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Sieciński, S.; Piet, A.; Irshad, M.T.;

Piaseczna, N.; Hasan, M.A.; Li, F.;

Nisar, M.A.; Grzegorzek, M.

Sensor-Based Classification of

Primary and Secondary Car Driver

Activities Using Convolutional

Neural Networks. Sensors 2023, 23,

5551. https://doi.org/10.3390/

s23125551

Academic Editors: Umar Iqbal and

Michael J. Korenberg

Received: 25 April 2023

Revised: 6 June 2023

Accepted: 9 June 2023

Published: 13 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Sensor-Based Classification of Primary and Secondary Car
Driver Activities Using Convolutional Neural Networks
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Abstract: To drive safely, the driver must be aware of the surroundings, pay attention to the road
traffic, and be ready to adapt to new circumstances. Most studies on driving safety focus on detecting
anomalies in driver behavior and monitoring cognitive capabilities in drivers. In our study, we
proposed a classifier for basic activities in driving a car, based on a similar approach that could be
applied to the recognition of basic activities in daily life, that is, using electrooculographic (EOG)
signals and a one-dimensional convolutional neural network (1D CNN). Our classifier achieved an
accuracy of 80% for the 16 primary and secondary activities. The accuracy related to activities in
driving, including crossroad, parking, roundabout, and secondary activities, was 97.9%, 96.8%, 97.4%,
and 99.5%, respectively. The F1 score for secondary driving actions (0.99) was higher than for primary
driving activities (0.93–0.94). Furthermore, using the same algorithm, it was possible to distinguish
four activities related to activities of daily life that were secondary activities when driving a car.

Keywords: driving a car; driving behavior; electrooculography; convolutional neural networks

1. Introduction

To drive safely, the driver must be sufficiently aware of his/her surroundings, pay
constant attention to the road and traffic, and be alert enough to react to unexpected
circumstances [1–4]. Tasks that are directly related to maneuvering a vehicle are called
basic driving activities [5].

The lack of concentration of drivers remains one of the crucial factors that contribute
to serious accidents and deaths on the road and continues to be a problem for international
road safety measures, as they affect not only the driver but also everyone else on the
road [6,7]. Approximately 324,000 people were injured due to driver inattention in the
United States in 2020 and more than 3000 lost their lives, representing 8.1% of all fatal
accidents in the country [8,9].

The term “driver fatigue” refers to a particular type of inattention that occurs when
a driver removes his/her focus from basic vehicle navigation tasks to focus on another
activity [10]. These distractions may come from common activities, such as talking to other
passengers and eating, as well as using mobile phones and systems [11]. These activities
can have different effects on drivers. From the point of view of support by measurement
technologies, existing research indicates two main areas:
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1. Detect anomalies in driver behavior to prevent an accident, with personalized behavior
measures of driving style through face detection or Internet of Things (IoT)
technologies [12–16];

2. Monitor correct cognitive and safe driver behaviors with intelligent sensors and IoT
to monitor the face, eyes, or movements of a driver’s entire body for a novel driver
education process [17].

Although there are two distinct categories, they have a lot in common; for example,
they are recorded and classified within the framework of currently available technologies,
and many activities can be assigned into more than one of them. The use of a device
requires participation in all of these distractions, also known as secondary driving activities.
The cognitive distraction that occurs in the driver’s brain is the most difficult to identify.
This phenomenon is also known as “looking but not seeing”. Attention requirements for
distracting work and the prevalence of multitasking among drivers are two fundamental
elements of the problem of distributed driving safety [18–20].

Task demand is the total amount of visual, physical, and cognitive resources required
to perform the activity. The second issue is the frequency with which the drivers perform the
task. Even a task that is small, but performed frequently, can pose a safety concern [2,3,19,21,22].

According to [23,24], the results suggest that activities that require the driver to look
away from the road or perform manual tasks significantly increase the probability of
a collision. The risk of a traffic accident increases by 2.05 when using a mobile phone,
especially when dialing (×12) and sending messages (×6).

The long time spent looking away from the road also has a significant impact. According
to some studies, removing your eyes from the road for more than two seconds significantly
increases the probability of safety-critical events [25]. In fact, the U.S. Department of
Transportation advises against taking your eyes off the road repeatedly in 12 s while
operating a motor vehicle [26]. Recognition of human activity based on preconstructed
groups of activities is a commonly used approach [27–30].

