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Abstract: Frailty poses a threat to the daily lives of healthy older adults, highlighting the urgent need
for technologies that can monitor and prevent its progression. Our objective is to demonstrate a
method for providing long-term daily frailty monitoring using an in-shoe motion sensor (IMS). We
undertook two steps to achieve this goal. Firstly, we used our previously established SPM-LOSO-
LASSO (SPM: statistical parametric mapping; LOSO: leave-one-subject-out; LASSO: least absolute
shrinkage and selection operator) algorithm to construct a lightweight and interpretable hand grip
strength (HGS) estimation model for an IMS. This algorithm automatically identified novel and
significant gait predictors from foot motion data and selected optimal features to construct the model.
We also tested the robustness and effectiveness of the model by recruiting other groups of subjects.
Secondly, we designed an analog frailty risk score that combined the performance of the HGS and
gait speed with the aid of the distribution of HGS and gait speed of the older Asian population.
We then compared the effectiveness of our designed score with the clinical expert-rated score. We
discovered new gait predictors for HGS estimation via IMSs and successfully constructed a model
with an “excellent” intraclass correlation coefficient and high precision. Moreover, we tested the
model on separately recruited subjects, which confirmed the robustness of our model for other older
individuals. The designed frailty risk score also had a large effect size correlation with clinical expert-
rated scores. In conclusion, IMS technology shows promise for long-term daily frailty monitoring,
which can help prevent or manage frailty for older adults.

Keywords: frailty assessment; in-shoe motion sensor; gait analysis; healthcare application; older adults

1. Introduction
1.1. Background

Typically, skeletal muscle mass begins to decline gradually at around age 45, after
reaching its peak in the early adult years [1]. Additionally, gait speed, which has been
deemed the sixth vital sign [2], significantly decreases in older adults after age 60 [3]. The
decline in skeletal muscle mass and gait speed below a critical threshold may result in
physical functional impairments that limit mobility, such as walking, climbing stairs, and
crossing over obstacles [4]. These impairments may lead to sarcopenia or frailty in older
adults [5] (see Figure 1a).

Although the relationship between sarcopenia and frailty has yet to be fully character-
ized, these conditions share many commonalities. Both are linked to physical functional
impairment, and sarcopenia is an age-related, long-term process that involves the loss of
muscle mass and strength, affecting mobility and nutritional status [6–8]. Additionally,
physical frailty may result in sedentary behavior, cognitive impairment, and social isola-
tion [9]. Frailty is closely associated with various detrimental outcomes for older adults,
such as an increased risk of falls and fractures, impaired ability to perform daily activities,
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loss of independence, the need for long-term care placement, and even death [10–12]. Fortu-
nately, appropriate exercise and nutritional treatment can postpone, recover, and effectively
manage frailty, especially if the frail condition can be assessed in daily living [13].

The Asian Working Group on Sarcopenia (AWGS) defines sarcopenia for Asian indi-
viduals and includes criteria for assessing muscle function in diagnosing sarcopenia [14].
These criteria consist of gait speed measurement and hand grip strength (HGS) measure-
ment, which are the simplest well-validated protocols for assessing muscle function in
clinical practice [15]. The threshold for HGS measurement is 28 kg for males and 18 kg for
females, while the gait speed requirement for both sexes is 1.0 m/s. These criteria are also
included in the revised Japanese version of the Cardiovascular Health Study (J-CHS) crite-
ria for diagnosing physical pre-frailty/frailty [16] (see Figure 1b). In addition, three other
criteria are evaluated subjectively by the participants themselves using a questionnaire.
Participants rate their conditions on a scale from 0 to 2, and those with scores higher than 2
are categorized as “Robust”, “Pre-frail”, or “Frail”.

The assessments mentioned above generally require older adults to visit specialized
facilities and undergo evaluations under the supervision of clinicians. However, in certain
areas, particularly rural regions in Japan where healthcare resources are limited, monitoring
older adults’ body conditions can be challenging. Moreover, for urban senior citizens,
weekly or monthly facility visits are not always feasible as they can increase the burden
on seniors and healthcare systems alike. The recent development of Internet of Things
(IoT) technologies for healthcare [17–19] has introduced wearable technologies as a viable
option to monitor pre-frailty/frailty in daily living. By monitoring physical performance in
daily living over a long period, wearable technologies can help alert users to seek further
examination or appropriate treatments on demand, prevent or manage the progression of
frailty, and ultimately reduce the burden on healthcare systems.

A new approach to assessing pre-frailty/frailty has been introduced, proposing that
wearable sensors can enable the simple monitoring of gait parameters (GPs), including
gait speed, during daily walking. This has made gait speed monitoring “smart”, as all
data processing can be conducted on an edge device [20–22]. However, HGS assessment
remains challenging for many individuals, as it requires clinicians to perform assessments
in a facility setting, following specific protocols [15]. Despite this, IoT technologies for
HGS assessment have been developed by researchers such as Becerra et al. [23], who
developed a wireless hand grip device for force analysis, Chen et al. [24], who proposed a
hand rehabilitation system with an HGS assessment function via soft gloves, and Wang
et al. [25], who developed a novel flexible sensor to assess HGS. Nevertheless, for many
users, wearing sensors on their hands may be inconvenient and challenging, considering
daily routines. This may pose an obstacle to achieving reliable monitoring of frailty in
daily living.

