines RL-based control (RLC) with
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conventional PI regulators, where the RLC allows the AGVs to learn how to improve
trajectory tracking adaptively.

As suggested in [35], the multi-agent reinforcement learning (MARL) policy is capable
of (1) scaling to a large number of agents in a real-world setting with an offline response time
within acceptable levels and (2) outperforming existing algorithms with lower path lengths
and faster solution times. Takahashi et al. [36] provided a multi-agent deep deterministic
policy gradient (MADDPG) approach for managing several AGVs using DRL, where
simulated experiments demonstrated that the suggested method learns optimal or nearly
optimal solutions from prior knowledge. Aside from that, several numerical tests were
carried out in [8] to confirm the effectiveness of the RL method. The authors of [37] used
the MARL method to deal with the increased flexibility and complexity introduced by the
increased use of AGVs. In addition, Li et al. [38] proposed a reward-shaping technique
based on the potential information field which offers stepwise incentives and implicitly
directs the AGVs to various targets to address the problem of reward sparsity. Moreover,
Lu et al. [24] presented a DRL technique to address the AGV routing issue, where the
conflict vectors are created from the retrieved embeddings and then processed using the
LSTM network.

From the above work, it can be seen that RL is very effective for solving the AGV
scheduling and routing problem. However, the existing DQN algorithm in RL has some
limitations, since it cannot solve continued questions directly. Moreover, it does not consider
how to solve the path planning problem with the application of RL.

3. Background
3.1. Single-Agent Reinforcement Learning Model

RL is a framework for learning how an agent can take action in an environment to max-
imize a cumulative reward signal. This framework can be expressed as a system consisting
of an agent and an environment, as illustrated in Figure 1 [39]. The environment produces
information that describes the state of the system, while the agent interacts with the en-
vironment by observing the state and then selecting an action to perform. Subsequently,
the environment accepts the action and transitions into the next state while returning
a reward to the agent. This reward denotes the feedback signal from the environment,
indicating whether it is beneficial for the agent to adopt a certain strategy at a certain
step. The agent’s objective is to learn a policy that maps states to actions to maximize the
expected future cumulative reward. That is to say, the agent outputs the action At, observes
the system’s state St, and receives the reward Rt from the system.

Figure 1. The single agent of the reinforcement learning system.

In the context of AGVs, the vehicle can be formulated as an agent, since it can capture
information with onboard sensors and perform an action with its actuators. The environ-
ment can be the map of a manufacturing factory or an automated warehouse where the
AGV operates. The action space of the AGV agent can be represented by go forward, turn
left, turn right, and stopping operations, for example. During the training phase, the agent
interacts with the environment until the terminal conditions are met. After that, the agent
can learn to perform actions without human guidance to maximize its expected future
reward in a certain state.
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3.2. Multi-Agent Reinforcement Learning Model

In the MARL model, there are at least two agents existing in the same environ-
ment and interacting with each other as shown in Figure 2 [39]. We take into account
the multi-agent Markov decision process extension known as Markov games [40]. A
set of states S, action sets for each of N agents A1, . . . , AN , a state transition function
T : S× A1 × . . . AN− > P(S) which specifies the probability distribution over the possible
next states, given the current state and actions for each agent, and a reward function for each
agent that also depends on the overall state and actions of all agents Ri : S× A1 . . . AN− > R
define them. This means that all agents choose actions ai simultaneously after watching
the system’s state s and receiving each agent’s individual reward ri. In the case of multiple
AGVs in a warehouse, each AGV can be considered an agent, and the entire warehouse
map can be viewed as the environment.

To enable effective cooperation and competition between AGVs, researchers have
developed various MARL algorithms that can learn the best strategies for multiple agents
in the same environment. For example, one approach is to use a centralized training
and decentralized execution (CTDE) architecture in which a central controller learns a
joint policy for all agents during training, and each agent executes its own policy during
execution. This approach has been shown to be effective in scenarios where there is a
strong interdependence between agents, such as in a convoy of AGVs transporting a large
item. Another approach is to use independent reinforcement learning (IRL), in which each
agent learns its own policy independently without any communication or coordination
with other agents. This approach can be useful when the actions of different agents do
not have a significant impact on each other, such as in scenarios where AGVs are used to
transport different items to different locations. MARL has the potential to improve the
efficiency and effectiveness of AGV systems in various industrial applications, and ongoing
research in this area is expected to lead to even more sophisticated and effective algorithms
in the future.