There are many well-described activities, mainly related to basic needs and daily life,
e.g., breathing, eating, sleeping, and walking [31–35]. Among the recognition of these
activities, some were divided into even more detailed (complex) activities, e.g., food was
divided into food preparation, and food preparation was even more separated for the
preparation of breakfast, lunch, and dinner. Using this convention, we decided to analyze
and recognize the activities and scenarios that accompany driving a vehicle.

To explore more deeply the research problem, our objective was two-fold: to identify
the prevailing road conditions during a trip and to determine whether individuals exhibited
improved parking skills after the journey. Accomplishing this required the acquisition of a
substantial volume of data. This paper outlines the integration of data and fundamental
principles of physics into sensors embedded within JINS MEME ES_R glasses, as well as
the methodology employed to acquire and analyze the collected data for classification
purposes [3,36–40].

To summarize, we make the following contributions:

1. We investigate the use of JINS MEME ES_R (smart glasses) sensor data and develop a
state-of-the-art machine learning model that learns patterns related to the primary
and secondary activities of drivers and classifies them into their respective classes.

2. We perform a comparative analysis of wearable sensor data consisting of nine activities
of the first driver and four activities of the second driver.

3. We provide a brief review of related approaches.

The rest of the article is structured as follows: Section 2 presents the current state
of the art in the field of recognition of vehicle driver activities. Section 3 describes the
materials and methods used to analyze signals to assess these activities. Section 4 presents
the experimental results. Section 5 provides a discussion and, finally, Section 6 concludes
this work.
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2. Related Works

When looking for examples of similar studies to compare, it should be noted that,
in a ratio of four to one, articles were found dedicated to searching for anomalies such
as drowsiness, fatigue, lack of driver concentration, and external factors associated with
vehicle damage and atmospheric factors associated with driving conditions [41–43].

In another study based on data tracking the head and eyes in driving simulation
conditions, the activity of 73 people who performed various secondary tasks while driving
was recorded. The results of this research improved performance classification through
the development of new functions, in particular to assess the context of autonomous
driving [44]. Algorithms for the classification of eye movements were divided into methods
based on statistical thresholds and probabilistic methods. Algorithms based on static
thresholds are usually selected for the classification of tasks assigned to the person who
performs them; in other words, they are limited in quantity.

Probabilistic methods were introduced to meet the challenge of automatic adaptation
of many people as a result of various behaviors, for example, individual visual cues.
Drowsiness while driving is a critical issue in the context of road safety. Several approaches
have been developed to reduce the risk of driver drowsiness. Fatigue and drowsiness
detection techniques are divided into three broad strategies, namely vehicle-based,
physiological, and driver-based approaches. This article discusses the latest research on
diagnosing driver drowsiness based on behavior, in particular changes in eye movements
and facial features.

2.1. Drowsiness in Drivers

Another research project turned to a traffic surveillance system developed to detect
and warn the driver of a degree of drowsiness or stress [45–47]. A smartphone with
a mobile application, using the Android operating system, was used to implement a
human–computer interaction system. To detect drowsiness, the most important visual
indicators that reflect the driver’s condition are the behavior of the eyes, the side and front
of the head, and yawning. The system works well under natural light conditions and
regardless of the use of accessories supplied by the driver, such as glasses, hearing aids, or
a cap.

Due to the large number of road accidents in which drivers fall asleep, this project was
implemented to develop methods to prevent napping by providing a non-invasive system
that is easy to operate and without the need to purchase additional specialized equipment.
This method was able to detect drowsiness with an efficiency of 93.4% [48].

Another significant educational research experiment evaluated how an educational
program affected the fatigue and conduct of teenage and adult drivers, as well as their
performance and behavior during simulated driving at night. A 4-week sleep program and
a 4-week driving program were randomly assigned to 34 volunteers (aged 18 to 26). The
findings imply that the educational program increases people’s awareness of sleepiness.
Sleep and driving instruction can reduce the risk that young drivers become fatigued and
suffer accidents related to fatigue, but this requires a more comprehensive evaluation of
their real driving abilities [49].

2.2. Wireless Sensor Networks

Next, we consider a second group of studies related to eliminating typical driver
behavior and IoT-based traffic management to increase road safety. IoT is an innovative
design paradigm designed as a network of billions to trillions of tiny sensors communicating
with each other to offer innovative solutions to problems in real time [50]. These sensors
form a network called a wireless sensor network (WSN) to monitor the physical environment
and distribute the collected data back to the base station via multiple hops.

