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Abstract: Finding relevant features that can represent different types of faults under a noisy en-
vironment is the key to practical applications of intelligent fault diagnosis. However, high clas-
sification accuracy cannot be achieved with only a few simple empirical features, and advanced
feature engineering and modelling necessitate extensive specialised knowledge, resulting in restricted
widespread use. This paper has proposed a novel and efficient fusion method, named MD-1d-DCNN,
that combines statistical features from multiple domains and adaptive features retrieved using a
one-dimensional dilated convolutional neural network. Moreover, signal processing techniques are
utilised to uncover statistical features and realise the general fault information. To offset the negative
influence of noise in signals and achieve high accuracy of fault diagnosis in noisy settings, 1d-DCNN
is adopted to extract more dispersed and intrinsic fault-associated features, while also preventing the
model from overfitting. In the end, fault classification based on fusion features is accomplished by
the usage of fully connected layers. Two bearing datasets containing varying amounts of noise are
used to verify the effectiveness and robustness of the suggested approach. The experimental results
demonstrate MD-1d-DCNN’s superior anti-noise capability. When compared to other benchmark
models, the proposed method performs better at all noise levels.

Keywords: fault diagnosis; dilated convolution neural network; signal processing; feature extraction;
anti-noise ability

1. Introduction

Rotating machinery is widely employed in mechanical systems and is critical in indus-
trial applications. As one of the key components of rotating machinery, rolling bearings
typically function in a complex and demanding setting and are hence prone to faults. Any
problem with the rolling bearings may lead to the failure of the entire mechanical system,
resulting in significant equipment downtime, severe financial losses, and even fatalities [1].
Therefore, it is vital to create effective intelligent fault diagnosis approaches to monitor the
state of rolling bearings. Furthermore, recent technical advances have enabled the collection
of massive amounts of monitoring sensor data from various parts of the equipment. Such
information-rich sensor data has popularised and accelerated the usage and development
of data-driven fault diagnosis tools. Over the past two decades, intelligent fault detec-
tion methods based on machine learning (ML) and deep learning (DL) have garnered
widespread attention and are frequently deployed in real-world applications [2–4].

In practice, a typical intelligent fault diagnosis system employing traditional ML
techniques consists of two important steps: (1) feature extraction and selection, and
(2) fault classification. Signal inputs are processed to extract fault-sensitive information,
which is then fed into ML models for fault recognition. Statistical feature information
can be examined in time, frequency, and time-frequency domains through complex signal
processing and analysis methods to uncover the operating conditions of bearings from
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various perspectives. In many circumstances, utilising features from multiple domains has
been demonstrated to be more effective in distilling useful information than single-domain
features for fault diagnosis problems [5]. Yan and Jia [6] employed various approaches
to extract fault feature information from multi-domain aspects. It allowed for the raw
vibration signals to be analysed for their inherent properties and the specifics of the bear-
ing conditions. Abid et al. [7] defined a combined multi-domain feature set made up of
time-domain and frequency-domain statistical features along with some special features.
Multi-domain features derived from decomposed sub-band vibration signals were used by
Ma and Wu [8] to enhance feature quality. Most recently, Yu et al. [9] conducted an experi-
mental study on multi-domain fault features extraction for underwater vehicles, revealing
effective improvement in feature identification. Furthermore, with the advanced develop-
ment of artificial intelligence, deep learning has become increasingly popular in the field of
fault diagnosis. Its deep architectures and nonlinear transformations enable it to capture
representative information directly from input signals at multiple levels of abstraction [4].
Deep learning, in contrast to traditional ML methods, reduces the signal pre-processing
steps and emphasises the mapping between signals and fault classes, thus minimising
the need for empirical knowledge of signal processing. It has the ability to capture fault
features from bearing signals in an adaptive manner and conduct the diagnostic process in
an end-to-end way. Deep Convolutional Neural Networks (CNN) are the most adopted
deep learning models in fault diagnosis applications, owing to their superior performance
in hidden feature extraction and classification, particularly when large amounts of data are
available [10,11]. Guo et al. [12] employed a novel hierarchical adaptive CNN to diagnose
bearing faults and determine bearing severity. The model achieved 99.7% accuracy using
data obtained from a test rig. Jing et al. [13] converted the original time-domain signal
into the frequency spectrum and applied 2d-CNN to learn features and diagnose gearbox
faults. It obtained noticeably better performance than manual feature extraction methods.
In the works of Abdeljaber et al. [14], a 1d-CNN model with inherent adaptive designs to
combine feature extraction and fault classification into a single block was adopted in the
real-time damage detection system.

Bearing signals are often gathered in a very complex operation setting. Using a
combination of features gleaned from multiple channels improves the ability to distinguish
between different health conditions of rolling bearings. Several feature fusion algorithms
have since been proposed to capitalise on the advantages of multiple fault diagnosis
approaches or multiple sensory data sources [15]. Liang et al. [16] employed a parallel
convolutional neural network (P-CNN) architecture to extract features in the time and
time-frequency domains and fused multi-domain features to enrich fault information and
improve model performance. Guo et al. [17] implemented a hybrid feature model that
integrated nonlinear aircraft dynamics characteristics and DL-based features to identify
fault signals from sensors on unmanned aerial vehicles (UAVs). Most recently, a bearing
fault fusion method of incorporating empirical features and adaptive features extracted
by a modified neural network structure (LiftingNet) was presented by Xie et al. [18] and it
utilised XGBoost for the fault classification task. The result was validated by two motor
bearings datasets and demonstrated improved accuracy.

Excellent diagnosis results have been produced in the past using ML or DL-based
techniques [19]; however, these models have often been tested using bearing signals col-
lected in a controlled laboratory setting, which is not representative of real-world industrial
circumstances. To be more exact, the signal quality and subsequent feature learning ca-
pacity will suffer since real-world applications would inevitably include plentiful noise
in collected vibration signals. Several CNN-based architectures with anti-noise capabil-
ity have been proposed by researchers. For instance, to conduct bearing fault diagnosis
under noisy environments and changing working loads, Zhang et al. [20,21] suggested
an end-to-end CNN approach that greatly outperformed prior methods. Yao et al. [22]
put forward a stacked inverted residual CNN (SIRCNN) to improve diagnostic efficiency
while still retaining exceptional robustness and noise-fighting capabilities. Because the
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convolutional kernels used in these methods are typically adept at capturing local features,
the inference of strong noise hinders the feature learning ability and leads to a certain
decline in diagnosis performance.

