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Abstract: The large number of estimated parameters in a reconfigurable intelligent surface (RIS)
makes it difficult to achieve accurate channel estimation accuracy in 6G. Therefore, we suggest a novel
two-phase channel estimation framework for uplink multiuser communication. In this context, we
propose an orthogonal matching pursuit (OMP)-based linear minimum mean square error (LMMSE)
channel estimation approach. The OMP algorithm is used in the proposed algorithm to update the
support set and pick the columns of the sensing matrix that are most correlated with the residual
signal, which successfully reduces pilot overhead by removing redundancy. Here, we use LMMSE?s
advantages for handling noise to address the problem of inadequate channel estimation accuracy
when the signal-to-noise ratio (SNR) is low. Simulation findings demonstrate that the proposed
approach outperforms least-squares (LS), traditional OMP, and other OMP-based algorithms in terms
of estimate accuracy.

Keywords: reconfigurable intelligent surface; LMMSE; channel estimation; mmWave

1. Introduction

One of the important 6G technologies is reconfigurable intelligent surface (RIS), which
has received a lot of research attention. It consists of a controller and a sizable number of
inexpensive passive reflecting components without RF chains. The wireless communication
environment can be intelligently manipulated by RIS by adjusting the coefficients of its
constituents [1–3]. Wireless communication coverage, throughput, and energy efficiency
can all be considerably increased by coherently combining and guiding wireless signals in
the desired direction [4,5]. Due to passive reflection, RIS also consumes less energy and has
lower hardware costs than conventional active relays or beamforming methods [6,7]. How-
ever, precise channel state information (CSI) is needed for RIS to operate to its full potential.
Therefore, obtaining precise CSI is essential for RIS-assisted communication systems.

To get accurate CSI, there are two key obstacles to overcome. First, many passive
elements are incapable of actively transmitting or receiving signals because they lack the
ability to analyze signals. Only active antennas on the base station (BS) and user equipment
(UE) can be used to determine CSI [8,9]. As a result, it is difficult to estimate BS-RIS
and RIS-UE channels using RIS-assisted channel estimation. Second, a large number of
antennas for multiple input multiple output (MIMO) systems leads to decreased channel
estimate accuracy [10]. Therefore, channel estimation is difficult in RIS-aided MIMO
communication systems.

Many different approaches have recently been put forth to investigate channel estima-
tion in RIS-assisted communication systems [11–18]. The work [11] specifically proposed
an ON/OFF-based channel-estimating approach to directly estimate cascaded channels.
In accordance with this technique, N time slots are sufficient to accurately estimate all
reflective channels of the user in the scenario that there is no received noise at the BS,
thus decreasing the pilot overhead necessary for channel estimation. However, channel
estimation accuracy may be decreased since only one RIS element can reflect the pilot signal
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to the BS at a time slot. The work [12] proposed a channel estimation strategy based on
discrete Fourier transform (DFT), which can still perfectly estimate all cascaded channels
of a user through N time slots. In addition, since all RIS components remain turned on in
each time slot, it can achieve higher estimation accuracy than the ON/OFF strategy, but the
pilot overhead is still high. The work [13] proposed a channel estimation method based
on row-structured sparsity utilizing the traditional orthogonal matching pursuit (OMP)
algorithm in compressed sensing (CS) for channel estimation. The work [14] developed a
unique angle domain cascaded channel sparsity-based channel estimation technique based
on conventional CS. By leveraging the double-structured sparsity of the angle cascaded
channels, the work [15] developed a double-structured orthogonal matching pursuit (DS-
OMP) based cascaded channel estimation scheme. Compared with the prior method, this
one requires less pilot overhead for channel estimate. Under low signal-to-noise ratios
(SNR), the works [13–15] were unable to obtain satisfactory estimation accuracy. The above
papers only use incomplete sparsity, which can lead to redundant pilot consumption. Tak-
ing advantage of the specific triple structure sparsity of cascaded channels, [16] proposed a
multi-user joint estimation algorithm that significantly reduces pilot overhead. However,
this algorithm introduced a hypothetical condition that is difficult to achieve in practical
situations. The work [17] proposed a multidimensional orthogonal matching pursuit strat-
egy for compressive channel estimation, computing the projections on a set of independent
dictionaries instead of a single large dictionary to achieve high-accuracy channel estimation
at reduced complexity. However, multiple independent dictionaries bring additional pilot
overhead. By utilizing the common sparsity between different subcarriers and the dual
structure sparsity of the angle cascaded channel matrix, the work [18] proposed a data-
driven cascaded channel estimation method to accurately detect channel support using
denoising neural networks. This work introduced deep learning to solve the denoising
problem of channel estimation which inevitably led to increased complexity.