WSN has the ability to collect and report data for a specific application. Location
information plays an important role in various wireless sensor network applications.
Therefore, such systems can improve driving safety. However, real-time monitoring of
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driving behavior and conditions is linked to various issues, including dizziness caused by
long journeys, drastic changes in lighting, and reflections in a driver’s glasses.

2.3. Deep Learning and Driver’s Gaze

A deep learning approach was presented in [51–54] to address this problem, where
the authors used a near-infrared (NIR) camera sensor to detect glances, as well as head and
eye movements, without the need for user calibration at first. The proposed system was
evaluated on a dedicated database, as well as on Columbia’s open dataset (The Face Tracer
CAVE-DB database).

A comprehensive solution was introduced in previous works [51–54] to address
the aforementioned issue by employing deep learning models. This approach used a
near-infrared (NIR) camera sensor to accurately identify glances, head movements, and eye
movements, all without the need for initial user calibration. The efficacy of the proposed
system was assessed on a specialized database and additionally validated using Columbia
University’s publicly accessible dataset, known as The Face Tracer CAVE-DB database.

The driver’s gaze turned out to be an excellent way to create a system for driving
intelligent vehicles. Due to the fashion for highly autonomous vehicles, the driver’s view
can be useful in determining the time of transmission of the gesture from the driver to the
traffic management system. Although there have been significant improvements in the
personalization of driver vision assessment systems, a universal generalized system that is
immutable for different perspectives and scales has not yet been developed. We are taking
a step towards this general system using convolutional neural networks (CNNs).

The utilization of the driver’s gaze has emerged as a promising avenue for developing
intelligent driving systems. In the context of the rising popularity of highly autonomous
vehicles, leveraging the driver’s perspective becomes crucial in accurately timing the
transmission of gestures to the traffic management system. Despite notable advances in
tailoring driver vision assessment systems to individual users, a universally applicable and
adaptable system, capable of accommodating diverse perspectives and scales, remains an
open problem. To address this challenge, we are progressing towards the development
of a comprehensive framework using convolutional neural networks (CNNs), aiming to
establish a generalized solution.

In [55,56] four prominent convolutional neural network (CNN) architectures specifically
designed for this purpose were used to conduct detailed comparisons of their performance.
Additionally, various modifications were applied to the input images and the influence of
the image size on the effectiveness of the models was examined.

To facilitate network training and evaluation, a substantial dataset was collected
comprising 11 extended driving activity recordings. This dataset encompassed the driving
behaviors of 10 individuals in two distinct vehicles. The most successful models achieved a
recognition accuracy of 95.2% during the comparative testing phase.

Subsequently, the highest performing model was subjected to a comparison with
the publicly available Columbia Gaze dataset. This dataset consisted of images showing
56 individuals displaying various head positions and viewing directions. Interestingly, even
without any specific training on this particular dataset, the model effectively interpreted
different perspectives from disparate datasets [57].

3. Materials and Methods

This section presents details on the sensor modalities that were used for data acquisition,
discusses the data acquisition process, and explains the experimental settings. Figure 1
shows all the steps in the process from data acquisition to evaluation, which has been
extensively described in [40,58,59].
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Feature Learning 
and Classification

Data 
Acquisition Preprocessing Evaluation

Figure 1. Standard approach to developing a deep learning model. Each step in the chain should be
optimized in parallel to achieve the best possible performance.

3.1. Data Acquisition

We acquired the dataset using JINS MEME smart glasses, which have a six-axis inertial
measurement unit (IMU) that incorporates EOG, an accelerometer and a gyroscope [60,61].
Participants volunteered for the study and gave their informed consent.

The experiments were carried out in a simulated environment [11,62] as presented in
Figure 2.

Figure 2. Driving simulator setup used for the data acquisition.

The simulator consists of the following components:

• A central unit equipped with:

– An Intel Core i7 processor;
– XFX RADEON HD 5770 1 GB graphic card with NVIDIA processor and 3D

VISION system;
– 4 GB memory;
– Gigabyte’s Ultra Durable 3 motherboard;

• A special construction made of steel;
• A two-way adjustable seat;
• A Logitech set: steering wheel, pedals, and gearbox;
• Three LED 27 monitors suitable for long operation;
• A sound system;
• Dedicated software “Nauka jazdy” (English: Driver training).

The study consisted of two independent experiments that were conducted separately.
Both were completed using the JINS MEME ES_R software with the default settings. The
EOG sampling rate was 200 Hz, the accelerometer sampling frequency was 100 Hz, and the
accelerometer measurement range was±2 g. We synchronized all frequencies to 50 Hz. The
signals were recorded simultaneously for each subject while they received voice commands
during the driving simulation.