Figure 2. The multi-agent architecture in the reinforcement learning system.

4. Methodology
4.1. The Multi-Agent Deep Deterministic Policy Gradient (MADDPG) Algorithm

In this paper, we propose an energy-efficient scheduling and routing algorithm based
on the multi-agent deep deterministic policy gradient (MADDPG) algorithm and the path
planning D* Lite algorithm. The D* Lite algorithm’s basic idea is to plan the global optimal
path from the destination point to the beginning point based on available environmental
information, treating the unknown portion as free space [41]. However, in this paper,
we combine the D* Lite algorithm with energy consumption computation to optimize
energy efficiency.

In RL, the deep deterministic policy gradient (DDPG) algorithm is a model-free, off-
policy, and policy-based method suitable for solving such problems [42,43]. The DDPG
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algorithm uses a deterministic policy, which means that when the policy and observed state
are given, the action is uniquely determined. This is in contrast to classical RL algorithms,
which use a stochastic policy that performs actions based on a probability distribution.
DDPG follows the idea of fixing the target network that is used in the DQN algorithm,
resulting in only two networks that need to be learned: the policy network and the value
network [44,45]. In DDPG, each network is subdivided into a current network and a
target network, and the updating process for these two networks is different. Under the
actor-critic framework, the policy network is referred to as an actor network that outputs
a deterministic action, while the value network is referred to as a critic network that fits
the value function Qπ(s, a). Multi-agent in DDPG, an extension of DDPG, means that
decentralized agents learn a centralized critique based on their collective observations
and actions, resulting in a multi-agent policy gradient algorithm. It generates learned
policies that, during execution, only use local information (i.e., their own observations),
does not require a differentiable model of the dynamics of the environment or any particular
structure on the method of communication between agents, and is applicable to competitive
or mixed interactions involving both physical and communicative behavior. The critic
possesses additional knowledge about the practices of other agents, but the actor just has
access to local information. Once trained, only locally based actors who work independently
are used throughout the execution phase.

The estimated policy network of the actor is θ(s), where θ is the parameter of the neural
network. The actor also has another target network that is used to update the value of the
critic network. Both networks have the same structure and output corresponding actions,
but the parameters within the neural networks are different. In terms of the critic network,
there are also two networks: an estimation network and a target network. Both networks
output the Q value of the current state, but they differ in terms of their input. For instance,
the input of the critic’s target network has two parameters, which are the observation of the
current state and the action of the actor’s target network output. In contrast, the input of the
critic’s estimation network is the action of the current actor’s estimation network output.

The target network is used to calculate Qtarget. The update of the value network is
based on the gradient descent of the TD-error. The critic, which acts as a judge, does not
initially know whether the actor’s action is good enough and needs to learn step by step
to provide accurate scoring. With the help of the value Qπ in the next moment, fitted by
the target network and the actual gain r, we can obtain Qtarget, which is then subtracted
from the current Q to find the mean squared deviation, allowing us to construct the loss
function. In terms of the policy network, its update is based on gradient ascent. Since the
goal of the actor is to find an action A that maximizes the value Q of the output, optimizing
the gradient of the policy network is for maximizing this Q value of the output of the value
network. The loss function then adds a negative sign to facilitate minimizing the error.

The parameters of n agents are identified as θ = [θ1, . . . , θn], and the policies of n
agents are identified as π = [π1, . . . , πn] [42]. Therefore, the accumulated reward for a
certain agent i and the expected reward gradient for a deterministic policy µθi can be
represented as follows:

J(θi) = Es∼ρπ ,a∼πθi
[

∞

∑
t=0

γtri,t] (1)

L(θi) =
1
s ∑

j
(yj −Qµ

i (xj, aj
1, . . . , aj

N))
2 (2)