According to the discussion above, there is still much opportunity for improvement
in the situation of low SNR in order to achieve improved channel estimation accuracy
with less pilot overhead, which is also essential in real applications. In the case of low
SNR, the channel is affected by various non-ideal factors such as noise. This leads to
an increase in channel estimation error. It is necessary to model non-ideal channels and
develop adaptive algorithms to counteract their effects. Consequently, we propose an
algorithm that can utilize the noise processing advantages of LMMSE on the basis of the
OMP algorithm to reduce channel estimation errors under low SNR. We emphasize our
significant contributions in the following summary of the paper:

• We present a linear minimal mean square error (LMMSE) channel estimation approach
based on OMP to estimate the BS-UE direct channel without taking RIS into account
in the model we develop in mmWave MIMO communication system. We employ the
OMP approach to obtain the support set and the LMMSE algorithm to estimate the
channel after converting the channel estimation problem into a sparse signal recovery
problem. The proposed approach can increase estimation accuracy while requiring
less pilot overhead.

• By using the double-structured sparsity of the angle cascaded channel in mmWave,
we present an LMMSE channel estimation technique based on DS-OMP to estimate
the BS-RIS-UE cascaded channel. The DS-OMP approach is used to get the support
sets for the angle cascaded channel, and the LMMSE algorithm is used to estimate
the channel. The proposed technique successfully manages noise to produce a more
accurate estimation.

The rest of this article is arranged as follows. The system model is introduced in
Section 2, which also discusses the direct channel and cascade channel estimation problems.
We present the proposed channel estimate algorithms for direct and cascaded channels,
respectively, in Section 3. The simulation results in Section 4 demonstrate the viability of
the proposed approach. Section 5 presents the conclusion of the article.
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2. System Model and Problem Formulation

In this section, we introduce the system models of the two stages of channel estimation
and describe their channel estimation issues, respectively.

2.1. Direct Channel

As shown in Figure 1, we take into account a wireless system with K single-antenna
users interacting with a base station (BS) in the uplink while the BS has M antennas and
uses a uniform planar array (UPA) [19]. All RIS components remain closed when there
is communication between the UE and the BS. hd,k, k = 1, 2, · · · , K, denotes the direct
channel from the kth user to the BS. In this paper, we simulate the direct channel using the
Saleh-Valenzuela channel [20,21] as

hd,k =

√
M

Ld,k
∑Ld,k

l1=1 αd,k
l1

b
(

ϑd,k
l1

, ψd,k
l1

)
, ∀k, (1)

where Ld,k is the number of paths between the BS and UE, αd,k
l1

, ϑd,k
l1

(
ψd,k

l1

)
denotes the

complex gain and the azimuth (elevation) angle at the BS for the l1 path, respectively.
b
(

ϑd,k
l1

, ψd,k
l1

)
represents the normalized array steering vector at the BS. b

(
ϑd,k

l1
, ψd,k

l1

)
can be

represented by

b
(

ϑd,k
l1

, ψd,k
l1

)
=
[
1, ej2πdsinϑsinψ/λ, · · · , ej2π(M1−1)dsinϑsinψ/λ

]T

⊗[
1, ej2πdcosψ/λ, · · · , ej2π(M2−1)dcosψ/λ

]T
,

(2)

where d is the antenna spacing, λ is the signal wavelength, and⊗ represents the Kronecker product.

We define the array response matrix as AR =
[
αd,k

1

(
ϑd,k

1 , ψd,k
1

)
, αd,k

2

(
ϑd,k

2 , ψd,k
2

)
, · · · , αd,k

Ld,k

(
ϑd,k

Ld,k
, ψd,k

Ld,k

)]
,

which constitutes the dictionary of our CS formulation, and the rows of the matrix are orthogonal [22].
Then, we can rewrite (1) utilizing the array response matrix, AR, as follows:

hd,k = ARdiag(α), (3)

where α =
[
αd,k

1 , αd,k
2 , · · · , αd,k

Ld,k

]
. All users transmit the known pilot symbols to the BS over Q time

slots in accordance with the commonly utilized orthogonal pilot transmission scheme [23] for uplink
channel estimation. At this point, all RIS components are turned off; i.e.,

φn,q = 0, n = 1, 2, · · · , N, q = 1, 2, · · · , Q. (4)

Sensors 2023, 23, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 1. Multi-user mmWave MIMO system without considering RIS. 

Specifically, in the 𝑞th (𝑞 =  1, 2,   , 𝑄) time slot, the effective received signal for the 𝑘th user at the BS is denoted by the following equation: 𝐲 , = 𝐡 , 𝐱 , + 𝐧 , , (5) 

where 𝐱 ,  is the pilot symbol sent by the 𝑘th user, and 𝐧 , ~𝒞𝒩(0, 𝜎 𝐈 ) is the 𝑀 × 1 
received additive white Gaussian noise (AWGN), with 𝜎  representing the noise power. 