Nine subjects in total (five men and four women) volunteered to participate in the
study. Six individuals, all graduate students in their 20s, four men and two women,
performed the fundamental driving tasks. In total, we collected 1200 samples of primary
driver activities, evenly divided into classes that represent a different activity. Half of
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the samples were created by one participant, while the remaining samples were evenly
distributed among the other subjects.

For the secondary driver activities, we recorded 700 samples that were distributed
equally among all classes. Four subjects, one male and three female, with ages ranging
from 23 to 57 years, participated. One participant provided 100 samples, while the other
participants each contributed 25. None of the subjects had vision problems. One subject
participated in both data acquisitions (primary and secondary driver activities). All
participants agreed to participate in this study and use the results for research purposes. In
total, 2100 samples were collected for this investigation.

3.1.1. Scenarios

The tests consisted of scenarios that serve as good representations of basic and
distracting driving behaviors. Primary activity scenarios were chosen as recommended
by the local Driving Exam Center (WORD) and were evaluated while the driving test
was administered.

As stated in Tables No. 2 and No. 7, Appendix No. 2 of the Regulation of the Minister
of Infrastructure of the Republic of Poland [63], these activities include:

• Passing through uncontrolled intersections (three- and four-way);
• Passing through intersections marked with signs establishing priority of passage;
• Drive through intersections with traffic lights;
• Drive through intersections where traffic flows around a traffic island;
• Perform one of the following parking maneuvers: perpendicular, angle, and parallel.

3.1.2. Basic Driving Activities

The driving simulator was used to carry out this experiment. To familiarize themselves
with the machinery, each participant began with a test ride. Once they felt comfortable, a
scenario was given and they were asked to complete the action while wearing JINS MEME
ES_R Eyewear. To allow participants to concentrate solely on driving, the supervisor was
in charge of managing the computer program and issuing voice commands. Three types of
situation were created, each of which was performed in an appropriate setting. There were
a total of 12 scenarios in this section. The first set of tasks was carried out in a roundabout.
It involved making a left turn, a right turn, or going straight ahead, choosing the first,
second, or third exit. The actions are illustrated in Figure 3. The second set of actions was
executed at an intersection. The scenarios are similar to the roundabout. The second series
of actions was carried out at a crossroad. The situations resemble those of a roundabout and
are illustrated in Figure 4. The final set of situations comprises various parking methods,
specifically, angle, parallel, and perpendicular parking. Each action was carried out twice,
on each side of the street. All scenarios are illustrated in Figure 5.

(a) Right (b) Straight (c) Left

Figure 3. Roundabout scenarios such as ’right’, ’straight’, and ‘left’, (a–c), respectively.
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(a) Right (b) Straight (c) Left

Figure 4. Crossroad scenarios such as ’right’, ’straight’, and ‘left’, (a–c), respectively.

(a) angle left (b) parallel left (c) perpendicular left

(d) angle right (e) parallel right (f) perpendicular right

Figure 5. Parking scenarios such as ‘angle left’, ‘parallel left’, ‘perpendicular left’, ‘angle right’,
‘parallel right’, and ‘perpendicular right’, (a–f), respectively.

3.1.3. Distracting Driving Activities

The second investigation focused on secondary or distracting driving activities. They
represent all actions that are performed when operating a vehicle that are not related to
actual driving. However, they affect performance quality. These actions were carried out in
a setting similar to sitting behind a wheel because they do not require being in a vehicle.
This section of the study introduced four scenarios: eating, drinking, turning, and bending.
Actions are explained in detail in Table 1.

Table 1. Secondary driving activities scenarios.

Eating Drinking Turning Bending

Taking a bite of
any food.

Taking a sip of
water.

Turning back and
reaching to a
passenger’s seat.

Bending and
picking up a fallen
object.
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3.1.4. Data Format and Label Information

First, the data acquisition parameters are presented, followed by the header describing
the content of each column that contains the sample number, the date in the format:
dd.mm.rrrr:hh:mm:ss, and then the 3 channel accelerometer components:

• ACCX,Y,Z := acceleration on the X, Y, and Z axes.

Followed by the EOG sensor components:

• EOGL,R := raw EOG signal from the left and right eye, respectively;
• EOGH := the difference between the left and right eye potential (EOGL − EOGR);
• EOGV := negative arithmetical mean of the left and right eye potential − (EOGL +

EOGR)/2.