The majority of the fault diagnosis techniques listed above run into the following
issues: (1) despite the relatively good accuracy, the generalisation ability is not optimal
when evaluating under different operating circumstances, and overfitting may occur;
(2) in order to extract delicate information and achieve higher accuracy, the neural network
architectures are unduly complicated, which further increases the computational complex-
ity; (3) the performance of the model is hampered in noisy environments since the fault
features are frequently highly coupled with noises and the local feature extractors could
fail to detect relevant fault features.

As a result, this paper introduces a novel feature fusion architecture for rolling bearing
fault diagnosis based on one-dimensional dilated CNN (1d-DCNN) and signal processing
methods in multiple domains (time, frequency, and time-frequency domains). The model
employs dilated CNN for its unique ability to expand receptive fields and capture more
dispersed and intrinsic details without increasing computational cost [23,24]. These auto-
matically derived features are then combined with the statistical features produced from
the multi-domain signal processing stages. This allows the model to retain its robustness
and generalisation abilities while taking advantage of both feature extraction techniques.
Fully connected layers are used for the final fault classification task. Eventually, the model
is trained in both a no-noise and Gaussian-noise setting. The primary contributions of this
study can be summarised as follows:

(1) A novel feature fusion model, MD-1d-DCNN, is built using multi-domain statistical
characteristics and adaptive features from one-dimensional dilated CNN. It achieves
greater robustness against noise than state-of-the-art benchmark approaches.

(2) Bearing condition indicators that are reflective of bearing faults from several perspec-
tives can be effectively evaluated utilising signal processing and analysis techniques
in the time, frequency, time-frequency domains.

(3) By introducing dilated CNN, we can learn features more effectively over an extended
field and avoid getting stuck in local feature extraction. It aids in circumventing
the overfitting issue and allows for the extraction of high-quality features in a noisy
environment, expanding the scope of use for this fault diagnosis model.

(4) The performance of the proposed approach is assessed by adopting two rolling bearing
datasets created by the Bearing Data Centre at Case Western Reserve University and
the Railway Technology Research Group of the Polytechnic University of Madrid,
respectively. The experimental findings show that the suggested method provides
exceptional fault diagnosis accuracy and anti-noise capabilities. It is indicative of
strong performance in real-world situations.

2. Fundamentals

In this section, the essential concepts of wavelet packet transform (WPT) and one-
dimensional dilated CNN, which are employed in the proposed method, are briefly de-
scribed.

2.1. Wavelet Packet Transform

Wavelet packet transform, a technique for multi-scale time-frequency analysis, is an
efficient tool for analysing nonlinear and nonstationary vibration signals [25,26]. The signal
can be decomposed by WPT into multiple signal components with varied centre frequen-
cies. As seen in Figure 1, WPT can break down the signal’s high-frequency component
into greater detail than the traditional Wavelet Transform (WT) without omitting any infor-
mation [27]. Consequently, it is a more effective instrument for analysing nonstationary
vibration signals with high-frequency perturbations and substantial background noises.
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The decomposition relationship in wavelet subspaces, denoted as Wn
j , can be described

as Wn
j = Un

j = U2n
j+1

⊕
U2n+1

j+1 , where j ∈ Z. Figure 1 displays the schematic diagram of the
wavelet packet structure decomposition at level 3, in which the top level of the WPT tree
indicates the original time-domain signal. The wavelet packet coefficients resulting from
this decomposition process can be formulated as follows:

c2n
j+1,k = ∑

l∈Z
cn

j,lh0(l − 2k), k ∈ Z (1)

c2n+1
j+1,k = ∑

l∈Z
cn

j,l g0(l − 2k), k ∈ Z (2)

where l = 1, 2, · · · , λ, n = 0, 1, · · · , 2j − 1, k is the translation factor, j is the layer
number, and λ is the sampling length of the time series signal. Moreover, c2n

j+1,k and c2n+1
j+1,k

are the wavelet packet coefficients, h0(·) and g0(·) are the low-pass and high-pass filters,
respectively. After the wavelet packet coefficients are obtained through the decomposition
process, the reconstruction operation is required to obtain the signal components at the
various frequency bands. A three-layer wavelet packet decomposition results in eight signal
components, as illustrated in Figure 1, with each component corresponding to its frequency
band. As different fault types have different vibration frequencies, the corresponding
changes in signals can be observed in different frequency bands, making it more effective
in extracting relevant fault features.

2.2. One-Dimensional Dilated Convolutional Neural Network (1d-DCNN)
2.2.1. One-Dimensional Convolutional Neural Network

Over the past decade, CNN’s capacity to learn complicated patterns and extract hidden
features has made it the dominant tool for many machine learning tasks. Traditional deep
CNNs have reached state-of-the-art performance in several applications such as image
classification and recognition. Nonetheless, such deep CNNs are normally designed and
constructed for two-dimensional (2d) signals. Input signals collected in bearing fault
diagnostic tools are predominantly unidimensional (1d). Due to the mismatch between
the kernel and signal dimensions, the direct utilisation of a deep CNN in a fault diagnosis
system is not feasible. It necessitates a suitable 2d-to-1d transformation, which naturally
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increases the computational complexity. In response to this shortcoming, compact and
adaptive 1d-CNNs have since been developed and implemented in a variety of practical
1d diagnostic applications [14,28]. Equation (3) describes mathematically the standard 1d
convolution operation.

xi = (w ∗ s)i =
n

∑
f=1

wi+ f ·si+ f + b (3)

where xi is the output of the ith receptive field in the input, wi+ f represents the 1d convolu-
tion kernel, si+ f is the element in the input sequence’s receptive field, and b indicates the
scalar bias. The value n denotes the size of the receptive field, or kernel.