Vectorizing the received signal, 𝐲 , , is fundamental to formulate the channel esti-
mation issue as 𝐲 , = 𝐀 diag(𝛼)𝐱 , + 𝐧 , , (6) 

2.2. Cascaded Channel 
As shown in Figure 2, we keep all the RIS elements turned on. There are 𝑀 antennas 

and 𝑁 elements in BS and RIS, respectively, and they are both UPA to serve 𝐾 single-
antenna users simultaneously. 𝐅 ∈ ℂ ×  indicates the RIS-BS channel; 𝐡 , ∈ ℂ ×  indi-
cates the channel from the 𝑘th user to the RIS (𝑘 = 1,2, ⋯ , 𝐾). To obtain the channel be-
tween RIS and BS, we employ the Saleh-Valenzuela channel model, as shown below: 𝐅 = ∑ α 𝐛(𝜗 , 𝜓 )𝐚(𝜗 , 𝜓 ) , (7) 

where 𝐿  is the quantity of paths connecting the RIS and BS, and 𝛼 , 𝜗 (𝜓 ), 𝜗 (𝜓 ) 
is the complex gain, the azimuth (elevation) angle at the BS and RIS for the 𝑙  path, re-
spectively. Likewise, the channel between UE and RIS can be depicted by 𝐡 , = , ∑ 𝛼 ,, 𝐚(𝜗 , , 𝜓 , ), (8) 

where 𝐿 ,  is the quantity of paths between the 𝑘th user and RIS, 𝛼 , , 𝜗 , (𝜓 , ), is the 
complex gain, the azimuth (elevation) angle at the RIS for the 𝑙   path, respectively. 𝐚(𝜗, 𝜓) ∈ ℂ ×  represents the steering vector for the normalized array at the RIS. For a 
typical N × N (𝑁 = 𝑁 × 𝑁 ) UPA, 𝐚(𝜗, 𝜓) can be defined by [24] 𝐚(𝜗, 𝜓) = √ [𝑒 ( ) ( ) / ]⨂[𝑒 ( ) / ], (9) 

where 𝑛 = [0,1, ⋯ , 𝑁 − 1], 𝑛 = [0,1, ⋯ , 𝑁 − 1], 𝑑 is the spacing between the antennas, 𝜆 is the wavelength, and ⨂ represents the Kronecker product. We define the 𝑘th user’s 𝑁 × 𝑀 cascaded channel as 𝐇 = 𝐅𝑑𝑖𝑎𝑔(𝐡 , ), and we convert it to angular domain rep-
resentation as 

Figure 1. Multi-user mmWave MIMO system without considering RIS.



Sensors 2023, 23, 5516 4 of 14

Specifically, in the qth (q = 1, 2, ···, Q) time slot, the effective received signal for the kth user at
the BS is denoted by the following equation:

yk,q = hd,kxk,q + nk,q, (5)

where xk,q is the pilot symbol sent by the kth user, and nk,q ∼ CN
(
0, σ2IM

)
is the M× 1 received

additive white Gaussian noise (AWGN), with σ2 representing the noise power.
Vectorizing the received signal, yk,q, is fundamental to formulate the channel estimation issue as

yk,q = ARdiag(α)xk,q + nk,q, (6)

2.2. Cascaded Channel
As shown in Figure 2, we keep all the RIS elements turned on. There are M antennas and

N elements in BS and RIS, respectively, and they are both UPA to serve K single-antenna users
simultaneously. F ∈ CN×M indicates the RIS-BS channel; hr,k ∈ CN×1 indicates the channel from
the kth user to the RIS (k = 1, 2, · · · , K). To obtain the channel between RIS and BS, we employ the
Saleh-Valenzuela channel model, as shown below:

F =

√
NM
LF

∑LF

l2=1 α
F
l2 b
(

ϑFr
l2

, ψFr
l2

)
a
(

ϑFt
l2

, ψFt
l2

)T
, (7)

where LF is the quantity of paths connecting the RIS and BS, and αF
l2 , ϑFr

l2

(
ψFr

l2

)
, ϑFt

l2

(
ψFt

l2

)
is the

complex gain, the azimuth (elevation) angle at the BS and RIS for the l2 path, respectively. Likewise,
the channel between UE and RIS can be depicted by

hr,k =

√
N

Lr,k
∑Lr,k

l3=1 αr,k
l3

a
(

ϑr,k
l3

, ψr,k
l3

)
, (8)

where Lr,k is the quantity of paths between the kth user and RIS, αr,k
l3

, ϑr,k
l3

(
ψr,k

l3

)
, is the complex gain,

the azimuth (elevation) angle at the RIS for the l3 path, respectively. a(ϑ, ψ) ∈ CN×1 represents the
steering vector for the normalized array at the RIS. For a typical N1 ×N2(N = N1 × N2) UPA, a(ϑ, ψ)
can be defined by [24]

a(ϑ, ψ) =
1√
N

[
e−j2πdsin(ϑ)cos(ψ)n1/λ

]⊗[
e−j2πdsin(ψ)n2/λ

]
, (9)

where n1 = [0, 1, · · · , N1 − 1], n2 = [0, 1, · · · , N2 − 1], d is the spacing between the antennas, λ is the
wavelength, and