A list of dataframes comprising one sample signal is created by successively reading
the data from the relevant path by folders. To accurately describe all signals, the rows
containing the parameter specifications are removed, and the header is fixed. The labels for
the primary activities are presented in Table 2.

Table 2. List of activities for which data were collected in this study (driving activities), using JINS
MEME ES_R Smart Glasses.

Label Activity

0 P_Crossroad_Left
1 P_Crossroad_Right
2 P_Crossroad_Straight
3 P_Parking_Diagonal_Left
4 P_Parking_Diagonal_Right
5 P_Parking_Parallel_Left
6 P_Parking_Parallel_Right
7 P_Parking_Perpendicular_Left
8 P_Parking_Perpendicular_Right
9 P_Roundabout_Left

10 P_Roundabout_Right
11 P_Roundabout_Straight
12 S_Bending
13 S_Drinking
14 S_Eating
15 S_Turning_Back

3.2. Preprocessing

The data collected by smart glasses include signals from the four EOG channels (EOGL,
EOGR, EOGH , and EOGV), three axes of the accelerometer (ACCX , ACCY, and ACCZ) and
three axes of the gyroscope (GYROX , GYROY, and GYROZ).

The signals collected by these sensors are often contaminated by noise and artifacts. For
example, EOG channels can pick up electrical signals from the surrounding environment,
which can cause baseline drift and power line noise. Linear and angular acceleration can
be affected by vibrations or other disturbances, which can cause errors in measurements.
To address these issues, various preprocessing techniques were applied to the data, which
involves applying mathematical operations to the signals to remove unwanted components.

The first step of preprocessing was to apply a low-pass filter to remove power line
noise (50 or 60 Hz, depending on the country) and baseline wandering. The next step
was to use a band-pass filter to remove DC components of the EOG signal caused by
electrode polarization.

After preprocessing the data, they can finally be analyzed using the statistical analysis
and machine learning technique. Clean data provide valuable associations of changes in
the EOG signal in the recognition of human behavior or cognition.
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The raw EOG signal presented in Figure 6 contains different types of artifacts that
must first be filtered out. To reduce the noise from electricity lines and other potential
types of noise, a second-order low-pass Butterworth filter is used to filter the EOG signal.
It is applied to the signal twice: once forward and once backward. Such a filter has twice
the order of the initial filter and zero phase. In addition, a slow unrelated alteration
that is superimposed on the EOG signal, known as a baseline drift, might appear. It
could be caused by a variety of things, including electrode polarization or interference
with background signals [64]. To eliminate this effect, we have applied detrending by
differentiating.

(a) Raw EOGL signal. (b) Raw EOGR signal.

(c) Raw EOGH signal. (d) Raw EOGV signal.

Figure 6. Raw EOG signal in channels EOGL, EOGR, EOGH , and EOGV shown in (a–d), respectively.

Linear acceleration signal in three axes undergoes preprocessing that consists of
applying a median filter and a low-pass filter. The purpose of the median filter is to remove
short irregular peaks. Since vigorous voluntary head rotations typically have frequencies
below 20 Hz, a low-pass filter is applied to remove components with lower frequencies.
However, this type of filter can introduce unwanted distortions while preserving low
frequencies. To make the most of both techniques, they are combined by first applying
the median filter and then passing the resulting signal through a low-pass filter with a
Hamming window. A disadvantage of this approach is the potential weakening of values
at the signal edges. However, these values were excluded due to the potential presence of
noise caused by human control.

The entire dataset was then independently normalized using Z-score normalization.
Z-score normalization helps distinguish the rest values and the values related to activities.
The mean and standard deviation of each signal are calculated, and the samples values are
replaced with the newly determined values using the following formula:

x′ = (x− µ)/σ, (1)

where µ is the mean of the signal, σ is the standard deviation, x is the current value of a
sample, and x is the new value, so that the new mean of all values is 0 and the standard
deviation is 1.
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A sliding time window technique was used to segment all normalized sensor signals,
with a window length of 5.6 s (280 samples) and a 50% stride (140 samples). Final samples
were eliminated if the signal length was not divisible by 140.

Completing some tasks required more time than for the others. Also, depending on
the precision of the driver, the acquired signals had different lengths. The shortest one was
obtained for secondary activity Turning back and lasted 103 samples (2.06 s); the longest
one was for primary activity, while taking a left turn at a roundabout was 3013 samples
(60.26 s) long. To train the model, the signal data were resampled at a rate of 3000. The
results of signal preprocessing are shown in Figure 7.

(a) Preprocessed EOGL signal. (b) Preprocessed EOGR signal.

