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Abstract: We present the development of an electrochemical paper-based analytical device (ePAD)
for the detection of methamphetamine. Methamphetamine is a stimulant that young people use as
an addictive narcotic, and it must be detected quickly since it may be hazardous. The suggested
ePAD has the advantages of being simple, affordable, and recyclable. This ePAD was developed by
immobilizing a methamphetamine-binding aptamer onto Ag-ZnO nanocomposite electrodes. The
Ag-ZnO nanocomposites were synthesized via a chemical method and were further characterized via
scanning electron microscopy, Fourier transform infrared spectroscopy, and UV-vis spectrometry in
terms of their size, shape, and colloidal activity. The developed sensor showed a limit of detection
of about 0.1 µg/mL, with an optimum response time of about 25 s, and its extensive linear range
was between 0.01 and 6 µg/mL. The application of the sensor was recognized by spiking different
beverages with methamphetamine. The developed sensor has a shelf life of about 30 days. This cost-
effective and portable platform might prove to be highly successful in forensic diagnostic applications
and will benefit those who cannot afford expensive medical tests.

Keywords: methamphetamine; detection; recreational drug; electrochemical; sensors

1. Introduction

Methamphetamine (N-methyl-1-phenylpropan-2-amine) is a stimulant drug com-
prised entirely of synthetic chemicals [1]. When taken in large doses, meth, which is more
potent than any other naturally occurring stimulant, can result in violence, hallucinations,
and psychosis [2]. Meth is typically synthesized as a powder that resembles crystals or
as tablets. It can be ingested, smoked, injected, or snorted. There are other street names
for it, including crank, ice, speed, and glass, but meth is the most frequent. Illegal drugs
have a significant negative influence on the environment, including waste waters that are
produced all over the world and may contain illegal substances that come from human con-
sumption and excretion, inappropriate disposal, and waste from industries throughout the
manufacturing process. Although illicit substances are normally prevalent in the environ-
ment at low quantities of between 1 ng and 1 g, the presence of these chemicals at ambient
levels can have undesirable physiological consequences on both humans and animals [3].
Conventional methods from the last decade that are used for the detection of these illicit
drugs include immense and time-intense procedures such as GC-MS (gas chromatography–
mass spectrometry) [4], HPLC (high-performance liquid chromatography) [5,6], IMS (ion
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mobility spectrometry) [7], capillary electrophoresis, and immunoassays. Due to some
drawbacks, such as their complex natures and time-consuming procedures, there is a vital
requirement for an appropriate technique for the sensitive, selective, and rapid detection of
illicit drugs [8–10].

An electrode serves as the conductor in an electrochemical sensor. Contemporary types
of electrochemical sensors are often called chemically modified electrodes (CMEs) as they
are created by coating electrodes with chemicals to change their surface behavior [11,12].
Nanoparticles are a suitable choice for altering electrochemical sensors because of their
high surface area/volume ratios and remarkable abilities to be modified [13,14]. Composite
nanomaterials can provide excellent multiplexing and signal amplification for assessments
with increased sensitivity and resolution. We chose a silver and zinc oxide nanocomposite
(Ag-ZnO NC) for this experiment since it helps to increase the electrochemical signal of
this platform [15,16]. Due to their superior surface-enhanced Raman scattering (SERS)
ability, biocompatibility, higher level of conductivity, better electrochemical indicators, and
catalytic activity, Ag-ZnO NCs have attracted significant research attention in biomedical
applications [17–21].