∇θi J(µi) = Ex,a∼D[∇θi µi(ai|oi)∇aiQ
µ
i (x, a1, . . . , an)|ai = µi(oi)] (3)

where oi is the observation of the agent i, x = [oi, . . . , on] is the observation value,
Qµ

i (x, a1, . . . , an) is the action and state function, ∇θi µi(ai|oi) is the gradient of the pol-
icy network at θi, and ∇ai Q

µ
i (x, a1, . . . , an) is the gradient of the value network at x and

action sets (a1, . . . , an).
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4.2. Multi-Agent Model for AGV Operations

This paper presents a formal definition of the action space of the automated guided
vehicle (AGV) agent, denoted by a(v, ω). The velocity of the AGV v is variable and can
range from −1 m/s to 1 m/s, while the angular velocity ω is restricted to values between
−1 rad/s and 1 rad/s. Consequently, the AGV agent is capable of performing five distinct
actions, namely moving forward, moving backward, turning left, turning right, and halting.
The reward function is defined as follows:

ri = ki1 × Dposition + ki2 × Cv × v× cos(ω) + ki3 × Ce × (Etarget − Ei) + ki4 × CAGV + ki5 × Cobstacles (4)

In the above equation, ki1, ki2, ki3, ki4, and ki5 are the weight parameters, while
Dposition represents the reward value based on the current position relative to the previous
position. A positive reward is given if the current position is closer to the destination than
the previous position, and vice versa. This incentivizes the AGV to approach the target
site, using the distance reward as guidance. The equation D =

√
(x2 − x1)2 + (y2 − y1)2

calculates the distance between the current position and the destination point. The value of
the award will be negative if Dcurrent is greater than Dprevious. The value of the award will
be negative if there is an AGV collision. Let us define the previous and current position
for AGVi as Pos1(x0, y0) and Pos2(x1, y1) for AGVj, respectively; that is, Pos1(x2, y2) and
Pos2(x3, y3) if

√
(x1 − x3)2 + (y1 − y3)2) < 0.5 are satisfied by (y1− y0)× (y3− y2) < 0 or

(x1− x0)× (x3− x2) < 0, which means that if they travel in the opposite direction, then they

will collide, and the reward value will be negative. The result of
√
((xi − xj)2 + (yi − yj)2)

is less than 0.1 if an AGV collides with an obstruction due to the line’s narrow width. CAGV
and Cobstacles are both defined as −50 when there is a collision; otherwise, they are 50.

The speed reward guides the AGV to complete the task with the least number of
rotations and the most significant amount of linear speed achievable. Cv is the velocity
coefficient and is used to scale this reward item. The third reward item is related to energy
consumption, denoted by Ei, which is computed differently based on whether the AGV
is stationary or in motion. When the AGV is not stationary, the energy consumption is
computed as the average energy consumption per time step. Otherwise, the corresponding
energy consumption is multiplied by a parameter factor of 0.3, which signifies that the
AGV consumes less energy when in a stationary state compared with when it is in a normal
driving state. The value of Etarget is computed using the route path determined by the D*
Lite algorithm, while Ce is the energy coefficient, which is used to fit this reward item with
other items.

The last two reward items are related to collision avoidance and incentivize the AGV
to avoid path conflicts with other AGVs or obstacles. These reward items are critical to
ensuring the safe and efficient operation of the AGV. In addition, it is worth noting that the
parameters in the reward function play a crucial role in numerical simulation and will be
discussed further in another paper.

4.3. MADDPG with ε-Greedy

Exploration and exploitation are very prominent problems in reinforcement learning,
and they are also the focus of determining whether the reinforcement learning system can
obtain an optimal solution. Exploration would allow an agent to enhance its knowledge
about its action, which may lead to long-term benefits. Improving the accuracy of action
value estimation enables an agent to make more informed decisions. Exploitation uses
the greedy action to acquire the greatest reward through exploiting the agent’s action
value estimates. However, being greedy may not lead to the greatest reward and in fact
may lead to suboptimal results. While exploration may find more accurate action value
estimates, exploitation may obtain more rewards. However, it is not possible to do both
at the same time. Exploration is the right way to maximize the expected return at the
present moment, while exploitation is the right way to maximize the total return in the
long run. Unfortunately, in a certain state, the agent can only perform one action: either
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exploration or exploitation. The two cannot be carried out at the same time, and thus this
is the contradiction that accentuates the emphasis of reinforcement learning and how to
balance exploration and exploitation.