Smart shoes/insoles with motion sensors have been proposed to improve the practi-
cality of daily gait analysis. These devices are considered promising in various healthcare
applications that require daily gait analysis, including Parkinson’s disease, gait rehabili-
tation, and foot deformity detection [26–28]. In this paper, we refer to this type of smart
motion sensor as an “in-shoe motion sensor” (IMS). An IMS can easily and noninvasively
gather abundant information related to gait kinematics, including gait speed, stride length,
stance phase duration, instantaneous linear and rotational foot motion, and 3-D foot angu-
lar posture [26,29,30]. Furthermore, IMSs can be placed in various types of shoes or insoles,
making them an unobtrusive addition to daily life.

We considered developing a frailty risk assessment method using only an IMS as a
user-friendly solution for daily frailty assessment with the following benefits: (1) helping
users avoid the burden of wearing multiple sensors and (2) simplifying the wearable sensor
system for frailty assessment. To achieve this goal, we identified two necessary steps:
(1) constructing an HGS estimation model using foot motion data obtained from an IMS
and (2) designing a novel index capable of continuously assessing the conditions of frailty.
In the subsequent sections, we provide a detailed explanation of these two steps.
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1.2. Step 1 to Goal: Constructing HGS Assessment Model on an IMS and Related Work
1.2.1. Research Question in Step 1

Generally, IMSs can transmit detailed waveforms wirelessly to a smartphone or server
for further analysis, which consumes a significant amount of power. As a result, these
IMSs need to be frequently charged, reducing their usability for practical applications.
In a previous study, we developed a new type of IMS, which is small and lightweight,
can be attached to insoles, and has optimally designed power-saving operation sequences
and modes for practical applications. Our study showed that this IMS achieved high
usability for long-term daily measurement without the need for battery charging for up
to one year [29]. One key feature contributing to power savings is that our IMS can
perform simple data processing and calculate common spatiotemporal GPs, such as gait
speed, stride length, and stance phase duration, using inertial measurement unit (IMU)
signals. We have named this type of IMS A-RROWG®. These features enable A-RROWG
to collect daily gait data over long periods, regardless of location and time, without the
user noticing the sensor’s presence. The research question for Step 1 is how to construct an
HGS assessment model that is feasible for an A-RROWG-type IMS and that can be proven
effective. However, to the best of our knowledge, no technology has been developed for
assessing HGS performance using IMSs.

1.2.2. Ideas for Solving the Research Question in Step 1

Due to the characteristics of A-RROWG, the HGS assessment model must be lightweight
enough to be implemented on it. Therefore, rather than applying recent machine learn-
ing methods that require a large computation capacity [31], we focused on developing
a lightweight, high-precision estimation model via linear multivariate regression with a
minimum number of predictors required. This development included two tasks: (1) identi-
fying predictors that highly correlate with HGS and (2) reducing redundant predictors via
feature selection.

Gait speed has been suggested to correlate with HGS [32,33], indicating that gait
features might be a useful predictor for HGS assessment. However, gait speed is not
a specific predictor for HGS as it can also be influenced by other factors, such as knee
osteoarthritis [34] or depression [35], making it challenging to construct an accurate model.

To address this limitation, we proposed considering additional potential predictors
for HGS assessment. Previous research has demonstrated that HGS correlates with knee
extension muscles, specifically the quadriceps [36,37], which play a crucial role in walking.
Since gait is a periodic movement, the same motions using muscles are repeated during
specific gait phases in every gait cycle (GC). Although the quadriceps do not directly control
foot motion, they should impact foot motion through their control of the knee joint and
lower leg. Therefore, we considered predictors for HGS assessment that can be determined
from foot motion signals during specific gait phases, specifically those gait phases where
the quadriceps are activated.

For the second task of selecting appropriate predictors, several techniques, such as
LASSO [38], Bayesian methods such as Bayesian LASSO [39], deep learning methods
for sparse learning [40], and multi-objective optimization methods [41], have been pro-
posed. However, multi-objective optimization methods are suitable for optimizing multiple
conflicting objectives simultaneously, which is not within the scope of linear regression
methods utilized in our study. LASSO and Bayesian LASSO are more feasible alternatives,
but Bayesian LASSO may require more substantial expertise to interpret results accurately.
As such, we chose to apply LASSO for feature selection.

In conventional LASSO, cross-validation approaches [42] are commonly used to select
the LASSO tuning parameter value. However, these techniques typically consider randomly
selecting training and validation sets without considering variations between individuals.
To ensure model robustness and account for individual differences, we combined LASSO
with a leave-one-subject-out (LOSO) process. This approach involved running multiple
LASSO analyses by looping the LOSO process for all subjects, conceptually similar to
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jackknife, resampling method [43], to approximate the nature of the population estimator
and improve model robustness against individual differences.

In our previous studies, we developed an algorithm capable of automatically extract-
ing novel significant gait predictors from foot motion, selecting optimal features, and
constructing an assessment model, valid for estimating adults’ foot function and older
adults’ balance ability measured by the outcome of a functional reach test (FRT) [44,45].
In this study, we constructed an HGS estimation model using this algorithm via the
following steps:

1. Identifying significant gait phases with statistically significant correlation with the
target variable using statistic parametric mapping (SPM) [46], which was proven
effective in biomechanical studies. The significant gait phases always continuously
appeared, performing as clusters on the temporal axis; thus we called them, “gait
phase clusters” (GPCs).