For the detection of minor molecule targets, such as metabolites, pharmaceuticals,
and naturally occurring toxins, electrochemical aptamer-based sensor technology is fre-
quently utilized. This technology functions by forcing DNA and RNA aptamers to fold in
response to a target. The sensing component in this technique is a modified redox reporter,
a structure-switching aptamer. Aptamers are employed as novel recognition elements
because they have benefits over antibodies, including good stability, low dimensions, and
strong affinities. They form secondary structures which allow them to recognize and attach
to tiny targets such as meth. Additionally, they are simple to modify and easy to synthesize
in vitro [22,23]. The rate of electron transport between the aptamer and the surface of the
electrode are modified by the asymptotic connection between the concentration range and
the aptamer’s target-induced configuration change [24]. Meth is an electrochemically active
compound that can undergo the transfer of electrons to an electrode surface at higher
positive potentials [25]. Electroanalytical approaches have been shown to be effective for
identifying a range of electroactive compounds. They are simple, affordable, and only
require a brief amount of analytical time as no time-consuming derivatization or extraction
activities are necessary. Some electroanalytical methods for determining meth have been
published, although the majority of them are based upon principles such as immunosensing
and electrochemiluminescence [26–29].

There are many issues with the traditional available electrodes such as glassy carbon
electrodes, including that they are bulky, expensive, and non-disposable [30]. Therefore, in
order to avoid the issues with traditional electrodes, paper-based electrochemical analytical
devices (ePADs) are employed. ePADs usually consist of a three-electrode setup integrated
onto a paper substrate. Fabrication techniques such as stencil-printing, sputtering, screen-
printing, or inkjet-printing are often employed to spread a conductive ink on the paper
substrate [31]. In this study, we proposed a paper based electrochemical analytical device
(ePAD) for the detection of meth. Ag-ZnO NCs were employed for the modification of
the working electrode of the developed ePAD. Furthermore, a meth-binding aptamer was
incapacitated on the surface-modified working electrode (with a nanocomposite attached),
and meth was then detected using an electrolytic buffer. The results were then verified using
electrochemical techniques, i.e., cyclic voltammetry (CV) and linear sweep voltammetry
(LSV), which confirmed each attachment. Additionally, we presented the applicability of
this proposed sensor in beverages. This proposed biosensor is a promising option for the
sensitive and accurate detection of meth.

2. Material and Method
2.1. Chemicals/Reagents Required

All the chemicals used in this research were of AR Grade. For the construction of
the three-electrode system, carbon conductive ink was purchased from Snab graphix Pvt
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Ltd. Bangalore, India. For the synthesis of silver nanoparticles and zinc oxide nanorods,
silver nitrate, sodium borohydride, hydrochloric Acid (HCL), sulfuric acid, and zinc nitrate
were purchased from Loba chemie, India. Methylene blue and potassium chloride were
purchased from Sigma Aldrich, Berlington, MA, US. Methamphetamine was acquired from
Mtor life science, New Delhi, India.

2.2. Meth Binding Aptamer Sequence

ACG GTT GCA AGT GGG ACT CTG GTA GGC TGG GTT AAT TTG G [32].
A meth-specific binding aptamer sequence was used as a recognition element and was

obtained from Amplicon Biotech, India.

2.3. Apparatus/Instrument Used

A Metrohm Dropsens (Stat-I 400 s) was employed for the electrochemical measure-
ments (CV & LSV), The shape of the surface of the synthesized material, i.e., the silver–zinc
oxide nanocomposite, was determined via field scanning electron microscope (FESEM)
technology using Quanta 3D FEG. UV-vis spectroscopy was performed using a UV vis spec-
trometer, and Fourier-transform infrared spectroscopy (FTIR) was carried out employing a
Bruker Tensor 37.

Spiked Beverages:
An alcoholic drink was obtained for spike testing.

2.4. Preparation of Standard Solutions

The meth-binding aptamer was prepared by mixing 221 µL of sterile distilled water in
a main vial in order to reach 100 µM. For further dilution, 10 µL of aptamer was added to
190 µL of sterile distilled water. The final diluted form was used for the experiment.

For the preparation of the meth concentration, different concentrations, i.e., 0.01–6 µg/mL,
were prepared by adding meth to distilled water. An alcoholic drink was also diluted in a
1:1 ratio in distilled water in order to obtain the results.