The output of the neuron at the hidden layer can be computed from the input xi using
the activation unit. In this investigation, a non-linear activation function named the leaky
rectified linear unit (Leaky ReLU) is used. Leaky ReLU function is an enhanced version of
the ReLU activation function. ReLU activation function ( f (x) = max(0, x)) often suffers
the ‘dying’ ReLU issue, i.e., the gradient will be set to 0 for all negative inputs, meaning
the corresponding neurons in the network will remain inactive regardless of the inputs
supplied. Leaky ReLU, as represented in Equation (4), is designed to address this issue
by returning small linear component of x for negative inputs. The slope coefficient α is
determined prior to training.

f (x) = max(αx, x) (4)

Batch Normalization (BN) is another important operation, which is used to standardise
and normalise the network’s batch inputs. It helps speed up and stabilise the training
process of the deep neural network, address the internal covariate shift issue, and improve
the robustness of the network. Mathematically speaking, the BN process first subtracts
the mean value (µ) of the batch inputs (yi) and then divide it by the sum of the batch’s
standard deviation (σ) and the smoothing term (ε), as seen in Equation (5). The smoothing
term is employed to prevent a division by a zero value. Furthermore, two additional
trainable parameters, i.e., re-scaling (λ) and shifting (β) parameters, are introduced at the
end in Equation (6) since scaling inputs by a randomly initialised parameter decreases the
accuracy of the weights in the subsequent layer. This ensures that the optimal values for
two parameters are chosen, allowing for accurate batch normalisation.

ŷi =
yi − µ

σ + ε
(5)

zi = λ·ŷi + β (6)

The pooling layer, often referred to as the down-sampling layer, is usually added
behind the 1d convolution process to decrease the dimension of feature maps and the
number of related parameters while preserving the most prominent features. Max pooling
is an aggregating procedure in which the maximum value is extracted using a window
with a scalable size that slides over the feature map with a pre-defined stride of length.
Within the region R on the feature map, max pooling can be summed up in the following
formula:

z = max
i∈R

zi (7)

Given the fact that the size of the convolution kernel is typically kept low in traditional
CNNs, convolution kernels can only cover limited receptive fields, allowing it to extract
just local information. The number of parameters and computational cost will both rise
when the size of the convolution kernel increases. As a result, dilated convolutions are
introduced to make up for this drawback of standard convolutions.

2.2.2. Dilated Convolution

When compared to standard convolutions, dilated convolutions are able to learn and
aggregate features over a wider time window [29]. By gathering additional feature informa-
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tion without raising the overall number of trainable parameters or rearranging the sequence
of the input data, it provides benefit that standard convolutions lack. Therefore, convolu-
tions with dilated filters are frequently employed to enhance feature extraction ability over
an extended time horizon [28,30]. The dilation structure has displayed exceptional capabili-
ties in a diverse range of time-series analyses and image denoising applications [28,31,32].
In this work, we adopt 1d dilated convolutional neural networks (1d-DCNN) to capture
sensitive fault information from rolling bearing signals.

The receptive field size of the convolution kernel is what primarily differentiates stan-
dard convolution from dilated convolution. As can be seen in Figure 2, a convolution with
a dilation factor of 1 (d = 1) is identical to a standard convolution, whereas a convolution
with a dilation factor of greater than 1 (d > 1, d ∈ Z) expands the receptive field by
skipping pixels between consecutive elements. In principle, it is equivalent to inserting “0”
between the elements of the convolution kernel. For a 1 ∗ k convolution kernel, the size of
the dilated convolution kernel kd can be defined using Equation (8):

kd = k + (k− 1)(d− 1) (8)
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Figure 2. Dilation kernels with various dilation rates (when d = 1, it is equivalent to the standard
convolution operation).

By having a fixed gap (d− 1) between elements, which are depicted in Figure 2 as
coloured squares, the dilation operation enlarges the receptive field of the convolution
kernel and covers a larger amount of the input information. Therefore, when the dilation
factor d is set to 2, the 1 ∗ 3 convolution kernel is expanded to a 1 ∗ 5 dilated convolution
kernel. Similarly, it will be expanded to a 1 ∗ 7 dilated convolution kernel when d = 3,
so on for increasing values of d. In this model, both the structure of the dilation and the
dilation factor for each convolution layer are fixed.

Moreover, in dilated convolution the receptive field can be enlarged exponentially
by stacking layers of convolutions with increasingly dilated values. Figure 3 provides an
intuitive visual comparison between traditional convolution and dilated convolution with
a three-layer convolution structure. In the output layer, the tradition CNN can only capture
four inputs in the signal. With adjusting the layer depth or the kernel size, dilated CNN can
acquire 8 data points under the same conditions. This demonstrates that the dilated CNN
can learn more essential knowledge of the wider context without any loss of resolution.
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Furthermore, let d be a dilation factor and ∗d denote the dilated convolution and
Equation (3) can be rewritten to define the 1d dilated convolution operation [28], as shown
in Equation (9).

xi = (w ∗d s)i =
n

∑
f=1

wi+d∗ f ·si+d∗ f + b (9)

3. The Proposed Method
3.1. Model Structure

The proposed bearing fault diagnosis model is based on the examination of calculated
statistical characteristics describing the health conditions of machines and the adaptive
features distilled from the deep dilated convolutional neural network. Figure 4 depicts
the suggested method’s data processing workflow. The model structure is made up of
two essential modules: the feature extraction module and the fault classification mod-
ule. The feature extraction module is composed of two parallel components. The first
component contains classic statistical features extracted from bearing vibration signals
in time, frequency, and time-frequency domains utilising expertise and prior knowledge.
These representative fault characteristics have been proven to be useful and effective in
detecting and quantifying relevant signal parameters [1,4]. The other component uses
a one-dimensional dilated CNN (1d-DCNN) model to extract nonlinear and adaptive
features from the bearing signal. Additionally, spectrum data can significantly shorten
the sequence and improve the information representation during the feature extraction
stage. Therefore, before transferring the vibration signal into the 1d-DCNN model, fast
Fourier Transformation (FFT) was applied. 1d-DCNN structure allows for the learning of
intricate links between signals and corresponding fault classes as well as the acquisition
of sophisticated hidden features. High-dimensional features derived from two parallel
components are likely to possess correlative and redundant information. Simply utilising
these features as input to a classification module will result in poor diagnostic performance.
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Therefore, 16 representative features from each parallel component are combined as the
input to the classifier.
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Figure 4. Network architecture of the proposed bearing diagnosis model.