(c) Preprocessed EOGH signal. (d) Preprocessed EOGV signal.

Figure 7. Preprocessed EOG signal in channels EOGL, EOGR, EOGH , and EOGV shown in (a–d),
respectively.

3.3. Classification

In this study, we used 1D CNN for feature learning and classification. Multiple
convolutional operators in CNN allow automatic recognition of important features from a
higher-dimensional input [65–68]. Convolutions offer the advantage of taking into account
the spatial organization of the data. In doing so, additional information about the position
in relation to other samples is expected to be taken into account.

The 1D CNN can be used to analyze time series with one or more variables. The latter
scenario involves combining two or more concurrent signals. On the basis of our previous
experiments, we segmented the data using the sliding window segmentation technique
(SWS). Different settings were tested to select the length T and stride size ∆S of a time
window and the best values were chosen empirically. In 1D CNN, the only samples with
an inherent ordering are those along the time dimension. The channels for the various
variables do not have this, in contrast to the most popular 2D CNN.

The basic architecture of a CNN model is shown in Figure 8 and the parameters used
in the 1D CNN are shown in Table 3. The first dimension of the input and output data is
the batch size, the second dimension is the length of the sequence, and the third dimension
is the number of features. The batch size was 32, the number of epochs was 100, and the
learning rate (lr) was set to 2× 10−4.



Sensors 2023, 23, 5551 11 of 19

Input signal

T

S

Convolution Pooling
Convolution

Pooling

....

....

....

....

Hidden layers

Classification

Flatten Fully
connected

Softmax

C1

C2

Cn

....

Figure 8. General architecture of a convolutional neural network for time series data classification.
T represents time window, S represents the number of sensor channels, c represents a class, and n
represents the number of classes.

Table 3. CNN architecture with a fixed dropout rate of 0.4 and a minimum learning rate of 2× 10−4.

Layer Name No. Kernels (Units) Kernel (Pool) Size Stride Size Activation

Convolution 128 5 1 ReLU
Batch norm - - - -
Max pooling - 3 - -
Convolution 128 5 1 ReLU
Batch norm - - - -
Convolution 128 5 1 ReLU
Batch norm - - - -
Global avg. pooling - - - -
Dense 2 - - Softmax

In terms of functionality, the model can be divided into two parts. The first component,
common for this type of network, acts as a feature extractor. It matches templates using
convolutional filtering techniques. To create the so-called “feature maps”, it uses layers and
functions that include a convolutional layer, a batch normalization layer, a ReLU activation
function, and a pooling layer. The network can learn higher-level features by being trained
on a large dataset using a suitable number of epochs and a learning rate.

The second component is the categorization into one of the output classes. The input
vector values are first reshaped using the global average pooling layer, a further dropout
layer to prevent the model from overfitting, and a dense layer with the “softmax” activation
function, which assigns the final label representing the predicted class value by performing
a matrix vector multiplication. This process results in a new vector at the output.

3.4. Evaluation

The performance of the classifier was expressed in the form of tables with with the
numbers of accuracy, precision, recall, and F1 score and confusion matrix.

Accuracy presents the percentage of correct predictions relative to all predictions made.

Accuracy =
tp + tn

tp + tn + fp + fn
× 100%, (2)

where:

- True positive (tp)—correctly classified trials;
- False positive ( fp)—incorrectly classified trials;
- True negative (tn)—correctly classified nonevent trials;
- False negative ( fn)—incorrectly classified nonevent trials.
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Precision is a metric that identifies the successful predictions of all predictions made
in favor of the event.

Precision =
tp

tp + fp
(3)

Recall presents the fraction of correctly classified predictions of a particular activity
with respect to all predictions made in favor of the activity.

Recall =
tp

tp + fn
(4)

The F1 score is a harmonic mean of precision and recall, which, compared to accuracy,
should provide a more realistic model assessment in multiclass predictions with unbalanced
classes.

F1-score = 2× Precision× Recall
Precision + Recall

(5)

Categorical cross-entropy loss measures the model performance by comparing the
actual and predicted labels according to the formula:

CE = −
N

∑
i=1

ti × log(pi), (6)

where t is the true label, p the predicted label, and N the number of scalar values in the
model output.

Linear acceleration and EOG signals that had already been analyzed were used to train
and assess the network. A 9:1 ratio was used to divide the data into subsets for training
and testing. A further division with 8:2 ratio was used on the training set to divide it into
training and validation sets. Since the signals were sorted, the data had to be shuffled to
train the model on signals from all possible classes.