2. Conducting predictors by averaging the foot motion signals in the GPCs to obtain
IMS predictors that can be implemented on the A-RROWG-type IMS. Although there
are clustering algorithms, such as community detection algorithms [47], due to the
temporal continuity of foot motion, using the integral average of the signals in GPC as a
single predictor is sufficient and helpful for implementation on the A-RROWG-type IMS.

3. Reducing redundant predictors and selecting appropriate predictors using our original
algorithm, the leave-one-subject-out least absolute shrinkage and selection operator
(LOSO-LASSO).

4. Constructing a multivariate linear regression estimation model.

We refer to our approach as SPM-LOSO-LASSO, which aids in constructing a biome-
chanically interpretable HGS estimation model that is both lightweight enough for im-
plementation on an edge device and precise in its predictions. In a previous study, we
demonstrated the construction and operation of the IMS predictors on an A-RROWG-type
IMS [44]. In this study, we have incorporated individual physical attributes (IPAs), such as
age, height, weight, and body mass index (BMI), and designed GPs, including previously
proposed temporal and spatial GPs (we list them in Section 2.4), as auxiliary predictors to
enhance the model’s precision. Considering the gait variance between biological sexes [48],
we have constructed separate estimation models for males and females. Some of our
findings in this report are based on the work presented at the 44th International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC 2022) [49].

1.3. Step 2 to Goal: Related Work on Frailty Assessment and Designing a Frailty Risk Score
1.3.1. Research Question in Step 2

Aside from the cardiovascular health study (CHS) criteria, there are alternative meth-
ods for diagnosing frailty in clinical practice. Examples include the phenotype model [50]
and accumulated deficit model [51]. To assess frailty levels in daily living, several tech-
niques based on wearable sensor measurements have been proposed [22]. For instance,
using wearable motion sensors, Schwenk et al. [52] conducted home assessments of es-
tablished gait outcomes to identify pre-frailty and frailty. Razjouyan et al. [53] utilized
a pendant motion sensor to develop a composite model for discriminating three frailty
categories: non-frail, pre-frail, and frail. In addition, Greene et al. [54] aimed to create
an automatic, non-expert quantitative assessment of the frailty state based on wearable
inertial sensors.

However, previous research studies focused solely on discriminating two or three
frailty levels. The transition from non-frail to pre-frail or pre-frail to frail is a gradual, long-
term process. According to a previous study [55], the pooled incidence rate of pre-frailty
was 15.1%, and that of frailty was 4.3% based on multiple cohort studies. Given that body
performance tends to decline with age in the absence of intervention, it is reasonable to
hypothesize that the higher the current condition’s frailty risk, the greater the likelihood
of future deterioration. To assist users in delaying and managing frailty progression
adequately, merely classifying frailty levels is considered insufficient. Consequently, the
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research question in Step 2 is how to construct an analog frailty risk metric and demonstrate
its effectiveness.

1.3.2. Ideas for Solving the Research Question in Step 2

An analog frailty risk score could prove beneficial for various reasons, such as pro-
viding users with an intuitive representation of their body condition’s long-term changes,
enabling a more comprehensive user rating, and demonstrating the effects of exercise.
Given that HGS and gait speed are critical factors in current frailty assessment, we assert
that their performance must feature significantly in frailty risk assessment. Consequently,
we developed a frailty risk score in this study by merely combining the HGS and gait speed
performance of the subjects. Moreover, we utilized the HGS distribution [56] and gait speed
data for the Asian population aged over 60 years [57,58] to design our frailty risk score.

1.4. Testing Constructed HGS Estimation Model and Frailty Risk Score

After constructing and validating the model, we conducted two separate tests on
a group of older healthy adults who were recruited independently from those used for
constructing the model.

The first test involved examining the precision of the HGS assessment model on the
separately recruited subjects.

The second test involved testing the effectiveness of our original frailty risk score,
which was used to demonstrate the possibility of evaluating frailty via IMSs in subjects who
were also recruited separately. These subjects were rated using a continuous score ranging
from 0 to 100 by experts, including clinicians and physiotherapists with over 5 years of
experience, who observed their gait. The score served as a reference for their risk of frailty.
We tested the correlation coefficient between the designed score and the expert-rated score.

1.5. The Development Process and Main Contributions in this Study

In summary, Figure 1c presents a diagram that outlines the development process of
achieving frailty risk assessment via the A-RROWG-type IMS. The main contributions of
this study are as follows:

(1) We discovered novel predictors for HGS assessment obtained from foot motions.
(2) We constructed a lightweight HGS assessment model that can be feasibly imple-

mented in the A-RROWG-type IMS, which serves as a key module for long-term
frailty assessment.

(3) We tested the effectiveness and robustness of the constructed model using a group of
separately recruited subjects.

(4) We designed an analog frailty risk score and evaluated its effectiveness for frailty risk
assessment via an IMS.

The acronyms and symbols used in this manuscript can be referenced in Table A1 in
Appendix A.
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Figure 1. (a) Relationship between sarcopenia and frailty. (b) Revised Japanese version of Cardio-
vascular Health Study criteria. (c) Diagram which explains the development process of achieving 
frailty risk assessment via A-RROWG-type IMS. 