3.2. Feature Extraction
3.2.1. Data Preprocessing and Sequence Generation

The original bearing vibration data are essentially one-dimensional time series. These
unprocessed data have a high degree of noise and variability and come in different lengths.
A standard data preprocessing step is presented to normalise the vibration data and
produce smaller samples of data from the original time series. The vibration data can be
normalised to fall within the range of [0, 1], using the Min-Max normalisation method [18].
The calculation formula is given in Equation (10):

x∗ =
x− xmin

xmax − xmin
× (cmax − cmin) + cmin (10)

where xmax and xmin represent the maximum and minimum values of the original measure-
ment signal, respectively, and cmax and cmin are the maximum and minimum normalisation
range. Both the training and test data sets will be subjected to this normalisation process.

The sequence generation phase can be thought of as the development of smaller, non-
overlapping sub-samples from the original time series. Usually, the number of data points
N in a complete rotating motor shaft is calculated by N = fs·60/ω, where fs represents the
sampling frequency and ω is the rotating shaft speed in rpm. The sample length should be
larger than the computed value to ensure each of the smaller samples contains at least a
full bearing vibration cycle of the recorded data.

3.2.2. Multi-Domain-Based Fault Feature Extraction

Signal processing techniques in the time, frequency, and time-frequency domains are
used to uncover fault characteristics in vibration bearing signals. The term “time-domain
signal” typically refers to the initial vibration signal that was recorded from the rotating
machinery. When a fault develops, the mechanical structures in its vicinity are altered,
generating an impulse or shock that causes the variation in vibration signals. Additionally,
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these time-domain signals’ amplitudes and distributions may alter. As a result, time-
domain statistical features are used to characterise the mechanical operating conditions
based on vibration signal waveforms. For instance, the trend, magnitude, and energy of
a time-domain signal can be reflected in several metrics, such as the root amplitude, root
mean square, and peak value. In most cases, a fault can cause irregular mechanical vibration
and elevate these metrics, which can clearly indicate how severe a fault is when it becomes
worse. Nonetheless, they are insensitive to weak incipient faults. Because of this, additional
features are used to describe the time series distribution and gauge the impulse of signals,
including kurtosis value, crest factor, clearance factor, shape factor, impulse factor and so
on. These features are robust to changing operational environments and are reliable early
warning signs of faults. As indicated in Table 1, a total of 8 time-domain features are chosen
for this analysis. While time-domain features can display certain underlying characters
of a signal, they are not sufficiently strong enough to reveal the underlying character
of a signal and they cannot accurately portray the mechanical health issues of rotating
machinery. One effective and potent tool for analysing stationary signals is frequency
spectrum analysis, which can identify the frequency distributions and components of
gathered vibration signals. The Discrete Fourier Transform (DFT), which is efficiently
computed by FFT, is used to construct a frequency-domain spectral representation of
signals. However, the majority of bearing vibration signals are sporadic or nonstationary.
This scenario normally prevents the functional use of the conventional Fourier transform.
Nevertheless, the vibration signals can still be regarded as roughly stationary for finite data
lengths [1]. As a result, 8 sensitive frequency-domain statistical features can be utilised to
represent the bearing operational state from the frequency spectrum to some extent. The
formulas for these adopted frequency-domain features, which are grouped as indicators of
frequency position change and indicators of energy, are listed in Table 1.

Table 1. Mathematical expressions of statistical features from different domains.

Time Domain Frequency Domain Time-Frequency Domain

Mean-absolute pt
1 = 1

N

N
∑

n=1
|x(n)|

Position
change

indicator

p f
1 =

√
∑K

k=1 f 2
k s(k)

∑K
k=1 s(k)

Relative
energy

Ei =
E′i

∑n
i=1 E′i

where E′i = energy
of each frequency

band,
∑n

i=1 Ei=1

Root-mean-square pt
2 =

√
∑N

n=1(x(n)))2

N p f
2 =

√
∑K

k=1 f 4
k s(k)

∑K
k=1 f 2

k s(k)

Square-mean-root pt
3 =

(
∑N

n=1

√
|x(n)|

N

)2
p f

3 = ∑K
k=1 fks(k)

∑K
k=1 s(k)

Peak-to-peak pt
4 = max(x)−min(x)

Energy
indicator

p f
4 = 1

K

K
∑

k=1
|s(k)|

Kurtosis pt
5 =

1
N ∑N

n=1(x(n))4

(pt
2)

4 p f
5 =

∑K
k=1

(
s(k)−p f

4

)2

K Energy
entropy

H = −
n
∑

i=1

Ei
E log Ei

E

where E = ∑n
i=1 Ei

Crest factor pt
6 =

max(|x|)
pt

2
p f

6 = max(s)

Shape factor pt
7 =

pt
2

pt
1 p f

7 =

√
∑K

k=1

(
fk−p f

3

)2
s(k)

K

Impulse pt
8 =

max(|x|)
pt

1 p f
8 =

∑K
k=1

(
fk−p f

3

)3
s(k)

K
(

p f
7

)3

In order to obtain more characteristic fault information, WPT is utilized to generate
additional sub-signals, allowing for the extraction of more advanced features from nonsta-
tionary vibration signals. As displayed in Figure 5, the vibration signals are decomposed
by db5 WPT at level 3, producing 23 = 8 frequency-band signals. 8 statistical features in the
time domain are obtained from each of the 8 frequency-band signals in a manner similar
to the feature extraction method described above. This results in additional 64 features.
Moreover, demodulation is introduced to reduce the impact of extraneous information on
fault identification. As a result, the decomposed signals are further demodulated using
the Hilbert transformation due to its superior capability to detect incipient bearing faults
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even in the presence of heavy background noise [33]. Another feature set including 64
frequency-domain features is subsequently derived from the envelop spectrum of each
decomposed signal. Finally, by virtue of WPT, 9 time-frequency-domain features that
reflect the energy distribution of the frequency-band signals are also acquired. The energy
and energy entropy of these decomposed signals in the independent frequency channels,
as shown in Table 1, carry a wealth of information about operational states and faults of
certain mechanical parts, which can facilitate the efficient monitoring and diagnosis of
various mechanical issues [34]. In summary, the multi-domain signal processing steps
discover a total of 153 fault-related features. These complementary features uncover fault
characteristics from multiple perspectives and have been shown to be highly effective and
ubiquitous in a variety of fault diagnostic tasks [1,7].
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Figure 5. Feature extraction from multiple signal domains using WPT.

