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Abstract: The Nordic hamstring exercise (NHE) is a very popular exercise used to improve eccentric
strength and prevent injuries. The aim of this investigation was to assess the reliability of a portable
dynamometer that measures maximal strength (MS) and rate of force development (RFD) during
the NHE. Seventeen physically active participants (34.8 ± 4.1 years; n = 2 women and n = 15 men)
participated. Measurements occurred on two different days separated by 48–72 h. Test–retest relia-
bility was calculated for bilateral MS and RFD. No significant test–retest differences were observed
in NHE (test–retest [95% CI, confidence interval]) for MS [−19.2 N (−67.8; 29.4); p = 0.42] and RFD
[−70.4 N·s−1 (−178.4; 37.8); p = 0.19]. MS showed high reliability (intraclass correlation coefficient
[ICC] [95% CI], =0.93 [0.80–0.97] and large within-subject correlation between test and retest [r = 0.88
(0.68; 0.95)]. RFD displayed good reliability [ICC = 0.76 (0.35; 0.91)] and moderate within-subject
correlation between test and retest [r = 0.63 (0.22; 0.85)]. Bilateral MS and RFD displayed a coefficient
of variation of 3.4% and 4.6%, respectively, between tests. The standard error of measurement and
the minimal detectable change for MS was 44.6 arbitrary units (a.u.) and 123.6 a.u., and 104.6 a.u.
and 290.0 a.u. for peak RFD. This study shows that MS and RFD can be measured for NHE using a
portable dynamometer. However, not all exercises are suitable to apply to determine RFD, so caution
must be taken when analyzing RFD during NHE.

Keywords: muscle strength; rehabilitation; groin; repeatability; reproducibility

1. Introduction

Research into hamstring injuries has dramatically increased in the last two decades,
because hamstring injuries are one of the most common injuries in high-speed running
sports [1,2]. Specifically, one recent study conducted by Ekstrand et al. [1] reported that all
hamstring injuries diagnosed in soccer in the 21-year study period have increased from
12% to 24%. Furthermore, the proportion of injury absence days caused by hamstring
injuries increased from 10% to 20% [1]. Hamstring injuries are more likely to occur during
running and sprinting, because the hamstring muscles experience the greatest amount of
eccentric force during the late swing phase in the gait cycle [3], as the hip and knee muscles
during late swing phase demonstrated the most dramatic increase in biomechanical load
(i.e., torques, net powers, and work done) when running speed progressed [4–6]. Further-
more, hamstring injury depends on many factors [7]. Specifically, hamstring eccentric and
concentric strength, lumbopelvic and knee stability, lower-limb stiffness, and insufficient
sprint exposure may increase the likelihood of a hamstring injury occurring [7]. Given
that, eccentric knee flexor muscle strength is one of the fundamental metrics to prevent in-
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juries [8–10] and consequently increase an athlete’s specific performance (e.g., acceleration
and high-speed running) [8,11,12].

The Nordic hamstring exercise (NHE) is one of the most common eccentric exercises
used in sports and is currently used as a major injury prevention strategy [12]. The exercise
instruction is the following: the athlete is asked to perform eccentric knee flexor maximal
strength (MS) in a high kneeling position with the ankles fixed either by a partner or by
a stationary object. From this position, the athlete inclines the torso, maintaining neutral
hip alignment, for as far as possible and then uses the arms to contact the ground in
front when the hamstrings can no longer control the downward movement. The NHE
intervention seems to increase the fascicle strength by increasing the number of sarcomeres
in series within the muscle fibers, and there are potential changes in the distribution through
electromyography of the three biarticular of the hamstring muscles (i.e., biceps femoris
long head, semitendinosus, and the semimembranosus) [13–15].

Regarding previous research, Lodge et al. [16] found high test–retest reliability, ICC
0.91 (CI, 0.76–0.96) and 0.91 (CI, 0.78–0.96) for left and right eccentric knee flexor muscle
strength peak forces, respectively, using an eccentric hamstring strength measurement
device similar to the portable dynamometer used in the current study compared to an
isokinetic dynamometer. Furthermore, similar results were found in inter-rater reliability
and correlations between isometric and eccentric knee extension and flexion strength using
a hand-held dynamometry and isokinetic test for knee flexion extension. Consequently, it
is vital to highlight that eccentric knee flexor muscle strength devices have already been
validated, and the aim of this study was to evaluate the test–retest reliability of a portable
dynamometer. To the authors’ knowledge, this is the first study that has measured reliability
(i.e., test–retest) of the rate of force development (RFD) during knee flexor strength testing.