  

Figure 1. (a) Relationship between sarcopenia and frailty. (b) Revised Japanese version of Cardiovas-
cular Health Study criteria. (c) Diagram which explains the development process of achieving frailty
risk assessment via A-RROWG-type IMS.
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2. Materials and Methods
2.1. Subjects and Their Characteristics

To contribute to potential applications for frailty prevention, as well as postpon-
ing and managing its progression, we recruited healthy older adults who could partic-
ipate in the experiment independently. We recruited three separate groups of healthy
older subjects with different ages, heights, and weights for model construction (Group I),
Test 1 (Group II+III, combining data in Group II and Group III together), and Test 2
(Group III). We successfully collected data from 62 subjects (27 males and 35 females) for
Group I, 20 females for Group II, and 25 subjects (6 males and 19 females) for Group III. All
subjects were able to walk independently without assistive devices, had no history of severe
neuromuscular or orthopedic diseases, had normal or corrected-to-normal vision, and had
no communication obstacles. After explaining the experimental procedure to the subjects,
we obtained their informed consent before the experiment. This study received approval
from the NEC Ethical Review Committee for Life Sciences (Approval No. LS2021-004,
2022-002) and the Ethical Review Board of Tokyo Medical and Dental University (Approval
No. M2020-365). The demographic data are summarized in Table 1, with HGS and gait
speed serving as reference values.

Table 1. Demographic data and characteristics of subjects. Subjects for model construction (Group I),
Test 1 (Group II+III), and Test 2 are summarized.

Overall
Mean ± SD
(Min–Max)

Male
Mean ± SD
(Min–Max)

Female
Mean ± SD
(Min–Max)

Group I

Number 62 27 35
Data size 248 108 140

Age (years) 70.6 ± 6.8
(60.0–84.0)

70.3 ± 7.7
(60.0–84.0)

70.9 ± 5.9
(60.0–82.0)

Height (cm) 160.0 ± 8.2
(140.0–176.0)

166.7 ± 4.2
(160.0–176.0)

154.9 ± 6.6
(140.0–171.0)

Weight (kg) 59.9 ± 11.0
(37.0–89.0)

66.8 ± 8.8
(53.0–89.0)

54.7 ± 9.4
(37.0–80.0)

BMI 23.3 ± 3.1
(15.2–32.9)

24.0 ± 2.6
(19.2–29.4)

22.8 ± 3.4
(15.2–32.9)

HGS (kg) 27.4 ± 8.1
(14.0–45.2)

33.7 ± 6.1
(24.3–45.2)

22.6 ± 5.8
(14.0–38.0)

Gait speed (m/s) 1.37 ± 0.18
(0.91–1.83)

1.35 ± 0.20
(0.99–1.83) 1.39 ± 0.17

(0.91–1.72)

Group II+III

Number 45 6 39
Data size 180 24 156

Age (years) 71.1 ± 7.1
(50.0–86.0)

77.7 ± 5.4
(70.0–86.0)

70.1 ± 6.8
(50.0–83.0)

Height (cm) 155.3 ± 6.1
(146.0–172.0)

166.5 ± 4.8
(160.0–172.0)

153.6 ± 4.0
(146.0–164.5)

Weight (kg) 53.2 ± 10.1
(34.0–76.0)

63.1 ± 12.2
(41.0–76.0)

51.7 ± 8.8
(34.0–73.0)

BMI 22.0 ± 3.6
(14.5–31.1)

22.7 ± 3.8
(15.2–26.0)

21.9 ± 3.6
(14.5–31.1)

HGS (kg) 22.3 ± 4.5
(13.7–35.4)

26.9 ± 5.6
(17.6–35.4)

21.6 ± 3.9
(13.7–31.6)

Gait speed (m/s) 1.33 ± 0.19
(0.75–1.64)

1.18 ± 0.14
(1.02–1.34) 1.35 ± 0.19

(0.75–1.64)

Group III
Number 25 6 19
Data size 100 24 76
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Table 1. Cont.

Overall
Mean ± SD
(Min–Max)

Male
Mean ± SD
(Min–Max)

Female
Mean ± SD
(Min–Max)

Age (years) 75.1 ± 5.8
(65.0–86.0)

77.7 ± 5.4
(70.0–86.0)

74.2 ± 5.8
(65.0–83.0)

Height (cm) 156.4 ± 6.6
(146.0–172.0)

166.5 ± 4.8
(160.0–172.0)

153.4 ± 3.0
(146.0–160.0)

Weight (kg) 51.4 ± 10.9
(34.0–76.0)

63.1 ± 12.2
(41.0–76.0)

47.9 ± 7.5
(34.0–62.0)

BMI 20.9 ± 3.6
(14.5–27.7)

22.7 ± 3.8
(15.2–26.0)

20.4 ± 3.4
(14.5–27.7)

HGS (kg) 21.9 ± 4.9
(13.7–35.4)

26.9 ± 5.6
(17.6–35.4)

20.1 ± 3.4
(13.7–26.5)

Gait speed (m/s) 1.33 ± 0.18
(1.02–1.64)

1.18 ± 0.14
(1.02–1.34)

1.39 ± 0.16
(1.09–1.64)

J-CHS score: 0 (Robust) 10 1 9
J-CHS score: 1–2 (Pre-frail) 15 5 10

J-CHS score: >2 (Frail) 0 0 0

Average expert-rated score 39.3 ± 17.1
(12.6–82.2)

46.6 ± 23.5
(23.9–82.2) 37.0 ± 14.6

(12.6–61.6)

SD: standard deviation. HGS and gait speed are reference values.