Despite the fact that the aforementioned extracted features may disclose rolling bearing
faults from a variety of angles, not all of them are sensitive or closely associated to the
fault conditions. To enhance classifier performance and avoid the dimensionality curse, it
is crucial to extract the information that is most directly connected to faults and toss out
irrelevant or redundant features. Therefore, the detected features are fed into a three-layer
dense layers to reduce the size of learned representations down to 16. The characteristics
from the output will then be integrated with the outcomes from the other parallel feature
extraction component.

3.2.3. 1d-DCNN-Based Fault Feature Extraction

As displayed in Figure 4, fast Fourier transform is first applied to the time-domain
vibration signal to enhance information representation. The transformed data will go
through the 1d-DCNN architecture that consists of four dilated convolutional blocks in
parallel-stack form. Each dilated convolution block is a stack of one-dimensional dilated
convolution layer, batch normalisation, activation layer, and max-pooling layer. The
parameters employed in each block are specified in Table 2. The stacked dilated convolution
blocks are effective in expanding the receptive field and capturing more signal context
information without increasing computational cost. Dilated convolution is followed by
Leaky ReLU to help propagate gradients efficiently and create a feature map. Dilated CNN
computation is already shown in the Section 2.2 with great details. In this analysis, 4 layers
of dilated convolutions of increasing dilation width of 1, 2, 4, and 4 are utilised to maximise
the feature extraction performance in noisy settings. After flattening the output of dilated
convolutional layers, the information is passed to a fully connected layer to obtain the
engineered features. A dropout layer is added to random discard some dense layer weights
during training to reduce overfitting.
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Table 2. Specific parameters of the proposed model architecture.

Operation Layer Parameter

1d-DCNN feature
extraction

1d-DCNN (LeakyReLU, BN, MaxPooling) Filter: 16, kernel: 64, dilation rate: 1, pool size: 2
1d-DCNN (LeakyReLU, BN, MaxPooling) Filter: 32, kernel: 16, dilation rate: 2, pool size: 2
1d-DCNN (LeakyReLU, BN, MaxPooling) Filter: 32, kernel: 16, dilation rate: 4, pool size: 2
1d-DCNN (LeakyReLU, BN, MaxPooling) Filter: 64, kernel: 16, dilation rate: 4, pool size: 2

Dense Units: 16
Dropout Dropout rate: 0.2

Multi-domain feature
extraction

Dense Units: 100
Dense Units: 50
Dense Units: 16

Dropout Dropout Rate: 0.5

Output layer Dense Units: 32
Dense Units: 12

3.3. Feature Fusion and Loss Function

The purpose of feature fusion is to combine feature information from different sources
and further decrease the feature dimensions to reduce the classification difficulty. In
this case, the statistical features extracted from multiple domains are fused with high
level representations from one-dimensional dilated convolutional operations to enhance
the fault feature. The statistical features chosen for the task are well recognised fault
indicators that have been tested and applied to appropriately depict diverse fault conditions.
The extraction and utilisation of these general features ensure the robustness of the fault
classification model. As a result, 153 fault-related features are produced by the multi-
domain feature extraction module. Following that, three dense layers are adopted to
reduce the dimension and remove the redundant information from the original statistical
features, yielding a total of 16 features. The feature number is the same as that of the
adaptive features, which are obtained from the last fully connected layer output in the
adaptive feature extraction module. These two complementary feature sets are fused
into a concatenated feature vector of dimension 32, and then used as the input to the fully
connected layers to learn the feature interactions and dependencies and map the distributed
feature representation to the label space. This allows for a full merging of both general
characteristics and more nuanced, hidden features. Two consecutive full connection layers
are employed in the end to improve the non-linear fitting ability of the network and the
weights in each layer are randomly initialized and trained for optimization. In order to
measure the quality of fusion features, the softmax function (σ), as shown in Equation, is
used to calculate the posterior probability distribution of the target.

σ(zi) =
ezi

∑M
j=1 ezj

(11)

where zi is the ith input feature of the softmax function and M is the number of categories
in the multi-class classifier. Moreover, the loss function calculates the error between the
predicted value and the true value, backpropagates the error from the last layer to each layer
of the network, and updates the weights. The updated parameters continue to participate
in the training, looping back and forth until the loss function value reaches the minimum;
that is, the goal of the final training is reached. In this paper, cross-entropy loss function is
adopted, denoted as Lc, and it can be computed using Equation.

Lc = −
1
N

N

∑
i=1

M

∑
j=1

pi,j log
(
qi,j
)

(12)
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where N is the total number of samples, qi,j is the predicted probability of observation
i belonging to class j, and pi,j is the sign function (0 or 1) that represents the label value of the
observation. To enhance the robustness of features and prevent overfitting, regularization
term is added to the loss function L.

L = Lc + λLr (13)

Lr = ∑
θ

θ2 (14)

where λ is the regularization coefficient, θ is the network parameter, and the term Lr in
Equation (14) is L2 regularization term and it can improve the sparseness of the network.

4. Experimental Validation

Extensive experiments have been carried out on two different rolling bearing datasets
to assess the performance of the proposed method. In Case 1, the benchmark bearing dataset
provided by the Case Western Reserve University (CWRU) Bearing Data Centre [35] is used
to validate the suggested model. The dataset used in Case 2 was captured by the Railway
Technology Research Group (Centro de Investigación en Tecnología Ferroviaria—CITEF) at
the Polytechnic University of Madrid utilising a low-cost, high-frequency data acquisition
device [36,37]. All validations are conducted on Google Colab platform with an Intel Xeon
processor and Tesla P100 GPU with 26 GB of RAM. The suggested model is written and
developed using Keras’s functional API with TensorFlow 2.1.0 backend in Python 3.6.