2.5. Synthesis of Ag-ZnO Nanocomposite

For the synthesis of the nanocomposite, silver nanoparticles were prepared via a chem-
ical reduction method. First, 30 mL of 2 mM NaBH4 (freshly prepared and ice-cold) was
added dropwise to 10 mL of 1 mM AgNO3 while continuously stirring. The mixture gener-
ated a brilliant yellow color, which indicated the fabrication of silver nanoparticles [33].

After the synthesis of the silver nanoparticles, zinc oxide nanorods were prepared.
A chemical process was used to synthesize zinc oxide nanorods, beginning with a 0.2 M
solution of zinc chloride in distilled water. Ammonium hydroxide was then added drop-
wise at room temperature while being continuously stirred to produce zinc hydroxide
precipitates. The resulting precipitates were filtered to separate them from the remaining
liquid, and at a temperature of 120 ◦C, they were then dried into a powder form. After
crushing the powder, nanorods were synthesized [34,35]. Both the silver nanoparticles and
the zinc oxide nanorods were mixed in a 1:2 ratio and were further sonicated for about
1 h. Characterization was carried out in order to confirm the successful synthesis of the
nanocomposite [36].

2.6. Fabrication of Paper-Based Three-Electrode System

By utilizing a silk screen and conducting carbon ink on paper, paper-based electrodes
were constructed. A silk screen with the printed electrodes already attached was used
as a stencil to prepare the electrodes (a single electrode had a length of 3.5 cm and a
breadth of 2.5 cm). The three-electrode system, i.e., a counter electrode, a working electrode,
and a reference electrode drop-casted with silver paste (Ag/AgCl) comprised the printed
electrode (As shown in Figure 1). In this study, the sensor is inexpensive, reusable, requires
only a small sample volume, and is easy to fabricate due to the use of paper as a sensing
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surface. Additionally, conductive carbon ink also provides beneficial properties, including
its low cost, simple preparation, and speedy manufacturing.
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Figure 1. Schematic representation of the fabrication and the operation of the three-electrode system.

2.7. Immobilization of Ag/ZnO Nanocomposite and the Deposition of an Aptamer on a
Paper-Based Sensor

First, 30 µL of the Ag/ZnO nanocomposite was placed on a working electrode of
a paper-based sensor. The sensor was then dried using a hot plate set at approximately
60 ◦C. The next step involved the immobilization of the aptamer (20 µL) on the working
electrode, which was adorned with the Ag/ZnO nanocomposite and dried for an hour at
room temperature [36–38]. The detection of methamphetamine was made possible through
this sensor modification. By using electrochemical techniques via CV and LSV, different
concentrations of meth (0.01 to 6 µg/mL) were dropped over this sensor in combination
with a buffer, and the results were detected.

2.8. Stages of Electrochemical Detection

In order to confirm the proper deposition of the nanomaterial and aptamer on the
sensor, different stages of electrochemical analysis were carried out. For this, CV and LSV
values of the uncoated, bare electrodes were assessed. Following the overnight drying of
the Ag-ZnO NCs on the paper-based sensor, both voltammetry tests were performed as
usual. The aptamer was then applied to the paper-based sensor that contained the dried
Ag–ZnO NCs, and CV/LSV measurements were then recorded. The last step involved the
deposition of the target molecule—meth—onto the electrodes containing both the aptamer
and the Ag/ZnO NCs. A supporting electrolytic buffer was then used to conduct the
CV/LSV, and the results were analyzed.
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2.9. Optimization of Various Parameters and the Procedure for a Real Sample Analysis in Spiked
Beverages, Repeatability, and Stability Investigation

Various meth concentrations, ranging from 0.01 µg/mL to 6 µg/mL, were immobilized
across various electrodes (which had already been modified with nanocomposites and ap-
tamers) and were then held for drying. After that, the meth determination response was
observed at each concentration via CV and LSV. The aptamer-immobilized electrodes were
utilized to detect meth at various temperatures (5 to 40 ◦C) and times (5 to 35 s), and the best
cyclic response was observed. The target was determined using the electrodes that had been
aptamer-immobilized. To corroborate the results, an electrochemical study was carried out
after adding the target meth and buffer to the electrodes. By incorporating a predetermined
amount of meth into a spiked beverage (alcohol), the sensor’s capacity to function in a real
sample was also evaluated. Meth concentrations were repeatedly measured, proving the
suggested biosensor’s repeatability and its stability for at least a month.