The average age of both male and female subjects in all three groups was over
70 years old. Although the average BMIs indicate that most subjects had a normal body
mass, we ensured that subjects with a wide range of body mass were recruited, including
those with maximum and minimum BMIs. In Group I, male and female subjects had similar
age characteristics (p = 0.755), and no significant sex difference in gait speed was found
(p = 0.453). The data also show that the female subjects for model construction (Group I)
were similar in age to those for model testing (Group II+III) (p = 0.604), as well as in terms
of HGS and gait speed (HGS: p = 0.395; gait speed: p = 0.265). However, compared with
the male subjects in the two groups, the age in Group II+III was higher than that in Group
I (p = 0.040). Although there was no significant difference in gait speed (p = 0.052), due
to age, the HGSs in Group II+III were much lower (p = 0.021). When comparing female
subjects in Groups I and III, no significant differences in age, HGS, and gait speed were
found between them (p = 0.058, 0.102, 0.972). According to the J-CHS scores of the subjects
in Group III, 60% of the subjects self-assessed themselves as not being frail, and none of
them assessed themselves as frail. Further details on how the J-CHS scores were calculated
for the subjects are presented in Section 2.2.

2.2. Experiment

To achieve our final goal, we collected five types of data from subjects in an indoor
environment, performing the following steps:

Step 1 At the start of the experiment, all subjects were asked to complete a questionnaire to
provide basic information, including age, height, and weight, and for the calculation
of BMI based on their answers.

Step 2 The same questionnaire included four questions based on the J-CHS criteria:

Q1. Have you lost more than 2–3 kg in the past 6 months?
Q2. In the past two weeks, have you felt tired for no reason?
Q3. Do you engage in light exercise or gymnastics at least once a week?
Q4. Do you engage in regular exercise or sports at least once a week?

From the four questions, we calculated the J-CHS score for each subject as subjective
frailty reference data.
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Step 3 After answering the questionnaire, subjects were guided to measure their HGS,
which served as the reference HGS value in this study.

Step 4 Subjects were asked to walk in a straight line. In this step, we collected foot motion
data for calculating GPs and IMS predictors, as well as reference gait speed data for
all subjects. Additionally, for those in Group III, video recordings were made while
they walked.

Step 5 We sent the walking videos to clinical experts to obtain expert-rated frailty risk
scores as objective frailty reference data.

Further details on Steps 2 through 5 are explained in the following subsections.

2.2.1. Step 2 of the Experiment

For Q1 and Q2, one point was added for each “yes” answer. For Q3 and Q4, if both
questions were answered with “no”, one point was added, and if either was answered
with “yes”, no points were added. The total J-CHS score was obtained by totaling the
points. Finally, we checked whether the reference HGS and gait speed were below the
threshold specified in the J-CHS criteria to determine the subjects’ total J-CHS score. Sub-
jects who scored 0, 1–2, and higher than 2 were classified as “Robust”, “Pre-frail”, and
“Frail”, respectively.

2.2.2. Step 3 of the Experiment

To assess the HGS of the subjects, we used a Jamar hydraulic hand dynamometer
(Lafayette Instrument Company, Lafayette, IN, USA). The measurement process followed
the method suggested in a previous study [15], as shown in Figure 2a. Subjects were
asked to sit on an armchair with their elbow flexed at 90◦, without touching the chair
arms. The Jamar is a variable hand-span dynamometer with five handle positions. The
dynamometer was set to handle position “two”, and both hands were measured three
times with subjects exerting their best effort. To determine the representative HGS of each
subject, we calculated the mean value of the six measurements. This mean value served as
the reference value for HGS in this study.

Sensors 2023, 23, 5446 10 of 35 
 

 

  
(a) (b) 

Figure 2. Schematic of (a) measurement of HGS. The subjects were asked to sit on an armchair sitting 
with the elbow in 90° flexion, but the elbow cannot touch the chair arms. The dynamometer was set 
at handle position “two”. (b) The structure of an IMS (left side). IMS was embedded in an insole 
placed under the foot arch near the calcaneus side and then inserted into a sport shoe. 

2.3. Characteristics of IMS 
The IMSs used in this study have the same structure as A-RROWG-type IMSs. Each 

IMS consists of a 6-axis IMU (BMI 160, Bosch Sensortec, Reutlingen, Germany), an ARM 
Cortex-M4F microcontroller unit (MCU) with Bluetooth module (nRF52832, CPU: 64 
MHz, RAM: 64 KB, ROM: 512 KB, Nordic Semiconductor, Oslo, Norway), onboard 
memory (AT45DB641, 64 Mbit, Adesto Technologies, Santa Clara, CA, USA), a real-time 
clock (RTC) (RX8130CE, EPSON, Suwa, Japan), a control circuit, and a 3V coin lithium-
ion battery (CLB2032 T1, 300 mAh, Maxell, Tokyo, Japan). The device is lightweight (12 g, 
including the coin battery) and compact (29 mm × 40 mm × 7 mm) enough to be placed at 
the arch of the foot. Please note that during the feasibility study stage, the IMSs were set 
to developer mode, which differed from A-RROWG in that all calculations were per-
formed on the device. Under this mode, raw foot motion waveform data were first rec-
orded on the IMSs’ onboard memory and then sent to a PC via Bluetooth after the exper-
iment. We developed dedicated software for controlling data recording start and end in 
the IMSs and for downloading raw data from the onboard memory of the IMSs to a PC 
via Microsoft Visual Studio (Microsoft, Redmond, WA, USA).  