To date, the gold standard measure for the evaluation of eccentric knee flexor strength
is isokinetic dynamometry [17]. However, isokinetic dynamometers are characterized by a
lack of portability, high cost and time consumption, and their daily use might be practically
difficult. Considering that a great number of devices that use load cell dynamometers
have become popular field-based methods to monitor individual eccentric knee flexor
strength during a NHE [9,17–19], therefore, the aim of this study was to evaluate the test–
retest reliability of eccentric knee flexor MS and peak RFD during NHE using a portable
dynamometer. The leading hypothesis of the current study was that the current portable
dynamometer provides reliable data of eccentric knee flexor MS and RFD, and the study
was designed to answer the main research question declared above.

2. Materials and Methods
2.1. Participants

Seventeen healthy and physically active adult subjects (n = 15 men and n = 2 women)
who engaged in more than 3 h of physical exercise per week, who were injury free in the
lower limbs, and had no pain or illness in the past 3 weeks before starting the study volun-
teered to take part in this study. Table 1 reports the characteristics of the participants. The
experimental design and potential risks of the study were explained to the participants and
written informed consent was provided. The study was approved by the Ethics Committee
of the Portugal Football School, Portuguese Football Federation (CEPFS 12.2021).

Table 1. Participants’ characteristics (n = 17).

Total (n = 17)

Age (years) 34.8 ± 4.1
Body mass (kg) 78.5 ± 16.2

Height (m) 1.8 ± 0.1
BMI (kg/m2) 24.1 ± 3.6

Values are expressed in mean ± standard deviation. BMI, body max index.
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2.2. Procedures

The same researcher recorded the test–retest NHE performance data at three distinct
sessions on different days. Firstly, the participants performed a familiarization session that
included the same warm-up, order, and exercises as the evaluation sessions. Approximately
7 days later, the participants performed the first test session, and the retest session was
conducted within 48–72 h from the end of the first test session. All sessions were conducted
at the same time of the day (i.e., during morning or afternoon). Participants were asked to
not perform any vigorous lower-limb exercises in the 24 h before each testing session [20].

In the first session, the participants performed a warm-up that consisted of 7 min on
a bicycle ergometer at a pedaling cadence of 75–80 rpm, 2 sets of 12 reps of half-squats,
standing toe raises, and hip bridge [21]. According to recent literature [21], participants
were positioned in a kneeling position over the padded board, ankles held under lockable
braces (fixed atop the uniaxial load cells), with the lateral malleolus aligned with the edge
of the board and arms across the chest, using the portable dynamometer (Figure 1).
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controlled as possible (eccentric phase only); (C) portable dynamometer used in this study.

The dynamometer Smart Nordic Trainer (Neuroexcellence®; S-2A INOX, Porto, Portu-
gal) has two load cells (one on each hook to measure the force applied by each leg). Each
cell has a maximum capacity of 4903 N (~500 kg). When starting the movement, the reading
of the cell is correct, but in the middle of the exercise, the hook has a rotational movement
of about 5 to 8 degrees, which is intentional, which is the adaptation of the hook to the
athlete’s exercise, which can vary the angle from athlete to athlete. The manufacturers
considered this read error to be negligible. A load of 100 kg with a hook rotated by 8 degrees
corresponds to an error of±1 kg. The cell reading is 100 g. Model SENSOCAR® S-2A INOX
has a repeatability error <0.02% F.E, sensitivity 2.0 mV/V ± 0.1%, zero offset < 1% F.E,
combined maximum error < 0.02% F.E., Fluence 30 min (creep) < 0.02%. The metrics were
calculated according to the manufacturer as follows:

N: number of recorded samples; F: Force list; t: Timestamp list
Maximal Force: MaxValue = max(F)

Maximal Force : MaxValue = max(F)
Peak RFD = max({f(x) : x ∈ [N..1]})

f(x) = Fx−Fx−n
tx−tx−n

where n is the closest index and tx − tx−n is equal to the Time Interval RFD. Note: the
default value of the Time Interval RFD is 0.05 s.

During the familiarization, and during test and retest sessions, the participants per-
formed 3 maximal trials of eccentric NHE repetitions, where participants leaned forward in
a slow, controlled manner for as long as possible, during the eccentric phase. The move-
ment onset was determined by counting down from three to one (information given by
the software), and then the participant started performing the NHE. Then, the participants
passively returned to the starting position, in order to repeat the following repetitions. Ac-
cording to recent literature [21], the maximal NHE trials were separated by a standardized
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1-min rest period to allow for recovery and to avoid fatigue. If participants increased their
performance in all three trials, one or two additional NHE repetitions were performed [21].
Authorized feedback from the investigator was used to motivate the subjects. Trials were
only regarded as successful if the participants held trunk and hips in a neutral position
during the NHE repetitions. Participants controlled the movement until they lost control
and stopped dealing with it. No additional loading was used. According to the ANHEQ
criteria [22], the total score for NHE quality was 8 points, which is considered “good”.
Specifically, ANHEQ criteria are the following: (1) Rigid fixation: 2 points; (2) Knee position:
1 point; (3) Kneeling height: 1 point; (4) Separate familiarization: 1 point; (5) Diagnostic
tools: 1 point; (6) Feedback of target movement speed: 0 points—we only provided feed-
back to the participant to perform as slowly as possible; (7) Consequences of impaired
technique: 1 point; (8) Presentation of NHE performance variables: 1 point. Bilateral MS
and RFD were considered for analysis. All data were recorded with corporative data acqui-
sition software (NexSo v1.0.0., Porto, Portugal). Data were collected through the Bluetooth
BLE communication protocol at 180 Hz. The tests were performed in a gym facility.