⊗
represents the Kronecker product. We define the kth user?s N ×M cascaded

channel as Hk = Fdiag
(
hr,k
)
, and we convert it to angular domain representation as

Hk = UM
∼
HkUT

N , (10)

where
∼
Hk is the N ×M angle cascaded channel, and UM and UN are the BS?s and RIS?s respective

M×M and N × N dictionary unitary matrices [20]. There are a few non-zero elements in the angle
cascaded channel, which exhibits sparsity, as a result of the minimal scattering near BS and RIS.

All users transmit known pilot symbols to BS through RIS in Q time periods using an orthogonal
pilot transmission approach to estimate the uplink channel. The effective received signal for the kth
user at the BS in the qth (q = 1, 2, ···, Q) time slot can be expressed as yk,q ∈ CM×1 after the direct
channel effect between BS and UE has been removed as

yk,q = Fdiag
(
hr,k
)
θqxk,q + nk,q, (11)

where xk,q is the pilot symbol that the kth user sends, θq =
[
θq,1, θq,2, · · · , θq,N

]T is the reflecting
vector of RIS, the reflecting coefficient at the nth RIS element (n = 1, 2, · · · , N) in the qth time slot
is given by θq,n, and nk,q ∼ CN

(
0, σ2IM

)
is the M× 1 received noise with σ2 representing the noise

power. According to Hk = Fdiag
(
hr,k
)
, (11) can be written as

yk,q = Hkθqxk,q + nk,q. (12)
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For Q time slots after pilot transmission, let xk,q = 1, and we obtain the overall measurement

matrix of Yk =
[
yk,1, yk,2, · · · , yk,Q

]
as

Yk = HkΘ + Nk, (13)

where Θ =
[
θ1, θ2, · · · , θQ

]
, and Nk =

[
nk,1, nk,2, · · · , nk,Q

]
. We can obtain the transformation of Yk

by substituting (10) into (13) as

Yk = UM
∼
HkUT

NΘ + Nk. (14)
∼
Yk =

(
UH

MYk
)H is the effective measurement matrix, and

∼
Nk =

(
UH

MNk
)His the effective noise

matrix. Based on the above formula, we can determine a CS model as follows

∼
Yk =

∼
Θ
∼
H

H

k +
∼
Nk, (15)

where
∼
Θ =

(
UT

NΘ
)H denotes the sensing matrix. By making full use of the double structured sparsity

of the angle cascaded channel, we can estimate the channel. However, under the premise of low SNR,
the estimation accuracy of channel estimation algorithms based on DS-OMP still needs to be improved.

3. Proposed Channel Estimation Scheme
3.1. Direct Channel Estimation

Based on (5), the channel between BS and UE for the kth user can be estimated separately.
Traditional channel estimation algorithms, such as the LS algorithm, have obvious advantages due
to their simple implementation and low computational complexity. However, due to the lack of
noise processing, the estimation accuracy cannot meet the requirements of practical applications. In
addition, its estimation performance is very limited in certain specific scenarios. Based on this, we
propose an OMP-based LMMSE algorithm, which can effectively solve the challenges above. Finally,
we evaluate the proposed algorithm?s computational complexity.

3.1.1. Least Square (LS) Algorithm
The goal of the LS algorithm is to reduce the distance between signals that are received from

their optimal distance; i.e.,

ĤLS = arg min
(
Y− ĤLSX

)(
Y− ĤLS

)H , (16)

To minimize the sum of squares of errors, we make (16)?s first order partial derivative in relation
to Ĥ equal to 0; i.e.,

ĤLS =
(

XHX
)−1

XHY, (17)

At this point, the sum of squares of the obtained estimates is the minimum, which is the solution
of the LS channel estimation. The LS algorithm is frequently used in practice, has a low computing
complexity, and is reasonably easy to implement. However, it has two significant issues that must
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be resolved. First, because the LS algorithm ignores the impact of noise, estimation accuracy is
significantly impacted in low SNR situations. Second, the number of antennas at the BS is typically
enormous, which could lead to overly large dimensionality of channel estimation problems, making
it challenging to employ the LS algorithm for mmWave communication [24].