The IMSs can directly measure three axes of acceleration, Ax (medial: +, lateral: −), Ay 
(posterior: +, anterior: −), and Az (superior: +, inferior: −), as well as those of angular veloc-
ity, Gx (sagittal plane (Y–Z): plantarflexion: +, dorsiflexion: −), Gy (frontal plane (X–Z), ever-
sion: +, inversion: −), and Gz (horizontal plane (X–Y), internal rotation: +, external rotation: 
−). Inside the IMSs, the three axes of sole-to-ground angles (SGAs), Ex (roll angle, plantar-
flexion: +, dorsiflexion: −), Ey (pitch angle, eversion: +, inversion: −), and Ez (yaw angle, 
internal rotation: +, external rotation: −), were calculated using a Madgwick filter [59]. Spe-
cifically, the acceleration values were corrected to the global coordinates in each inde-
pendent trial. The IMSs had a data sampling frequency of 100 Hz, and their measurement 
range for acceleration was ±16 g, while that for angular velocity was ±2000 degrees/s. 

2.4. Signal Processing and GPs 
For all data processing, simulation, and model construction tasks, MATLAB (Math-

Works, Natick, MA, USA) was used in this study.  
To construct the HGS estimation model via the SPM-LOSO-LASSO algorithm, pre-

dictors from three categories were required: IPAs, temporospatial GPs, and IMS predic-
tors. Temporospatial GPs and IMS predictors were obtained by processing one stride of 
the foot motion waveform. In this section, we explain the procedures used to obtain GP 
predictors. The flow chart is shown in Figure 3.  

During the preliminary stage, two primary tasks were completed. The first task in-
volved processing every stride of the foot motion waveform into data matrices. The 

Figure 2. Schematic of (a) measurement of HGS. The subjects were asked to sit on an armchair sitting
with the elbow in 90◦ flexion, but the elbow cannot touch the chair arms. The dynamometer was set
at handle position “two”. (b) The structure of an IMS (left side). IMS was embedded in an insole
placed under the foot arch near the calcaneus side and then inserted into a sport shoe.

2.2.3. Step 4 of the Experiment

To collect foot motion data, the subjects were asked to walk straight along 16 m lines for
four trials at a self-determined comfortable speed. Before data collection, they were given
a 2-min practice session to familiarize themselves with the environment and procedure.
While walking, their foot motions were recorded by two IMSs embedded in insoles placed
under the arches of both feet near the calcaneus side (see Figure 2b). This placement
ensured that the subjects could walk comfortably. Please note that during the feasibility
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study stage of this study, foot motion data were temporarily recorded onto the onboard
memory during experiments and would later be transferred to a personal computer for
data processing. The characteristics of the IMS are described in Section 2.3.

The time taken by each subject to walk 10 m along the 16 m lines was recorded using a
digital stopwatch to calculate their average gait speed when walking at a uniform pace.
This speed was treated as the reference value for gait speed in this study. Subjects in Group
III were also recorded while walking by two video cameras placed at the side and end of
the walking path. To protect their privacy, their faces were obscured.

2.2.4. Step 5 of the Experiment

After gait data collection was finished, the videos were sent to six clinical experts
in gait evaluation. They were asked to score the subjects regarding the risk of “being
diagnosed with frailty within the next 5 years” on a 100-point scale by observing their
gait. A subject considered by the rater to have the highest risk was rated as 100, and a
subject with the lowest risk was rated as 0. The relative frailty risk of the remaining subjects
compared with the highest and lowest ones was scored between 0 and 100. Then, every
subject had six scores. Except for observing the recorded videos, the raters were not given
any personal information about the subjects.

2.3. Characteristics of IMS

The IMSs used in this study have the same structure as A-RROWG-type IMSs. Each
IMS consists of a 6-axis IMU (BMI 160, Bosch Sensortec, Reutlingen, Germany), an ARM
Cortex-M4F microcontroller unit (MCU) with Bluetooth module (nRF52832, CPU: 64 MHz,
RAM: 64 KB, ROM: 512 KB, Nordic Semiconductor, Oslo, Norway), onboard memory
(AT45DB641, 64 Mbit, Adesto Technologies, Santa Clara, CA, USA), a real-time clock (RTC)
(RX8130CE, EPSON, Suwa, Japan), a control circuit, and a 3V coin lithium-ion battery
(CLB2032 T1, 300 mAh, Maxell, Tokyo, Japan). The device is lightweight (12 g, including
the coin battery) and compact (29 mm × 40 mm × 7 mm) enough to be placed at the
arch of the foot. Please note that during the feasibility study stage, the IMSs were set to
developer mode, which differed from A-RROWG in that all calculations were performed
on the device. Under this mode, raw foot motion waveform data were first recorded on
the IMSs’ onboard memory and then sent to a PC via Bluetooth after the experiment. We
developed dedicated software for controlling data recording start and end in the IMSs and
for downloading raw data from the onboard memory of the IMSs to a PC via Microsoft
Visual Studio (Microsoft, Redmond, WA, USA).