The ε-greedy policy is a popular strategy for balancing exploration and exploita-
tion [46,47]. This policy selects the best action with a probability 1 − ε and a random
action with a probability ε. The parameter ε determines the degree of exploration versus
exploitation, where a high value of ε results in more exploration and a low value of ε
results in more exploitation [48]. However, the ε-greedy method has a limitation in that it
selects random actions uniformly, even though certain actions may be better than others.
To address this limitation, softmax policies have been proposed, which select random
actions with probabilities proportional to their current values [49].In the context of AGV
route selection, the ε-greedy policy can be used to balance exploration and exploitation
by randomly selecting between exploration and exploitation. When one AGV explores its
action, the other AGVs can exploit that action to their advantage. However, the optimal
action for one AGV may not be the optimal action for all AGVs, as route conflicts may
require different actions. Therefore, the challenge in AGV route selection is to find a balance
between exploration and exploitation that maximizes the overall performance of the system.
The ε-greedy policy is a straightforward strategy for balancing discovery and exploitation,
where the parameter ε controls the degree of exploration versus exploitation. The algorithm
of MADDPG with ε-greedy for AGVs is illustrated in Algorithm 1.

Algorithm 1: An algorithm of MADDPG with the ε-greedy policy for AGVs.
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Algorithm 1 An algorithm of MADDPG with ϵ − greedy for AGVs

for j=1 to max-episode do
Initialization of the parameters

for t=1 to M do
for i=1 to N do

n= random number
if n < ϵ then

execute any action(a)
else

execute the action which maximizes Qt(a)with1 − ϵ
end if
ai = µθ i(oi)+Nt
a=(ai, ..., aN)
ri = ki1 × Dposition + ki2 × Cv × v × cos(ω) + ki3 × Ce × (Etarget − Ei) + ki4 ×

CAGV + ki5 × Cobstacles
end for
for agent i=1 to N do

yj = rj
i + γQµ ′

i(x′j, a′1, ...a′N)

L(θi) =
1
s ∑j(yj − Qµ

i (xj, aj
1, ..., aj

N))
2

∇θ i J ≃ 1
S ∑j θiµi(o

j
i)aiQ

µ
i (xj, aj

1, ...ai, ..., aj
N)|ai = µi(o

j
i)

end for
for i=1 to N do

θ′i < −τθi + (1 − τ)θ′i
end for

end for
end for

4.4. Three Algorithms in This Experiment

In this study, we focus on evaluating the performance of three popular reinforce-
ment learning algorithms in a specific scenario. The algorithms we considered were
Q-learning, MADDPG, and enhanced MADDPG with the epsilon-greedy policy, which are
described below.

First, Q-learning is a widely used algorithm that employs off-policy reinforcement
learning to maximize rewards. The algorithm updates a Q table that stores the expected
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reward of each state-action pair. Although Q-learning is a model-independent technique, it
can be prone to taking risks in real-world applications. Our study aims to investigate the
strengths and limitations of Q-learning in the given scenario.

MADDPG, on the other hand, is a centralized, critic-based actor-critic approach that
allows one to consider various reward functions. The algorithm has a critic for each
agent, which increases the amount of data used in the learning process. We evaluated
the performance of MADDPG and compared it with Q-learning to gain insights into the
strengths and limitations of these two approaches.

Finally, we introduce enhanced MADDPG with the epsilon-greedy policy, which is a
straightforward strategy for balancing exploration and exploitation. By randomly selecting
between exploration and exploitation, the algorithm can achieve a balance between the two
strategies. We compared the performance of enhanced MADDPG with the epsilon-greedy
policy with that of Q-learning and MADDPG to evaluate the effectiveness of this approach
in the given scenario.

Our study contributes to the existing literature on reinforcement learning by evaluating
the performance of three popular algorithms in a specific scenario. The findings of this
study can help researchers and practitioners select the most appropriate algorithm for a
given problem and improve the overall performance of reinforcement learning algorithms.