3.1.2. Proposed LMMSE Algorithm Based on OMP
Firstly, to address the issue of noise processing in the LS algorithm, a weighting matrix, W, is

added to the LS algorithm:

ĤMMSE = WĤLS = RHĤLS
R−1

ĤLSĤLS
Ĥ

LS
= RHĤLS

(RHH +
σ2

Z
σ2

X
I)
−1

ĤLS. (18)

This is the minimum mean square error (MMSE) algorithm [25,26]. However, the matrix inver-
sion requires a large amount of computation and continuous recalculation, which greatly occupies
computational resources and has poor real-time performance. Consequently, the MMSE algorithm
has limitations in practical applications. The LMMSE algorithm performs linear smoothing on the

basis of the MMSE algorithm, considering the MMSE algorithm? need to compute
(

RHH +
σ2

Z
σ2

X

)−1
;

as the noise changes and the input signal changes, the inversion operation becomes very complex, so,

the LMMSE algorithm uses expectation to displace the σ2
Z

σ2
X

. If we let SNR =
E(X2)

σ2 , β =
E(X2)

E(1/X2)
, the

estimated channel is obtained from the LMMSE algorithm as [27]

ĤLMMSE = Rhd,kĤLS

(
Rhd,khd,k

+
β

SNR

)−1
ĤLS, (19)

where Rhd,kĤLS
is the cross-correlation matrix of ĤLS; hd,k, Rhd,khd,k

denotes the autocorrelation matrix
of hd,k; and β is a channel-modulation-type parameter that in this case, we set as β = 1. We assume
that the number of propagation paths between the channels BS and UE is Ld,k = 8 and that the
formula additionally contains a matrix inversion operation. In other words, we must do an 8 by 8
matrix inversion.

Then, as the number of entries to be estimated in the CS method is proportional to the sparsity,
and its sparsity level is considerably lower than MK, we utilize the CS algorithm to overcome the
difficulties of implementing the LS algorithm in mmWave communication. For direct channel estima-
tion, we take into account a conventional OMP approach and combine it with the LMMSE algorithm,
which has additional advantages in noise processing. Algorithm 1 provides a summary of our scheme.

Algorithm 1 Proposed LMMSE Algorithm Based on OMP

Input: Receive signal,
∼
Yk; sensing matrix,

∼
Θ; true channel matrix, hd,k; a scalar parameter for

LMMSE estimation, β; SNR; BS?s number of antennas, M; the number of users, K; and the number
of paths (BS-UE), Ld,k.
Initialization: ĥd,k = 0M×K , RHH = 0M×K , RHS = 0M×K .
1. for k = 1, 2, · · · , K do

2. YK =
∼
Yk(: , : , k), R = YK .

3. for i = 1, 2, · · · , Ld,k do

4. Compute the term =
∣∣∣∣∼Θ’R

∣∣∣∣2.

5. Find the index of the maximum value in the term.
6. Find the column and row indices of the selected index.
7. for j = 1, 2, · · · , length(column) do

8. Find the corresponding rows in
∼
Θi and YK

9. Compute the LS of the channel for the selected column
10. end for
11. end for
12. RHH = hd,k(:, k)hd,k(:, k)?; RHH = hd,k(:, k)ĥOMP?.
13. Calculate the estimated channel matrix, ĥd,k, according to Equation (19).
14. end for
Output: Estimated channel matrix, ĥd,k.
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The following is the explanation of Algorithm 1?s primary procedure. First, for each user, k,
find the position of the largest element in the term in step 5. For each group column, perform steps

6–8 and save the column vector of the corresponding position in the sensing matrix to
∼
Θi. We use

Moore Penrose pseudo inverse to calculate ĥOMP of the column j in step 9. Finally, ĥd,k is obtained
using the LMMSE algorithm based on (19) in step 13.

3.1.3. Computational Complexity Analysis
Here, we examine the computational complexity of the three-layer loop that corresponds to the

appropriate section of our OMP-based LMMSE algorithm?s major computational work. Specifically,
for each user, k, L cycles are executed, and the complexity of each cycle is O(KM). To calculate
∼
Θ’R, we need to find the maximum value and calculate the estimated channel, ĥOMP. Therefore, the
complexity from steps 1 to 12 is O

(
KML2). In step 13, we calculate matrix multiplication according to

(19), where RHS and ĥOMP are M×K matrix, and RHH is M×M matrix. Consequently, it is necessary
to calculate O

(
KM2) times multiplication and addition. At the same time, using the pinv function to

calculate the inverse matrix requires calculating O
(

M3) times multiplication and addition. Therefore,
the complexity of step 13 is O

(
KM3). In summary, the computational complexity of our proposed

algorithm is O
(
KML2 + KM3).