2.3. Statistical Analyses

Sample distribution was tested using the Shapiro–Wilk test for MS and peak RFD
variables. Variables are presented as mean with the 95% confidence interval (CI).

Linear mixed model analysis was performed to examine differences in the MS and
peak RFD during test–retest.

To estimate the test–retest reliability of the NHE, intraclass correlation coefficients
(ICC) [23] and the two-way random effects model of the measurements with 95% CI was
used. The ICC were classified in the following manner: >0.90, high reliability; 0.80–0.89,
good reliability; between 0.70 and 0.79, fair reliability; and values <0.69, poor reliabil-
ity [24]. Further, within-subject variation was determined using typical error expressed as
a coefficient of variation (CV) [25].

The standard error of measurement [25] and the minimal detectable change (MDC)
were calculated to analyze the variability of the participants’ performances. For this
analysis, the following formulas were used to calculate the SEM and MDC [25].

SEM = SD ×
√

(1 − ICC)

MDC = SEM ×
√

2 × 1.96

We tested the within-subject correlations (r, 95% CI) [26] between test and retest for
MS and peak RFD variables. We qualitatively interpreted the magnitudes of correlation
using the following criteria: trivial (r ≤ 0.1), small (r = 0.1–0.3), moderate (r = 0.3–0.5), large
(r = 0.5–0.7), very large (r = 0.7–0.9), and almost perfect (r ≥ 0.9) [27].

Most of the statistical analyses were conducted using SPSS software (version 27.0.1,
SPSS Inc., Chicago, IL, USA), except for within-subject correlation for which a rmcorr
package in R statistical software (version 3.4.1, R Foundation for Statistical Computing,
Vienna, Austria) was used.

3. Results

Values of bilateral absolute MS and RFD variables during the NHE in healthy and
physical activity adults are presented in Figure 2.
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Figure 2. Descriptive test–retest individual data for MS and peak RFD during NHE in healthy and
physically active adults (n = 17).

During the familiarization session, MS was 669.4 N (581.1; 734.3) and peak RFD was
543.8 N·s−1 (428.7; 654.9). No significant test–retest differences were observed in NHE
performance for MS and RFD variables (Table 2).

Table 2. Descriptive and test–retest differences data for bilateral MS, relative MS, and peak RFD,
during NHE in healthy and physically active adults (n = 17).

Test Retest ∆ (Test–Retest) p

Bilateral MS (N) 669.8 (583.8; 755.9) 689 (588.3; 789.7) −19.2 (−67.8; 29.4) p = 0.42
Relative MS (N/Kg) 8.6 (7.7; 8.9) 8.7 (7.8; 9.6) −0.1 (−0.8; 0.5) p = 0.63

Peak RFD (N·s−1) 554.9 (446.6; 663.1) 625.3 (488.6; 761.9) −70.4 (−178.4; 37.8) p = 0.19

Values are expressed in mean (95% CI).

MS showed high reliability (ICC = 0.93 [0.80–0.97]) and large within-subject correlation
between test and retest [r = 0.88 (0.68; 0.95)] (Figure 3). Peak RFD demonstrated good
reliability [ICC = 0.76 (0.35; 0.91)] and moderate within-subject correlation between test
and retest [r = 0.63 (0.22; 0.85)]. The MS and peak RFD presented CV values of 3.4% and
4.6%, respectively, between test and retest. The standard error of measurement and the
MDC for MS was 44.6 arbitrary units (a.u.) and 123.6 a.u., and for peak RFD was 104.6 a.u.
and 290.0 a.u.
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Figure 3. Test–retest reliability and a within-subject correlation was calculated for MS and peak RFD
during NHE in healthy and physically active adults (n = 17). ICC, intraclass correlation coefficient
[95%CI]; CV, coefficient of variation; SEM, standard error of measurement; MDC, minimal detectable
change; N, Newton.

Figures 4 and 5 presents the force and time profile of the test–retest of a representative
participant and the RFD in one repetition. Figure 6 depicts the force time profile of the
first session of four randomly chosen participants in order to represent their different
completions of the exercise.
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Figure 6. Example for different individual subjects (S1, S2, S3, S4, and S5) performing a NHE.