5. Experiments and Results
5.1. Test Scenarios

The experimental test scenarios presented in this paper aim to evaluate the perfor-
mance of an AGV-based system in a warehouse environment. The state of the AGV includes
the position, velocity, and distance between the starting point and the final destination.
The warehouse, as illustrated in Figure 3, has a total area of 82× 66 m2 and is equipped
with a variety of facilities, including a power center, a repair center, and an office room for
workers. The warehouse is divided into 39 racks, denoted by BLOCK, which are strictly off
limits for AGVs.

The AGVs were programmed to stop at the park center when no tasks were assigned.
Additionally, there were designated halt positions, such as A02 and B12, where the AGVs
could temporarily pause while processing an order. There were three types of goods in this
warehouse: delivered goods, transported goods, and relocated goods. Delivered goods
were loaded at the door and unloaded at another position, whereas transported goods were
moved from a specific rack to the door, and relocated goods were transferred from one
rack to another. These tasks were challenging, as the AGVs had to navigate through the
warehouse while avoiding obstacles, as shown in Figure 3.

To evaluate the effectiveness of the proposed algorithm, these tasks were selected as
benchmark problems, and they are described in Table 1. The experimental scenarios aimed
to examine the AGVs’ ability to perform these transfer tasks efficiently and accurately.
The proposed algorithm’s performance was evaluated based on various metrics, including
completion time, task efficiency, and AGV utilization. These experiments provided valuable
insights into the AGV’s performance in a real-world warehouse environment, and they
may lead to improvements in AGV-based systems’ efficiency and effectiveness.

5.2. Numerical Results

In this study, we analyzed the numerical results of the AGV system, which involved
30 AGVs and 3 types of goods categorized into 30 tasks, as illustrated in Table 1. Specifically,
there were 12 tasks for delivered goods (Tasks 01–12), 12 tasks for transported goods (Tasks
13–24), and 6 tasks for relocated goods (Tasks 25–30). Each AGV was assigned 1 task, which
required the 30 AGVs to complete all tasks simultaneously. For instance, AGV-01 was
responsible for completing Task 01 by loading the cargo at the door and unloading it at
position A24. The other tasks followed a similar pattern. Table 1 summarizes the three
types of goods that needed to be processed. Two different types of software tools were used
for the numerical simulations. A piece of the MADDPG algorithm was taken from [42]
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and specifically altered for our needs to yield the transportation line for the AGVs with
parameters in Table 2. Our unique Java-written AGV-scheduling program was used in the
left part for visualization of transportation.

Figure 3. Map of the warehouse.

Figure 4 illustrates the convergence of the reward function in route selection based on
the Q-learning technique. The function showed a gradual rise and eventual stabilization to
a final state as the number of episodes increased. However, both the native multi-agent deep
deterministic policy gradient (MADDPG) and ε-greedy MADDPG techniques converged
more quickly to the steady state. When comparing the two MADDPG techniques, the ε-
greedy strategy yielded better benefits. In the MADDPG algorithm, an ε value of 0.1
provided superior results to values of 0.01 and 0.05. This finding was consistent with most
simulations of the ε-greedy approach, which demonstrated that an optimal value was
attained around ε = 0.1. However, determining the ideal value of ε for the current AGV
environment requires further investigation.

Table 1. Thirty transfer tasks in three projects.

Transfer Type Task List Load Cargo Position Unload Cargo Position

Goods Delivered

Task 01 Door A24

Task 02 Door A17

Task 03 Door A16

Task 04 Door A09

Task 05 Door A08

Task 06 Door A01

Task 07 Door E24

Task 08 Door E17

Task 09 Door E16

Task 10 Door E09

Task 11 Door E08

Task 12 Door E01
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Table 1. Cont.

Transfer Type Task List Load Cargo Position Unload Cargo Position

Goods Transported

Task 13 I24 Door

Task 14 I17 Door

Task 15 I16 Door

Task 16 I09 Door

Task 17 I08 Door

Task 18 I01 Door

Task 19 M24 Door

Task 20 M17 Door

Task 21 M16 Door

Task 22 M09 Door

Task 23 M08 Door

Task 24 M01 Door

Goods Relocated

Task 25 Q24 Z01

Task 26 Q17 Z08

Task 27 Q16 Z09

Task 28 S24 W01

Task 29 S17 W08

Task 30 S16 W09

Table 2. Parameter settings for simulations.