2.10. Sensing Strategy and Acquiring Signals

Meth is an electrochemically active compound. The chemical structure of meth receives
an indication that the secondary amine in the aliphatic part of the molecule is the most
likely electro-oxidizable group. This electroactive drug involves the oxidation of primary
and/secondary amino groups and the oxidation of the aromatic nucleus, respectively
(Figure 2) [39,40]. Due to the introduction of the aptamer and meth onto the ePAD, the
electrochemical process is accelerated, and the current response is amplified. The rates of
electron transport between the aptamer and the surface of the electrode are modified by the
asymptotic connection between the concentration range and the aptamer’s target-induced
configuration change. As the meth concentration increases, the current also increases on
the ePAD sensing surface. The high surface area and rapid electron transfer kinetics of
the Ag-ZnO NCs are also the fundamental drivers of the enhanced current in the circular
region of the developed ePAD which is integrated with them. On the modified ePAD,
which is merged with the Ag-ZnO nanocomposite and aptamer, meth is oxidized when
voltage is applied to the sensor surface [41].
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Figure 2. Reaction mechanism for electrochemical oxidation process of meth.

3. Results and Discussion
3.1. Characterization of Silver and Zinc Oxide Nanocomposite

Using the characterization techniques such as FESEM, FTIR, and UV-vis spectrometry,
the effectively synthesized silver and zinc oxide nanocomposites were verified.

As shown in Figure 3a, the morphology of the produced Ag–ZnO NC was examined
using FESEM. On a scale of 500 nm, the FESEM image showed the production of ZnO
nanorods. A homogeneous distribution of silver NPs 50–100 nm in diameter was produced.
The FESEM further showed the development of spherical, slightly agglomerated silver NPs
on the surfaces of the zinc oxide nanorods.
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Figure 3. (a) FESEM micrograph (b) Fourier–transform infrared (FTIR) spectrum, and (c) UV−vis
absorption spectrum of Ag−ZnO nanocomposite.

Figure 3b demonstrates the Ag–ZnO NCs’ FTIR spectroscopy. The existence of the Ag-O
bond and the Zn-O stretching vibrations are shown by the FTIR spectrum peaks at around
618 cm−1 and 1654 cm−1. The creation of Zn’s tetrahedral coordination at 1012 cm−1 is
indicated by the tiny peak at 892 cm−1, which may be the result of the C = C aromatic
stretch. Hydroxyl (O-H) group vibrations were attributed to the bands in the range of 3050 to
3800 cm−1. The C = O stretching mode may be the cause of the peaks that were stimulated at
1485 cm−1 and 1504 cm−1 [42,43].

As can be seen in Figure 3c, the Ag–ZnO nanocomposite was further studied using
UV-vis absorption spectroscopy in the 200–800 nm wavelength (λ) region (c). It is assumed
that ZnO was present since its distinctive peak at 374 nm was noticed. Due to surface
plasmon vibrations, the silver NPs showed a peak at 450 nm. As the Ag–ZnO NCs were
successfully synthesized, a band of ZnO at 374 nm with a shoulder peak of silver at 450 nm
was observed [44,45].