The IMSs can directly measure three axes of acceleration, Ax (medial: +, lateral: −),
Ay (posterior: +, anterior: −), and Az (superior: +, inferior: −), as well as those of angular
velocity, Gx (sagittal plane (Y–Z): plantarflexion: +, dorsiflexion: −), Gy (frontal plane
(X–Z), eversion: +, inversion: −), and Gz (horizontal plane (X–Y), internal rotation: +,
external rotation: −). Inside the IMSs, the three axes of sole-to-ground angles (SGAs),
Ex (roll angle, plantarflexion: +, dorsiflexion: −), Ey (pitch angle, eversion: +, inversion:
−), and Ez (yaw angle, internal rotation: +, external rotation: −), were calculated using
a Madgwick filter [59]. Specifically, the acceleration values were corrected to the global
coordinates in each independent trial. The IMSs had a data sampling frequency of 100 Hz,
and their measurement range for acceleration was ±16 g, while that for angular velocity
was ±2000 degrees/s.

2.4. Signal Processing and GPs

For all data processing, simulation, and model construction tasks, MATLAB (Math-
Works, Natick, MA, USA) was used in this study.

To construct the HGS estimation model via the SPM-LOSO-LASSO algorithm, predic-
tors from three categories were required: IPAs, temporospatial GPs, and IMS predictors.
Temporospatial GPs and IMS predictors were obtained by processing one stride of the foot
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motion waveform. In this section, we explain the procedures used to obtain GP predictors.
The flow chart is shown in Figure 3.
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During the preliminary stage, two primary tasks were completed. The first task
involved processing every stride of the foot motion waveform into data matrices. The
second task focused on calculating the GPs that were extracted from each stride of the foot
motion waveform. The third task was to obtain a set of average foot motion waveforms
and GPs in each trial.

For the first task, to prepare the nine-dimensional foot motion signals from the IMSs
for analysis, the signals were partitioned into individual strides by detecting a heel-strike
(HS) event [60]. The IMS signal during the stance phase was then temporally normalized to
a 1–60% gait cycle (%GC), while the swing phase was normalized to 61–100%GC to create
a 9 × 100 matrix. To eliminate potential biases, we subtracted the average signal amplitude
during 21–25%GC from each stride assuming that these phases, where the foot sole fully
touches the ground, can be represented as a neutral posture. Additionally, to exclude any
walking velocity bias in foot motion, we normalized the amplitude of acceleration and
angular velocity waveform of each stride using the corresponding maximum instantaneous
velocity during a stride. The instantaneous walking velocity was computed by integrating
Ay from a neutral posture to the end of the stride. It is worth noting that we excluded the
first and last three strides of each trial, as they were not uniform in speed. Furthermore,
we removed any gait outliers from the remaining strides of each participant, following the
exclusion criteria outlined in [61].

Before temporal normalization, we derived 20 temporal and spatial GPs [29,62] from
each stride of the foot motion waveform using the algorithm depicted in [29,62]. These
parameters are listed in Table 2. GP01, GP05, and GP06 were normalized by subject height.
GP11-14, GP19, and GP20 were normalized by the duration of one stride. GP15, GP16,
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and GP18 were normalized by the maximum instantaneous walking velocity during the
swing phase.

Table 2. The 20 types of GPs designed for model construction.

No. Description Unit

GP01 Stride length m
GP02 One-stride gait velocity m/s
GP03 Maximum Ex in dorsiflexion direction deg
GP04 Maximum Ex in plantarflexion direction deg
GP05 Maximum circumduction m
GP06 Maximum foot height m
GP07 Toe in/out angle deg
GP08 Ey at HS deg
GP09 Ey at TO deg
GP10 Cadence step/min
GP11 Stance phase time s
GP12 Swing phase time s
GP13 Double support time 1 (loading response) s
GP14 Double support time 2 (pre-swing) s
GP15 Maximum Gx in plantarflexion direction during swing phase deg/s
GP16 Maximum Gx in dorsiflexion direction during swing phase deg/s
GP17 Maximum instantaneous velocity in one stride m/s
GP18 Maximum Az in superior direction during swing phase 9.8 m/s2

GP19 Duration of HS to foot flat s
GP20 Duration of foot flat s

GP: gait parameter. GP01-GP07 were calculated using the method of Fukushi et al. [29]. GP13, GP14, GP19, and
GP20 were calculated using the method of Huang et al. [62]. Deg: degree.

We then calculated the average foot motion and GPs for each trial on the left and right
feet for each subject. The data of the left and right feet were further averaged within each
trial. This resulted in each participant having four sets of average foot motions and GPs.
Thus, a total of 108 and 140 datasets were generated for males and females in Group I,
respectively, and 24 and 156 datasets were generated in Group II+III for males and females,
respectively. These processed average waveforms were used to determine new predictors
for HGS estimation.

2.5. SPM-LOSO-LASSO, Model Evaluation of HGS, and Precision Evaluation of Gait Speed
2.5.1. The Details of SPM-LOSO-LASSO

In this section, we explain the process of constructing and selecting predictors for HGS
estimation via SPM-LOSO-LASSO, following the steps depicted in Figure 4a [44]. Here,
IMS predictor processing is part of SPM-LOSO-LASSO.