4. Results
Accuracy and Loss While Training

Figure 9 shows the accuracy curve for training and validation, and loss of the model
with respect to the number of epochs elapsed. The loss function is categorical cross-entropy.
When the epoch reached 130, the training accuracy was found to be greater than 90%,
providing a loss value of 0.2. The validation rate was 80% with a loss of 0.6. The model
obtained the optimal parameters in 188 epochs.

Figure 9. Accuracy and loss curve of the CNN model during the training and validation phases.

Figure 10 shows how well the classes were segregated after 188 epochs in dimensions 2
and 3. A dimensionality reduction method known as principal component analysis (PCA)
was used for visualization purposes. The correlation between different dimensions is used,
and the goal is to provide as few variables as possible while preserving as much variation
or information about the distribution of the original data as possible.
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(a) (b)

(c) (d)

Figure 10. Scatter plot of the training and testing sets according to predicted labels: (a) 2D scatter
plot of training set labels; (b) 3D scatter plot of training set labels; (c) 2D scatter plot of testing set
labels; (d) 3D scatter plot of testing set labels.

It can be seen that the distinction between primary and secondary driving activities
is very apparent. The latter are also separated in such a way that they usually do not
overlap. However, primary activities cover areas very close to each other, so the greatest
misclassifications are anticipated.

The distinction between primary and secondary driving activities is readily apparent,
as can be seen. The latter are divided in such a way that they do not primarily overlap.
The greatest misclassifications were expected for groups of similar primary activities that
covered areas that are relatively close to each other.

All activity predictions shown in Table 4 had a weighted average precision, recall,
and F1 score of 0.83, 0.80, and 0.80, respectively. Drinking as a secondary activity is the
category that has the best performance with all values equal to 1, while primary parallel
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parking on the left and perpendicular parking on the right are the categories that are mostly
misclassified with F1 scores 0.42 and 0.44, respectively. In general, secondary driving
actions performed better, all receiving F1 scores greater than 0.9.

Table 4. Evaluation results (such as precision, recall, and F1 score) of driving activities.

Label Activity Precision Recall F1 Score

0 P_Crossroad_Left 1.00 0.67 0.80
1 P_Crossroad_Right 0.75 0.75 0.75
2 P_Crossroad_Straight 0.75 0.90 0.82
3 P_Parking_Diagonal_Left 0.67 0.75 0.71
4 P_Parking_Diagonal_Right 0.50 0.50 0.50
5 P_Parking_Parallel_Left 0.44 0.40 0.42
6 P_Parking_Parallel_Right 0.86 0.60 0.71
7 P_Parking_Perpendicular_Left 0.38 1.00 0.55
8 P_Parking_Perpendicular_Right 1.00 0.29 0.44
9 P_Roundabout_Left 1.00 0.88 0.93
10 P_Roundabout_Right 0.82 0.86 0.84
11 P_Roundabout_Straight 0.86 0.75 0.80
12 S_Bending 0.95 0.90 0.93
13 S_Drinking 1.00 1.00 1.00
14 S_Eating 0.90 0.95 0.93
15 S_Turning_Back 0.88 0.94 0.91

The accuracy of the prediction of 15 driving actions is shown in Figure 11, where
the accuracy of the prediction of each class is shown on the diagonal and inaccurate
classifications are shown outside the diagonal.
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Figure 11. Confusion matrix of the driving activities classification.

Most misclassifications occurred in a group of activities that were related to each
other. Parking activities show that the model had the most trouble detecting the difference
between the same action being conducted on the left and right sides due to their similarity.
The binary classification between secondary and primary activities has an accuracy rate of
99.5%. Although the latter was mistakenly classified as eating, the former was consistently
assigned to the appropriate group.

An investigation of classifications for a particular collection of activities, including
crossroad, parking, roundabout, and secondary activities, yielded accuracy ratings of
97.9%, 96.8%, 97.4%, and 99.5%, respectively. Table 5 displays these results together with
the precision, recall, and F1 score values. Although the network received these actions
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as individual activities, it was still able to indicate patterns that differentiate the different
types of action.

Table 5. Evaluation scores such as accuracy, precision, recall, and F1 scores, of the
type-based classification.