3.2. Electrochemical Properties of Meth/Apt/Ag-ZnO NC at Different Stages

By employing electrochemical techniques such as cyclic voltammetry and linear sweep
voltammetry, the electrochemical characterization of the modified meth/aptamer/Ag–
ZnO NC paper electrodes was carried out. Current I response discrimination at various
electrode phases was confirmed by both techniques, as shown in Figure 4a,b. In CV, the
bare electrodes had a low current response peak, which can be attributed to the slower
electron transfer kinetics. Due to the rapid transfer of electrons kinetics offered by the
Ag–ZnO NCs, there was a noticeable increase in current sensitivity after the deposition of
the nanocomposites onto the working surface. Due to the aptamer’s (biological recognition
element) non-conductive character, the current was drastically decreased when the aptamer
was immobilized onto the working surface. Owing to meth’s electroactive properties, the
current response increased once the target substance, meth, was introduced.
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Figure 4. (a) Cyclic voltammetry (CV) of bare ePAD, Ag−ZnO NC modified ePAD, apt/Ag−ZnO
NC modified ePAD, and target ePAD, i.e., meth/apt/Ag−ZnO NC ePAD at 50 mVs−1 in the potential
range between −1 V and +1 V with inserted bar graph. (b) Linear sweep voltammetry (LSV)
in the range between −1 V and +1 V at 50 mVs−1 for a bare ePAD, Ag−ZnO NC modified ePAD,
apt/Ag−ZnO NC modified ePAD, and target ePAD, i.e., meth/apt/Ag−ZnO NC ePAD with inserted
bar graph.

3.3. Effects of Methamphetamine Concentrations on the Aptamer/Ag-ZnO NC Paper-Based Sensor

To illustrate the quantifiable performance of the designed biosensor, several concentra-
tions of the target, methamphetamine, were examined, ranging from 0.01 to 6 µg/mL. The
findings indicated that at various concentrations, varied current responses were observed.
As the concentration increased, the current also increased, which confirms the sensor’s
quantitative functionality. The findings are in agreement with the previously reported
sensors. The current response increased as the methamphetamine concentrations increased.
Through the use of two electrochemical measures, namely, CV and LSV, the concentration
findings were confirmed (Figure 5a,b). An interesting linear association was found between
the peak current values and the log of the meth concentration (as shown in Figure 5c,d).

3.4. Optimization of Meth/Apt/Ag-ZnO NC Paper-Based Sensor in Terms of Temperature and Time

A crucial stage for the developed sensor’s effective operation is the biosensor’s op-
timization. Time and temperature have an impact on the functioning of the sensor. The
sensor was adjusted in terms of these experimental parameters, including the time and
temperature, in order to attain optimal response. The performance of the meth/Apt/Ag-
ZnO NC paper-based sensor was investigated thoroughly in a range of temperatures and
time conditions. The meth/Apta/Ag-ZnO NC paper-based sensor’s cyclic voltammetry
graphs were recorded at various temperatures, varying from 15 ◦C to 55 ◦C, at a scan rate of
about 50 mV/s−1. The best current response was observed at 35 ◦C. Therefore, the sensor
was optimized at 35 ◦C. Further, the optimization of the sensor was also carried out over
different time intervals (5 to 35 s), but the ideal current response time was between 20 and
30 s because at 35 s, it takes longer to display the current response, delaying the sensor’s
capacity to detect changes. As a result, it would not be able to detect the meth in as much
time (as shown in Figure 6a,b).
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ranging from −1 V to +1 V at different concentration from 0.01 to 6 µg/mL. (b) Linear sweep voltam-
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of the target meth concentration from cyclic voltammetry results. (d) Linear curve of the current
value and log of the target meth concentration from linear sweep voltammetry response.
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3.5. Limit of Detection and Test of Accuracy (Recovery)

The limit of detection for the proposed sensor was found to be 0.1 µg/mL by using
the formula LOD = 3.3 × standard deviation/slope of calibration curve. The accuracy of
the proposed sensor was also evaluated using a recovery test. The other concentration was
laced with meth at various concentrations. In order to demonstrate the excellent recovery
of the suggested biosensor, 0.01 µg/mL of meth was added to the other meth concentration,
which caused the current to be virtually equivalent to 0.1 µg/mL. The same procedure
was repeated with other concentration, and the recovery percentages were calculated and
found to be 98% and 96%, respectively. The results are shown in Table 1.

Table 1. Recovery test of the proposed meth biosensor.