3.2. Cascaded Channel Estimation
Based on (15), for each user, k, we are able to estimate the angle cascaded channel. The traditional

CS algorithm generates high pilot overhead while ensuring great estimation accuracy. Although the
DS-OMP algorithm proposed in [15] reduces the pilot overhead of cascaded channel estimation to
some extent, the estimation accuracy still needs to be improved in low SNR. Therefore, we propose
an improved DS-OMP algorithm to achieve higher estimation accuracy in low SNR scenarios. Finally,
the computational complexity of this algorithm is analyzed.

3.2.1. Proposed LMMSE Algorithm Based on OMP

The matrix
∼
Hk in (10) can be depicted using the following equation

∼
Hk =

√
MN
L1L2

∑L1

l2 ∑L2

l3
αF

l2 αr,k
l3

∼
b
(

ϑFr
l2

, ψFr
l2

)∼
a

T(
ϑFt

l2
+ ϑr,k

l3
, ψFt

l2
+ ψr,k

l3

)
, (20)

where
∼
b(ϑ, ψ) = UH

Mb(ϑ, ψ) and
∼
a(ϑ, ψ) = UH

Na(ϑ, ψ). Depending on the array steering vector in the
(ϑ, ψ) direction of UN and UM, each one of them has just one non-zero element. In [15], a thorough
discussion of the double-structured sparsity of the angular domain cascaded channel is presented.

In this section, we consider integrating LMMSE into the classic OMP algorithm and propose an
improved DS-OMP cascaded channel estimation scheme. The algorithm process is summarized in
Figure 3.

The following explanation outlines the essential steps of the proposed method. First, by utilizing

the sparsity of the double structure, we estimate the angle cascaded channel
∼
Hk?s completely public

row support, partially public column support, and specific column support for k [15]. Once all

supports have been identified, we use the LS algorithm to obtain the estimation matrix,
∼̂
Hk_LS, for the

angle cascaded channel,
{ ∼̂

Hk_LS

}K

k=1
, then use Ĥk = UH

M
∼̂
HkUN to transform

∼̂
Hk_LS into the spatial

cascaded channel Ĥk_LS. Next, we calculate the real cascaded channel Hk?s autocorrelation matrix
of and the cross-correlation matrix of Ĥk_LS and Hk. Then, the estimated cascaded channel matrix,
Ĥk_LMMSE, is obtained using the following formula:

Ĥk_LMMSE = RHkĤk_LS

(
RHkHk +

β

SNR

)−1
Ĥk_LS, (21)

where RHkĤk_LS
is the cross-correlation matrix of Ĥk_LS and Hk, RHkHk is the autocorrelation matrix of

Hk. We set β = 1 here.
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3.2.2. Computational Complexity Analysis
The computational complexity of the proposed LMMSE scheme based on DS-OMP is examined

in this section. The complexity of this algorithm mainly comes from three parts: completely common
row support detection, partially common column support and specific column support detection,
and channel estimation matrix calculation. The complexity of the first part mainly comes from energy
calculation, with a complexity of O(KM). The second part contains a triple loop, where the first
loop has a count of L1. The second cycle is K, and the third cycle is L2 + Lc

2, so the computational

complexity of the second part is O
(

KL1

(
L2 + Lc

2
))

. The third part involves matrix multiplication

and inversion operations, and its complexity is O
(
KN3). In summary, the computational complexity

of the entire algorithm is O
(

KM + KL1

(
L2 + Lc

2
)
+ KN3

)
.

4. Stimulation Results
To demonstrate the effectiveness of the proposed approach, we give the simulation results for

the direct channel (BS-UE) and cascade channel (BS-RIS-UE) estimate phases in this section.

4.1. Direct Channel Estimation
The following simulation parameters are chosen: M = 64, K = 8, Ld,k = 8, and dBU =100 m

(the distance between BS and UE). A total of 500 Monte Carlo simulations are performed using
MATLAB R2019a in the simulation. For performance evaluation, we employ the normalized mean
square error (NMSE), which is defined as

NMSE = E
[∥∥∥ĥd,k − hd,k

∥∥∥2

2
/
∥∥hd,k

∥∥2
2

]
, (22)

In the simulations that followed, we compared the NMSE performance of the proposed scheme
with that of the LS algorithm, the conventional OMP method, and an upgraded OMP algorithm for
channel estimation in order to demonstrate the proposed algorithm?s superiority.