Activity Accuracy [%] Precision Recall F1 Score

Crossroad 97.9 0.97 0.91 0.94
Parking 96.8 0.92 0.96 0.94

Roundabout 97.4 0.94 0.92 0.93
Secondary 99.5 0.99 1.00 0.99

5. Discussion

Electrooculography (EOG) is a technique that is based on electrical features generated
by the eye. By measuring the voltage difference between the cornea and the retina, it aims
to capture the movements of the eyes [37]. JINS MEME ES_R Glasses (JINS Inc., Tokyo,
Japan) are a smart glasses device that consists of a three-point electrooculography (EOG)
and a six-axis inertial measurement unit (IMU) with a gyroscope and an accelerometer.
They acquire ten channels: linear and angular acceleration on the X, Y, and Z axes, and four
EOG channels: electric potentials on the electrodes on the right (EOGR) and left (EOGL),
and the vertical (EOGV) and horizontal (EOGH) difference between them [61,69,70].

We have recognized road conditions based on electrooculograms acquired from drivers
wearing JINS MEME ES_R smart glasses. The highest precision, recall, and F1 score for
drinking (1.00 for each metric) were observed, whereas the lowest results were observed
for parallel parking on the left side (precision of 0.44, recall of 0.4, and F1 score of 0.42).

Most misclassifications occurred in a group of activities that were related to each
other, e.g., parking on the left and parking on the right side due to their similarity. The
binary classification between secondary and primary activities has an accuracy rate of
99.5%. Although the latter was mistakenly classified as eating, the former was consistently
assigned to the appropriate group.

In this study, the recognition of primary and secondary driver activities based on the
processing of EOG signals with a convolutional network achieved excellent recognition
performance, but there are still some limitations. The first limitation was to obtain the EOG
signals in a simulated driving experiment. Although the experimental results showed that
the turn or park condition was successfully induced and verified the effectiveness of the
experimental scheme, it cannot be compared with the complexity of driving in real traffic.
The second limitation was the limited number of experimental data segments. This setup
could be used in future studies that do not expose volunteers to the dangers of real traffic.
Classification models were trained on short signal samples. The third limitation was the
use of only one time window width (5.6 s) to calculate the EOG characteristics without
fully examining the impact of other time window divisions on the classification results.

6. Conclusions

In this paper, we introduced a CNN-based machine learning model to classify nine
primary and four secondary car driver activities using physiological sensor data from JINS
MEME ES_R (smart glasses):

1. We conducted a comparative analysis of wearable sensor data, including nine activities
performed by the first driver and four activities performed by the second driver. Our
proposed system achieves an impressive overall accuracy of 97% (±2) and an average
F1 score of 95% (±2) in detecting these activities. Moreover, our model has the
potential to prevent traffic accidents without requiring expensive safety equipment.
To further validate our approach, future studies will involve acquiring additional data
from real-world road conditions. Such an application would be beneficial for drivers,
particularly older individuals or those with disabilities.
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2. Research involves a comparative analysis of wearable sensor data obtained from
different driving activities in various scenarios. By analyzing the signals collected
from these sensors, researchers can assess the different activities performed by drivers,
gaining insight into driver behavior and activity patterns in various driving scenarios.
The developed system holds promise in preventing traffic accidents without the need
for costly safety equipment.

3. Our investigation focuses on the utilization of sensor data from JINS MEME ES_R
smart glasses and the development of an advanced machine learning model that can
identify and classify primary and secondary activities of drivers. This state-of-the-art
model learns the patterns associated with these activities and assigns them to their
respective classes.

4. The use of JINS MEME ES_R sensor data involves analyzing and recognizing activities
and scenarios associated with driving a vehicle. By integrating data from these
wearable glasses, we created an efficient machine learning model that can learn
activity patterns and accurately classify them into respective classes. This novel
approach to the use of wearable sensor data offers valuable insights into driver
behavior and activity recognition.

5. A notable contribution of this research is the realistic and noninvasive collection
of data. The use of JINS MEME ES_R smart glasses provides a user-friendly and
noninvasive method for gathering data during experiments. Unlike intrusive methods,
these glasses capture data from the driver’s perspective without causing discomfort
or interfering with the driving experience. This noninvasive approach ensures that
the collected data closely resemble real-world driving scenarios, allowing for more
precise analysis and classification of driver activities. By addressing the challenge of
obtaining realistic data while prioritizing participant safety and comfort, this research
underscores the importance of using such technology.

In summary, the main contributions of this research involve the utilization of JINS
MEME ES_R sensor data, development of a machine learning model for activity recognition,
comparative analysis of wearable sensor data, and a review of related approaches. These
contributions improve understanding of driver behavior and activity recognition, potentially
leading to improved driver safety and accident prevention when the time comes when
autonomous car traffic with the participation of human drivers will become commonplace
on the roads.
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