Initial Meth ePAD
Concentration

(µg/mL)

Concentration
of Meth Added

(µg/mL)

Final Measured
Current (µA)

Expected
Current (µA)

Recovery
(%)

0.01 0.1 242.5 255.0 98

0.01 2 258.3 265.8 96

3.6. Analysis of Stability and Specificity/Reliability (Cross Reactivity) of ePAD

The proposed paper-based sensor’s cross-reactivity performance was evaluated using
ketamine (0.01 µg/mL). The samples’ current responses, assessed using cyclic voltammetry,
are shown in fig 7a, which demonstrates that the peak flow of the drug ketamine was almost
equal to that of the aptamer/Ag-ZnO NC/ePAD, although the current was increased when
compared to meth. Additionally, the paper-based sensor was maintained at 4 ◦C for
different lengths of time—1 day, 7 days, 15 days, and 30 days—in order to detect meth
(0.01 µg/mL) and test the stability of the sensor. The results clearly show that the built-in
sensor generated nearly identical results to the aptamer/Ag-ZnO NC/ePAD and was
stable up to the 30th day. The stability graph further shows sufficient repeatability and
reproducibility for meth detection (Figure 7b).
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Figure 7. (a) Investigation of meth peak current CV value of aptamer/Ag−ZnO NC sensor interaction
with the interferent, ketamine, with error bars (n = 5). (b) The electrochemical test was used to evaluate
the stability of the paper-based sensor’s capacity to detect meth on the first, seventh, fifteenth, and
thirtieth days with error bars (n = 5).
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3.7. Analysis in Spiked Beverage

To test the efficiency of the developed paper-based sensor, we spiked a beverage and
examined the sample. In specifically, 0.01 µg/mL of meth was added to a beverage, and
peak current value testing (cyclic voltammetry) was carried out on the aptamer/Ag–ZnO
NC ePAD surface. The sensor functioned excellently in the spiked beverage, and the
result is very comparable to meth. Data were gathered that satisfy the requirements for
identification in a real sample. Since the current response was discovered to be virtually
identical to the meth ePAD, the constructed sensor was able to detect meth in a drink.
(Figure 8a,b).
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Figure 8. (a) Meth in a spiked beverage, detected using the constructed paper−based sensor in a
cyclic voltammetry peak current study. (b) Error bars are shown in a bar graph comparing the current
study of spiked beverages to the other ePADs (n = 5).

4. Conclusions and Future Perspectives

Electrochemical sensors have drawn significant interest because of their vital role in the
early detection of illegal substances in drinks and other fluids. Here, we rationally exploited
the exceptionally high charge-transfer efficiency of a Ag/ZnO ternary nanocomposite to
develop a detection platform for methamphetamine—a recreational drug. The use of an
electrochemical paper analytical device (ePAD) improves the sensor even more because
paper is a cheap substrate that can be made in huge quantities with less effort. Paper-based
testing offers a point-of-care diagnostic platform that is affordable. Due to their effective
manufacturing, use of environmentally acceptable substrates, and ability to minimize waste
management, these sorts of sensors are referred to as eco-designed analytical instruments. It
is obvious that the suggested sensor requires significantly less time and money than current
analytical techniques for meth detection. The detection limit of the reported sensor was
found to be 0.1 µg/mL, which is much lower than other previously reported studies. UV-
vis spectroscopy, FTIR, and SEM were used to characterize the produced nanocomposites
of silver and zinc oxide nanorods. Aptamers were utilized as the recognition element
for this study because they are considered unique and highly sensitive instruments for
use in quick diagnostic approaches. Additionally, they are easy to manufacture and are
selective. Measurements of the analytical response of the biosensor were carried out using
cyclic voltammetry and linear sweep voltammetry, both of which were verified with a
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potentiostat. The sensor is considered to have good sensitivity and selectivity toward meth.
Furthermore, the applicability of the sensor was studied using a spiked sample, which
revealed that the sensor can be used in forensic labs in the future for drug analysis.
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