The link between NMSE and SNR for the BS-UE channel estimation is shown in Figure 4. We
contrast the proposed channel estimation algorithm?s NMSE with those of the LS, conventional, and
improved OMP algorithms. The LS method is the least computationally complex of them all, but it
ignores the effects of noise. The other two algorithms consider noise, but they perform poorly when
the SNR is low. Our proposed channel estimation algorithm achieves higher estimation accuracy
with acceptable computational complexity at low SNR. Since the LMMSE algorithm is a statistical
estimation method aimed at minimizing the mean square error of channel estimation. It is based on
the linear relationship between the received signal and the known transmitted signal sequence, while
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considering the channel noise and the correlation of the signal. In low SNR conditions, the noise
in the received signal becomes the main interference factor and significantly affects the accuracy of
channel estimation. The LMMSE algorithm can mitigate the impact of noise on channel estimation by
optimizing the estimated mean square error. It achieves this by fully utilizing the known transmitted
signal sequence and the linear relationship with the received signal. Consequently, the proposed
scheme converges quickly to a performance platform. When SNR = −20 dB, the proposed algorithm
can achieve an estimation accuracy of about 10−1.3 orders of magnitude, which has significant
advantages compared with the three algorithms considered. When SNR = 10 dB, about 10−2 orders
of magnitude estimation accuracy can be attained with the proposed scheme, and it is superior to the
other three algorithms. Therefore, we can see the superiority of the proposed algorithm.
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Figure 4. Performance evaluation of the NMSE for the BS-UE channels (compared with LS [25],
conventional OMP algorithm [14], and improved OMP algorithm [26]).

4.2. Cascaded Channel Estimation
The following simulation parameters are chosen: M = 64, N = 256, K = 8, LF = 3, Lr,k = 8,

Lc = 0, 4, 6 (the number of common paths for
{

hr,k
}K

k=1), dRU =10 m (the distance between RIS and
UE), dBU =100 m. A total of 500 Monte Carlo simulations are performed using MATLAB R2019a in
the simulation. We assess performance using NMSE. We examined the NMSE performance of three
channel estimation schemes—the classic OMP method, the OMP algorithm based on row-structured
sparsity, and the scheme based on DS-OMP—to demonstrate the proposed approach?s superiority.

The relationship between the NMSE and the pilot overhead of the BS-RIS-UE channel under
various Lc is depicted in Figures 5–7, respectively. The work [15] discussed the performance of their
algorithm in four different scenarios with Lc of 0, 4, 6, and 8. We chose three of these (Lc = 0, 4, 6)
for comparison to fully demonstrate the performance advantages of our algorithm. The proposed
channel estimation algorithm?s NMSE was contrasted with the conventional OMP approach, the
OMP algorithm based on row-structured sparsity, and the algorithm based on DS-OMP. Under
the same pilot overhead conditions, the proposed scheme outperforms the other three schemes in
NMSE performance, and as the training pilots increase, our scheme consistently maintains significant
performance advantages. Taking Figure 7 as an example, the estimation accuracy of the algorithm
proposed in this article can approach 10−2 orders of magnitude when the pilot overhead is 44. The
estimated accuracy of the other three algorithms is around 10−1.5 orders of magnitude lower. The
proposed scheme is superior to the other three because it requires fewer pilots to perform more
optimal channel estimation.
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Figure 5. NMSE?s response to the pilot signal (Lc = 0, compared with OMP algorithm [14], RS-OMP
algorithm [13], and DS-OMP algorithm [15]).
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Figure 6. NMSE?s response to the pilot signal (Lc = 4, compared with OMP algorithm [14], RS-OMP
algorithm [13], and DS-OMP algorithm [15]).
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Figure 7. NMSE?s response to the pilot signal (Lc = 6, compared with OMP algorithm [14], RS-OMP
algorithm [13], and DS-OMP algorithm [15]).
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The relationship between NMSE and SNR of the BS-RIS-UE channel under various Lc is depicted
in turn in Figures 8–10. With the classic OMP method, the OMP algorithm based on row-structured
sparsity, and the algorithm based on DS-OMP, we compared the NMSE of the proposed channel
estimation scheme. Taking Figure 10 as an example, under the same SNR, the proposed method
performs better in terms of NMSE than the other three schemes. It continuously retains a considerable
performance advantage as the SNR rises, and our approach has an even greater advantage at low
SNR. While the estimation accuracy of the other three schemes is roughly 100.6 orders of magnitude
when SNR = −20 dB, the approach proposed in this study has an estimation accuracy of 100 orders
of magnitude. The estimation accuracy of the algorithm proposed in this study can approach
10−1.8 orders of magnitude when SNR = 10 dB, whereas the estimation accuracy of the other three
algorithms is only about 10−1.3 orders of magnitude, demonstrating the proposed algorithm?s
superiority.
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Figure 8. NMSE?s response to the SNR (Lc = 0, compared with OMP algorithm [14], RS-OMP
algorithm [13], and DS-OMP algorithm [15]).
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Figure 9. NMSE?s response to the SNR (Lc = 4, compared with OMP algorithm [14], RS-OMP
algorithm [13], and DS-OMP algorithm [15]).
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Figure 10. NMSE?s response to the SNR (Lc = 6, compared with OMP algorithm [14], RS-OMP
algorithm [13], and DS-OMP algorithm [15]).