4.1. Case One: The CWRU Bearing Data
4.1.1. Experiment Setup and Data Description

The CWRU Bearing Data Centre’s rolling bearing dataset is frequently used as a
benchmark dataset to assess the effectiveness of various intelligent fault diagnosis methods.
Figure 6 depicts the test rig that was used to acquire the dataset. It primarily comprises
of a 2-hp Reliance Electric motor, a torque transducer/encoder, accelerometer, control
electronics, and a dynamometer. The deep-groove ball bearing (6205-2RS JEM) manufac-
tured by SKF served as the tested bearing. Under motor loads of 0 hp, 1 hp, 2 hp, and 3
hp (1 hp = 746 W), vibration data recorded at the drive end of the motor housing with a
sampling frequency of 12 kHz were utilised in this investigation. Single point faults were
introduced by electro-discharge-machining (EDM) with fault diameters of 0.007, 0.014, and
0.021 inches (1 inch = 25.4 mm) at the inner race (IR), the rolling element (RA), and the
outer race (OR) of the bearing. In addition, 0.028 inches damage was also introduced on the
IR and RA. For each motor load, the healthy bearing condition was also added in addition
to the aforementioned bearing fault types. Therefore, a total of 12 bearing health condition
types are included in this analysis, as shown in Table 3.
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Table 3. Description of the CWRU rolling bearing dataset.

Fault Type Fault Diameter (in) Class Label Sample Size

Normal (N) - 0 120

Inner race (IR)

0.007 1 120
0.014 2 120
0.021 3 120
0.028 4 120

Rolling element (RA)

0.007 5 120
0.014 6 120
0.021 7 120
0.028 8 120

Outer race (OR)
0.007 9 120
0.014 10 120
0.021 11 120

We take 1024 data points of vibration signal sequence as a sample and obtain 120
samples for each bearing condition. Therefore, a total number of 1440 samples are included
in the dataset. We split the dataset into train, validation, and test sets in a ratio of 70%, 20%,
and 10%, respectively.

4.1.2. Model Performance Metrics

Accuracy is adopted as the main evaluation metric in this study. In the realm of
fault diagnosis, it is one of the most widely utilised performance indicators. Equation (15)
provides a mathematical definition for accuracy.

accuracy =
TP + TN

TP + TN + FN + FP
(15)

where the terms TP (true positive) and FN (false negative) refer to the number of actual
positive examples that are correctly classified as positive and those that are incorrectly
identified as positive samples, respectively. Similarly, the term TN (true negative) represents
the number of actual negative examples correctly classified as negative, while FP (false
positive) is the number of actual negative samples incorrectly classified as positive. In most
cases, a higher accuracy reflects an improved classifier performance.

In addition, confusion matrix is also used to summarise and visualise the performance
of multi-class classifiers in this paper. A confusion matrix displays the proportion of
correctly classified cases as well as the proportion of cases that are misclassified among
various categories, i.e., the values along the diagonal represent the proportion of correct
classifications made by the algorithm, while the other numbers represent the errors made.

4.1.3. Model Evaluation

In this section, the MD-1d-DCNN model is assessed by means of CWRU bearing
dataset. Several ML/DL and fusion models for fault diagnosis, including random forest
(RF), support vector machine (SVM), one-dimensional dilated convolutional neural net-
work (1d-DCNN), CNN-LSTM (long short-term memory), and XGBoost-fusion (empirical
features fused with adaptive features from LiftingNet) [18], denoted as XGBF for simplicity,
are employed to evaluate the efficacy and practicality of the suggested method. It is im-
portant to note that the curse of dimensionality might arise when using SVM on raw data
without carrying out feature reduction, which is why principal component analysis (PCA)
is frequently paired with SVM to boost the classification performance. This method will
henceforth be referred to as PCA-SVM throughout the remainder of the paper. Moreover,
each model will be tested five times and the average accuracy of five tries will be adopted
as the evaluation result.
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As seen in Table 4, the proposed MD-1d-DCNN achieves the highest testing accuracy
of 100%, outperforming the XGBoost-based fusion model by 0.3% and by at least 4.5%
compared to traditional ML models such as PCA-SVM and Random Forest. By utilising a
set of confusion matrices, the diagnosis outcome is graphically presented against a variety
of fault labels for each model in Figure 7. The suggested method exhibits outstanding
classification performance across all fault types, whereas other benchmark models have
missed predictions for a variety of labels. Moreover, Table 4 displays the training duration
for each model used in this experiment. DCNN-based models are noticeably quicker than
those built with other approaches. Due to the sequential computation in the LSTM layer,
the training time for the CNN-LSTM model is lengthy. The findings show that the proposed
method yields desirable outcomes in terms of accuracy and training duration. In addition,
it is necessary to point out that the CWRU dataset’s bearing fault signals are representative
of the standard public dataset given that it was collected using high-quality equipment in
controlled experimental settings. In most cases, it is straightforward to determine the fault
issue when examining the CWRU vibration data; hence, the performances of all models on
the CWRU data are generally satisfactory, even when inspecting the classification results in
finer detail for each fault label.

Table 4. Comparison of accuracy with other models under a noise-free environment for CWRU
dataset.

Methods

MD-1d-
DCNN XGBF CNN-

LSTM 1d-DCNN RF PCA-SVM

Accuracy 100.0% 99.70% 99.89% 99.89% 91.94% 95.32%

Time 55 s 133 s 101 s 36 s 96 s 71 s

4.1.4. Model Performance under Various Noise Levels

Conventional laboratory bearing testing employs single-point damaged rolling bear-
ings in a quiet setting. However, the efficacy and adaptability of fault diagnosis methods
are frequently hindered by strong noises interferences in the bearing signals gathered from
an operational environment. In this section, the proposed model will be evaluated on the
CWRU dataset under various noise levels. As a result, a Gaussian white noise is added to
the raw vibration signals to imitate the data acquired in a noisy industrial environment.
This is done so that the performance of the model mirrors the real-world scenario more
closely. The signal-to-noise ratio (SNR), as given by Equation (16), is commonly employed
to quantify the noise level.