4. Discussion

The aim of this study was to evaluate the test–retest reliability of the bilateral ec-
centric knee muscle flexor MS and RFD during NHE. The main findings were the fol-
lowing: (1) no significant test–retest differences were observed in NHE for MS and RFD;
(2) MS showed high reliability and large within-subject correlation between test and retest;
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(3) RFD displayed good reliability and moderate within-subject correlation between test and
retest; and (4) MS and RFD presented CV values of 3.4% and 4.6%, respectively, between
test and retest. This study shows that MS and RFD can be measured for NHE using a
portable dynamometer.

Regarding peak absolute strength, NHE showed high reliability (ICC = 0.93 and
CV = 3.4%) and a large within-subject correlation between test and retest (r = 0.88) (Figure 3).
The current results for test–retest reliability of the HSE device is in line with previous
studies [9,17,19,28,29]. For example, Lodge et al. [17] found high test–retest reliability, ICC
0.91 (CI, 0.76–0.96), and 0.91 (CI, 0.78–0.96) for left and right eccentric knee flexor muscle
strength peak forces, respectively, using an eccentric hamstring strength measurement
device similar to the portable dynamometer used in the current study compared to an
isokinetic dynamometer. Moreover, similar results showed an inter-rater reliability and
correlations between the isometric and eccentric knee extension and flexion strengths
using hand-held dynamometry and an isokinetic test for knee flexion extension of athletic
participants. Therefore, it is vital to highlight that eccentric knee flexor muscle strength
devices are already validated and the aim of this study was to evaluate the reliability of
test–retest of a portable dynamometer. In a practical application, the current portable device
can be used to evaluate and train eccentric flexor muscle strength on a daily basis.

Considering RFD showed good reliability (ICC = 0.76; 4.6%) and moderate within-
subject correlation between test and retest (r = 0.63) (Figure 3). To the authors’ knowledge,
this is the first study measuring the RFD reliability (i.e., test–retest) during a knee flexor
strength test. Compared with the assessment of RFD for the hip muscles (i.e., hip adductor,
flexor, and external rotator), RFD for the hamstrings can be measured with confidence
(i.e., ICC > 0.70 and standard error < 10%) [30]. Considering the moderate within-subject
correlation between test and retest, it is important to highlight that RFD assessments might
be challenging and need more time for familiarization with the test [31]; also, it is important
to highlight that the NHE is not performed in a maximal isometric contraction, as it is
in traditional RFD evaluations. Therefore, due to the controlled and slow movement in
the NHE, the highest RFD may not occur at the beginning of the exercise. Therefore,
RFD is acceptable to evaluate by the hamstring strength portable device, but it should be
conducted with caution and familiarization. In an applied setting, the RFD value can be
recorded from the portable dynamometer.

This study is limited by the NHE itself, as factors such as lack of control on the velocity
of the movement, the intervention from other muscle groups, such as the lumbo-pelvic
zone, and the determination of the “optimal” angle peak torque of the knee flexor muscle
group, which would be useful when targeting strength improvements at a specific joint
angle (that could be measured by the gold standard measurement such as an isokinetic
dynamometer). Furthermore, regarding Assessing the NHE quality [21] scale knee position
is a key component of NHE execution as, on a rigid surface, the pressure on the knees
may cause an uncomfortable feeling and pain. Additionally, the RFD metric, even with
good reliability [ICC = 0.76 (0.35; 0.91)] and moderate within-subject correlation between
test and retest [r = 0.63 (0.22; 0.85)], should be used cautiously as it is a controlled and
slow movement. The current study was designed to examine the test–retest reliability,
considering essential to use on a daily basis, avoiding misrepresentation of changes in
strength and minimizing the error of measurement. Further research about the validation
of the current portable dynamometer when compared to gold standard measurements,
such as isokinetic dynamometers or other similar portable devices that have already been
validated, is warranted. Lastly, more investigation is warranted regarding NHE variations
with rapid muscle activation, i.e., reactively bouncing and decelerating exercises which
elicit much higher peak moments than the standard NHE [6].

5. Conclusions

In conclusion, the current device presented no significant test–retest differences during
the NHE for MS and RFD. Furthermore, MS and RFD variables showed good–high reliability
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and moderate–large within-subject correlation between test and retest, respectively. Lastly,
MS and RFD showed CV values of 3.4% and 4.6%, respectively, between test and retest.
This study shows that MS can be measured during the NHE using a portable dynamometer,
but this should be performed with caution and with previous familiarization due to the
slow and controlled movement of the NHE that may not favor the attainment of the highest
RFD at the beginning of exercise.
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