The relationship between NMSE and the number of RIS elements (N) and the number of UE
(K) are depicted in turn in Figures 11 and 12, respectively. Here, we chose one of the three Lc above:
Lc= 4. In Figure 11, under the same N, the proposed method performs better in terms of NMSE than
the other three schemes. It continuously retains a considerable performance advantage as N rises.
Due to a certain pilot cost, the estimation accuracy decreases with the increase of N. Therefore, the
image shows an upward trend, and the same trend applies to the increase of K in Figure 12. While the
estimation accuracy of the best of the other three algorithms is roughly 10−2.2 orders of magnitude
when N = 64 in Figure 11, our proposed algorithm has an estimation accuracy of 10−2.8 orders
of magnitude. The estimation accuracy of the proposed algorithm can approach 10−1.4 orders of
magnitude when N = 484, whereas the estimation accuracy of the best of the other three algorithms
is only about 10−1.0 orders of magnitude. In Figure 12, the estimation accuracy of the best of the
other three algorithms is roughly 10−2.0 orders of magnitude when K = 4; our proposed algorithm
has an estimation accuracy of 10−2.6 orders of magnitude. The estimation accuracy of the proposed
algorithm can approach 10−2.0 orders of magnitude when K = 18, whereas the estimation accuracy of
the best of the other three algorithms is only about 10−1.4 orders of magnitude, demonstrating the
proposed algorithm?s superiority.
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Figure 11. NMSE?s response to the number of RIS elements (Lc = 4, compared with OMP algorithm [14],
RS-OMP algorithm [13], and DS-OMP algorithm [15]).



Sensors 2023, 23, 5516 13 of 14

Sensors 2023, 23, x FOR PEER REVIEW 14 of 16 
 

 

The estimation accuracy of the proposed algorithm can approach 10 .  orders of mag-
nitude when K = 18, whereas the estimation accuracy of the best of the other three algo-
rithms is only about 10 .  orders of magnitude, demonstrating the proposed algorithm’s 
superiority. 

 
Figure 11. NMSE’s response to the number of RIS elements (𝐿 = 4, compared with OMP algo-
rithm [14], RS-OMP algorithm [13], and DS-OMP algorithm [15]). 

 
Figure 12. NMSE’s response to the number of UE (𝐿 = 4, compared with OMP algorithm [14], RS-
OMP algorithm [13], and DS-OMP algorithm [15]). 

5. Conclusions 
In this paper, we proposed an innovative two-phase channel estimation framework 

for an RIS-assisted multi-user uplink mmWave MIMO communication system. Within 
this framework, we proposed two channel estimation schemes based on the OMP algo-
rithm to estimate the direct channels (BS-UE) and the cascaded channels (BS-RIS-UE), re-
spectively. Specifically, the direct channels are estimated with an OMP-based LMMSE 
channel estimation algorithm that has higher estimation accuracy when considering low 
SNR. Then, an improved LMMSE algorithm based on DS-OMP is proposed for cascaded 
channels estimation using the double structured sparsity of angular domain cascaded 
channels in mmWave. The algorithm we propose is an iterative algorithm that can 

64 100 144 196 256 324 400 484
-30

-20

-10

0

10

N
M

SE

number of RIS elements

 Proposed
 DS-OMP
 RS-OMP
 OMP

4 6 8 10 12 14 16 18
-30

-20

-10

0

10

N
M

SE

number of UE

 Proposed
 DS-OMP
 RS-OMP
 OMP

Figure 12. NMSE?s response to the number of UE (Lc = 4, compared with OMP algorithm [14],
RS-OMP algorithm [13], and DS-OMP algorithm [15]).

5. Conclusions
In this paper, we proposed an innovative two-phase channel estimation framework for an

RIS-assisted multi-user uplink mmWave MIMO communication system. Within this framework, we
proposed two channel estimation schemes based on the OMP algorithm to estimate the direct channels
(BS-UE) and the cascaded channels (BS-RIS-UE), respectively. Specifically, the direct channels are
estimated with an OMP-based LMMSE channel estimation algorithm that has higher estimation
accuracy when considering low SNR. Then, an improved LMMSE algorithm based on DS-OMP is
proposed for cascaded channels estimation using the double structured sparsity of angular domain
cascaded channels in mmWave. The algorithm we propose is an iterative algorithm that can gradually
improve the accuracy of channel estimation. In low SNR, using only the measurement matrix may
not be able to accurately estimate the channel due to high measurement noise. However, by using
the OMP algorithm to select paths with the maximum inner product, channel estimation can be
performed on a smaller subset, thereby reducing the impact of noise. Moreover, LMMSE is utilized to
process noise to further improve the quality of channel estimation. The simulation results show that
compared with existing algorithms, our proposed algorithm has higher estimation accuracy under
the same pilot overhead.
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