SNR = 10 log10

(Psignal

Pnoise

)
(16)

where Psignal and Pnoise represent the power of signal and Gaussian noise, respectively.
Figure 8 displays the time signal and time-frequency spectrum of the 0.007-inch-fault
bearing signal with five different amounts of additional noise, ranging from −6 dB to 6 dB,
in order to better highlight the attributes of noisy signals in various domains. The spectrum
is produced using short-time Fourier transform (STFT) over time windows [38], where the
time outputs correspond to time window centres. As shown in Figure 8, the spectrogram is
clearly capable of revealing certain fault features, which are difficult to differentiate from
jumbled time signals, and collecting vital visual information regarding bearing fault. More
importantly, when the noise grows, it dilutes the fault characteristics, making it harder to
identify frequencies that are associated with bearing faults. As the SNR approaches −3 dB
and −6 dB, it is difficult to visually determine the fault characteristics. Consequently, it
significantly magnifies the difficulty of fault diagnosis and can be served as a good way to
test the model’s anti-noise capability.
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In this experiment, we introduced nine distinct noise levels ranging from 10 dB
to −6 dB (from low to high) into the raw bearing data. The suggested MD-1d-DCNN
model’s testing accuracy is compared to that of RF, PCA-SVM, 1d-DCNN, CNN-LSTM,
and XGBF. Figure 9 depicts the outcomes of the analysis. It is evident that the MD-1d-
DCNN model gets the best diagnostic performance compared to other benchmark models
in all noise settings. At an SNR of larger than 0 dB, the MD-1d-DCNN model tests with
near-perfect accuracy; while at an SNR of −6 dB, the accuracy drops slightly but still
exceeds 96%. When the degree of noise is low (the SNR is high), on the other hand,
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all the benchmark models have performed similarly well, scoring between 90.5% and
99.8%, indicating that low-degree noise only has a small impact on the diagnosis. In
other words, the benchmark models’ limited feature detection capability is most likely to
blame for the diagnostic errors. Yet, when noise increases, benchmark model performance
deteriorates. When the SNR values are less than 0, the XGBoost-based fusion model delivers
relatively good classification performance, with accuracies between 98.6% and 99.8%, only
lagging behind the MD-1d-DCNN by 1.4%. However, when SNR falls below 0, diagnostic
accuracy significantly decreases. In a situation when the signal-to-noise ratio (SNR) is −6,
the suggested MD-1d-DCNN performs 8.3% better than the XGBF. In comparison, other
benchmark models suffer more drastic performance decline, with as much as a 30% gap
between different SNRs, e.g., PCA-SVM’s accuracy at an SNR of 10 dB is 93.1% but the
value decreases to 63% when SNR moves down to −6 dB. After SNR falls below 2 dB, this
trend becomes glaringly obvious. Even at the greatest noise level (SNR = −6 dB), where
the CNN-LSTM model excels among other benchmark methods with a diagnostic accuracy
of 78.5%, it is about 18% less effective than the suggested MD-1d-DCNN. It highlights the
advantage of the MD-1d-DCNN over other approaches in feature learning and recognition
in a highly noisy setting. This is primarily attributable to the following two factors: First,
the model can extract features from a variety of facets, which helps to counteract the
negative effect of noise on fault-relevant feature detection inside only a single domain.
Second, noise can contaminate fault information and harm feature learning in traditional
CNN-based models, which focus on local features as the kernel slides across the signal. The
MD-1d-DCNN, however, applies dilated filters to acquire and aggregate features over an
extended time span, thus making it more robust against ambient noise. Due to its excellent
anti-noise capabilities and avoidance of additional denoising processing, it is therefore
more suited for bearing fault diagnosis in actual operation.
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Figure 9. Comparison results of different diagnostic methods on CWRU dataset with different
noise levels.
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4.2. Case Two: The CITEF Bearing Data
4.2.1. Experimental Setup and Data Description

In this case study, the bearing dataset created by the Railway Technology Research
Group (CITEF) at the Polytechnic University of Madrid is used to test the proposed model.
The bearing test bench setup, as shown in the Figure 10, was utilised to obtain the bearing
signals. It employs a series BL 110 synchronous electric servomotor to generate traction.
The equipment enables for the simultaneous testing of three sets of roller bearings, two of
which are 22205E1KC3 double-row spherical roller bearing housings, supported by the
SN-505 casing. Moreover, three SKF 6304-2R ball bearings (middle) are placed continually
between the housings. Accelerometers are positioned in the centre of the bearing casings
and clamping tower. The orientation of Accelerometer 2 is upward, with Accelerometers 1
and 3 pointing down. This means it can detect even the smallest variations in the vibratory
bearing’s behaviour [39]. Despite having recordings from all three accelerometers, only the
vibration data from Accelerometer 1, labelled as ‘Rod_1′ in Figure 10, is included in the
CITEF dataset.
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Figure 10. (a) The CITEF bearing fault test rig; (b) Schematic diagram of the CITEF experimental
setup.

Bearing signals in both healthy and faulty states are included in the CITEF dataset.
Four fault levels resulting from localised defects in the outer race (OR) and rolling element
(RE), under three operating conditions (200 rpm, 350 rpm, and 500 rpm), make up the faulty
state signals. The damage descriptions are listed in Table 5. By repeating each run three
times, it ensures that any variances in results due to environmental factors like temperature
and humidity were distributed evenly across all data. As a result, the dataset contains
45 bearing vibration records. Each record 30 s’ worth of data, sampled at 40 kHz under
a load of 1.4 kN. Based on the similar sequence generation rule defined in Section 3.2.1,
we take 14,000 data points of vibration signal sequence as a sample and hence obtain 765
samples for each fault condition. There are a total number of 3825 samples in the dataset.
The following phase involves splitting these samples into train, validation, and test sets for
our model.

In addition, five different types of raw bearing signals and their corresponding time-
frequency spectrograms, calculated using consecutive Fourier transforms, are displayed in
Figure 11 for the reader’s perusal and comprehension. It is evident that different combined
fault conditions produce different vibration signal signatures, i.e., different frequency
distributions, and each frequency also possesses a unique time distribution. Such signal
characteristics would be beneficial during the fault diagnosis stage.
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Table 5. Description of the CITEF rolling bearing dataset.