Description Notation and Value

Weight Parameters ki1 = 0.2, ki2 = 0.1, ki3 = 0.5, ki4 = 0.1, ki5 = 0.1
Reward Value Dposition
Velocity Coefficient Cv
Energy Consumption Ei
Target Coefficient Etarget
Energy Coefficient Ce
Collision Parameter between AGVs CAGV
Collision Parameter between AGV and Obstacle CObstacle
Learning Rate 0.15
Discount Factor 0.99
α 0.01
β 0.01
γ 0.95
τ 0.01

(a) Goods delivered. (b) Goods transported. (c) Goods relocated.

Figure 4. Three kinds of goods: rewards.

In this article, we used the AGV’s energy consumption per second as a unit, the AGV’s
total energy once it arrived at its destination as an indicator, and the total energy of all
AGV vehicles, as indicated in Figure 5. From this, it is clear that the route planned by
Q-learning used a significant amount of energy, followed by the route planned by the
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primeval MADDPG algorithm and the route planned by the ε-greedy MADDPG algorithm,
which used the least amount of energy.

(a) Goods delivered. (b) Goods transported. (c) Goods relocated.

Figure 5. Three kinds of goods: energy consumption.

The path of the AGV is shown in Figure 6. The shelves’ green tint indicates that they
can hold stock. The shelf’s yellow tint shows that there is merchandise there. The shelves’
crimson tint indicates that they are completely full. When an AGV is in transit, it is shown
by a yellow AGV, and when it is idle, it is indicated by a green AGV. From the figure, we
can see that due to route conflicts, the AGV transporting items stopped for a period of
time in the middle so that the transport AGV could pass smoothly. At the same time, some
AGVs chose another path to avoid route conflicts.

Figure 6. Illustration of AGVs’ routes.

Furthermore, the simulation results indicate that energy consumption should be taken
into account when selecting the path for the AGVs. It was observed that the rewards
fluctuated more when the AGVs traversed multiple obstacles, whereas the rewards were
more stable when the AGVs encountered fewer obstacles.

6. Conclusions

In this paper, we proposed a multi-agent reinforcement learning (MARL) algorithm to
address the problem of scheduling and routing multiple AGVs with the aim of minimizing
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the overall energy consumption. The proposed algorithm was built upon the multi-agent
deep deterministic policy gradient (MADDPG) algorithm, with modifications made to the
action space and state space to suit the specific activities of AGVs. While prior studies have
overlooked the energy efficiency of AGVs, we designed a reward function that helps to
optimize the overall energy consumption of the system during task completion.

To enhance the performance of our proposed MARL algorithm, we selected suitable
parameters that facilitated obstacle avoidance, speedy path planning, and energy conserva-
tion. We conducted numerical experiments to evaluate the performance of the algorithm,
and the results demonstrate its effectiveness in solving the multi-AGV task assigning and
path planning problem. This leads to a reduction in the total energy consumption of AGV
transportation, which increases as the number of operational AGVs increases.

During the simulation, the outcomes of the simulation were influenced by a range of
parameters. We adopted identical settings for all AGVs in the reward function, although the
parameters for each AGV’s reward function were slightly different due to variations in
position and the actions taken in response to those positions. These differences arose due to
the unique nature of each AGV’s activities. For instance, an AGV tasked with transporting
heavier goods may use more energy than one carrying lighter items. Additionally, we
observed that the optimal ε value for the MADDPG model in the current environment has
not yet been established using the ε-greedy approach.

In our future work, we plan to develop an end-to-end learning framework that fo-
cuses on the direct control inputs of AGVs, rather than utilizing the desired velocity and
angular velocity as the action space. We anticipate that this approach will enhance the
performance of our proposed algorithm even further. By integrating a more comprehensive
understanding of AGVs’ behaviors and their interactions with the environment, the algo-
rithm will be better equipped to adapt to the diverse requirements of various tasks and
settings. Ultimately, we are confident that our research will contribute significantly to
the advancement of energy-efficient AGV systems, which are of growing importance in
contemporary logistics and transportation applications.
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