Fault Type Damage Description
Fault Class Sample Size

Location Area (mm2) Depth (mm)

Rolling
element (RE)
& Outer race

(OR)

RE
OR

0
0

0
0 0 765

RE
OR

11.05
25.874

0.006
0.007 1 765

RE
OR

11.57
28.928

0.014
0.013 2 765

RE
OR

11.7
31.983

0.019
0.02 3 765

RE
OR

13
33.241

0.027
0.028 4 765
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4.2.2. Model Evaluation

The CITEF combined fault dataset results for each model are compared in Table 6.
Desipte the fact that the combined fault classes in CITEF dataset are not as easy to identify
as in the CWRU examples, our MD-1d-DCNN still achieves a testing accuracy of 99.35%.
Nonetheless, other benchmark models’ classification accuracies have dropped to a lesser
extent. For instance, when compared to the corresponding CWRU test result, the per-
formance of 1d-DCNN has decreased by 1.9%, while PCA-SVM’s result has fallen from
95% to 91%, representing a siginificant deterioration of 4%. Moreover, the results of the
experiment are consistent with Table 4’s depiction of training duration. The suggested
method’s training time is second fastest to that of the 1d-DCNN model, thanks to the usage
of a parallel feature extraction component. When compared to the next quickest model,
i.e., the PCA-SVM, the MD-1d-DCNN is still 2.6 times faster. In addition, Figure 12 com-
pares the confusion matrices of the proposed method and the other benchmark methods.
It exhibits the excellent performance of MD-1d-DCNN with all fault labels, even the less
evident ones. Other methods have incorrectly classified bearing faults in various cases. This
is owing to the fact that MD-1d-DCNN’s comprehensive feature engineering and extraction
steps assist exploit information about the underlying issue of the rolling bearings, hence
facilitating the identification of the most discriminating charactersitics in signals from a
wide variety of angles. The MD-1d-DCNN model benefits greatly from these extracted
statistical and adaptive features. It highlights, once more, the effectiveness of the proposed
paradigm for fault diagnosis.

Table 6. Comparison of accuracy with other models under a noise-free environment for CITEF
dataset.

Methods

MD-1d-
DCNN XGBF CNN-

LSTM 1d-DCNN RF PCA-SVM

Accuracy 99.35% 98.85% 98.95% 98.04% 88.27% 91.36%

Time 147 s 546 s 413 s 56 s 515 s 394 s

4.2.3. Model Performance under Various Noise Levels

In this section, the effectiveness of our proposed method under noisy conditions is
assessed. Due to the delicate nature of the bearing signals collected in the aforementioned
environment, the SNR values between 0 and 10 dB are considered in this analysis. Again, as
demonstrated in Figure 13, when it comes to signal classification with noise, our proposed
MD-1d-DCNN model clearly excels above the benchmark methods. When the SNR is be-
tween 6 and 10, the XGBoost-based fusion model is quite close to MD-1d-DCNN. However,
as the noise is increased, the performance disparity widens, with the accuracy difference in-
creasing from 2.5% to 6.2%, demonstrating stronger anti-noise capabilities of the suggested
technique. On the other hand, 1d-DCNN and CNN-LSTM achieve satisfactory accuracy
and consistency when the added noise is minimal. However, both CNN-based models
have experienced more significant loss of classification accuracy as the noise level rises
than PCA-SVM. As the SNR value decreases from 10 dB to 0 dB, the accuracy of 1d-DCNN
falls from 94.7% to 71.7%, or by 23%, while the accuracy of CNN-LSTM declines by 27%. In
contrast, PCA-SVM appears to be somewhat more resilient and robust to growing noise
levels, with a 16% loss in diagnostic accuracy, when the noise level goes from 10 dB to
0 dB. The suggested feature fusion method is validated by comparison findings showing
improved classification accuracy when the fault type is obscure. Combining deep learn-
ing with a small amount of past knowledge has demonstrated promising outcomes in
engineering practice and may even help non-professionals make more informed decisions.
Eventually, MD-1d-DCNN achieves an accuracy of 85.8% at an SNR of 0 dB, whereas the
best performance from other approaches reaches only about 79.6% accuracy, validating
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superior fault identification and adaptive feature learning under noisy environments. The
results shown in Figure 13 are in line with what concluded from Case 1, exhibiting the
same anti-noise capability and promising potential for practical use.
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Figure 13. Comparison results of different diagnostic methods on CITEF dataset with different
noise levels.

5. Conclusions

In this work, we present a feature fusion model called MD-1d-DCNN. Using signal
processing methods, we first extract time, frequency, and time-frequency information from
the vibration signal that is attributed to the fault mechanism. A 1d-DCNN model is then
developed to improve feature extraction capability and prevent overfitting. Statistical
features from multiple domains are combined with adaptive features from 1d-DCNN
to boost anti-noise performance while maintaining the model’s generalisation potential.
Two rolling bearing datasets are used to validate the classification model’s accuracy and
robustness. The MD-1d-DCNN model has achieved 100% and 99.35% accuracy for CWRU
and CITEF bearing datasets, respectively. Under a noisy environment, the proposed MD-1d-
DCNN model has been shown to be effective and feasible in fault diagnosis, outperforming
other conventional methods under highest levels of noises by at least 8.3% and 6.2% on
CWRU and CITEF datasets, respectively. Its strong anti-noise capability bodes well for
practical use.

Limitations and future research directions: First of all, the suggested method was
initially tested to laboratory data that included Gaussian white noises. It has certain level
of resemblance to actual noise characteristics, but it cannot fully represent the complexity
of noisy operational environment. It would be beneficial to collect data in a real-world
scenario to further verify the effectiveness of the method. Secondly, when compared
to other DL-based models, the proposed algorithm exhibits promising training speed.
Validating its inference efficacy and accuracy in a production setting will help get it closer
to deployment. Lastly, this study achieves effective diagnostic findings with laboratory
data collected in a stable working environment, using supervised learning. However,
in real-world industrial applications, acquiring adequate well-labelled data is a major
challenge. We plan to evaluate and enhance the suggested method’s performance in the
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context of semi-supervised learning. Moreover, further research into novel generative
adversarial network (GAN) approaches for imbalanced small datasets is also planned in
the near future.
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