To construct IMS predictors from foot motion signals that are significantly correlated
with HGS outcome, it is necessary to determine the %GCs that have a significant correlation.
For this purpose, we used SPM, a widely used and effective method in biomechanical stud-
ies [46,63]. We performed SPM analysis to evaluate the correlation between HGS outcomes
and foot motion signals at each %GC. SPM for correlation analysis is a stepwise process.
First, a canonical correlation analysis (CCA) with SPM (SPM-CCA) was performed [46].
The %GCs whose test statistic in the CCA exceeded a critical test statistic threshold calcu-
lated in accordance with the random field theory (RFT) [64] were determined as significant
%GCs. The level of significance was set as p < 0.05. Second, as a post hoc test, only data in
significant %GCs were further investigated by Pearson’s correlation (PeC) analysis with
SPM (SPM-PeC) for each component of the foot motion signal. For each component, the
%GCs whose test statistic in the PeC exceeded an RFT-based critical test statistic threshold
were judged as the final HGS-correlated significant %GCs for each component. Because
there were nine components in the foot motion signals, we conducted Šidák correction [65]
at a level of correlation significance where pc < 0.0057.
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by substituting elements over and below 0.95 × U by 1 and 0 in B0. (c) Other three models derived 
by optimizing three other predictor combinations by the same process as Mo, M1: gait speed (GP02), 
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Figure 4. (a) Process of feature construction, feature selection, and model construction for HGS
estimation. Ω1–Ω100: 100 types of features combinations in accordance with different regularization
coefficients set in LASSO for HGS estimation; H1–H100: 100 types of candidate multivariate regression
models for HGS estimation; ICCk denotes ICC value of model Hk; Mo: optimal models for HGS
estimation. (b) Details of LOSO-LASSO; U: total number of participants for training data; λu: u-th
regularization coefficient vector for LASSO, 100 dimensions; λui: i-th element of λu; βui: fitted least-
squares regression coefficients corresponding to λui; Bu: u-th label matrix obtained by substituting
nonzero elements in LASSO coefficient by 1; B0: label counter matrix; B: final label matrix obtained
by substituting elements over and below 0.95 × U by 1 and 0 in B0. (c) Other three models derived
by optimizing three other predictor combinations by the same process as Mo, M1: gait speed (GP02),
M2: M1 plus other GPs in one stride, and M3: M2 plus IPAs. Green dashed boxes in (c) indicate the
corresponding process included in the same box shown in (a).

Based on biomechanical knowledge, we limited the predictors to the range of approxi-
mately 1–16%GC, 48–70%GC, and 92–100%GC, where the quadriceps are mostly activated.
These defined quadricep-activation %GCs were used as a filter, denoted as Qt. The inter-
section between the %GCs judged by SPM to be HGS-correlated and the Qt was taken to
exclude the %GCs not related to quadricep activities. The intersections were treated as
GPCs. The integral average of the signal in GPCs was then used as an IMS predictor, as
expressed by (1).

Ci =


Te−∆T

∑
Ts

(
W(T)+W(T+∆T)

2(Te−Ts)
∆T
)

, +Te − Ts > 0

W(Te), +Te − Ts = 0
(1)

where Ci means the i-th IMS predictor; Ts and Te mean the start and end of %GCs of GPCs,
respectively; and W means the waveform of the foot motion signal, where W ∈ {Ax, Ay, Az,
Gx, Gy, Gz, Ex, Ey, Ez}.

After collecting the subjects’ IPAs, GPs, and IMS predictors, we formed predictor
candidates for model construction. We used our original algorithm, LOSO-LASSO [44],
along with the “lasso” function in MATLAB to determine the best selection of predictors.
We obtained multiple LASSO analysis results by looping the LOSO process for all subjects.
By statistically analyzing these results, we can approximate the nature of the population
estimator and thereby make the LASSO analysis more robust against individual differences.
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The details of LOSO-LASSO are shown in Figure 4b. In the u-th LOSO process, the
data of the u-th subject are first excluded, and the remaining data are then subjected to
LASSO analysis. LASSO solves the following problem:

min
βi0,βi

(
1

2N

N

∑
k=1

(
yk − βi0 − xT

k βi

)2
+ λi

C

∑
j=1

∣∣βij
∣∣) (2)

Here, N is the amount of data. yk is the target variable. xk is the predictor vector of
length C. λi is a non-negative regularization parameter input to LASSO, which can be set
freely. βi is the set of fitted least-squares regression coefficients, and βi0 is the residual
of the linear regression yk = xk

Tβi + βi0, corresponding to λi, which is also the output of
LASSO. βij is the j-th element of βi. As λi increases, the number of nonzero components
of βi decreases. For optimizing feature selection, we set 100 different λi’s which formed a
geometric sequence to compose a regularization parameter 100-dimensional vector λ; thus,
the index i here means the i-th element of λ. In each LOSO, 100 βi’s formed a coefficient
matrix. Then, we substituted nonzero elements in LASSO coefficient matrices with 1 to
form label matrix Bu.

This process is repeated for each subject. After completion of the LOSO process, we
can obtain U sets of Bu’s. By summing all Bu’s, we obtain a matrix with a total counter B0.
The elements over 0.95 × U (25 for males and 33 for females) in this matrix are substituted
with 1, while the remaining elements are substituted with 0, forming the final label matrix B.
LOSO-LASSO generates 100 types of predictor combinations (denoted as Ω1–Ω100) based
on different regularization coefficient sets in LASSO. Using these features, 100 different
candidate multivariate regression models can be obtained for the dataset. We evaluated
100 candidate models (H1–H100) for estimating HGS using leave-one-subject-out cross-
validation (LOSOCV) and the intraclass correlation coefficient (ICC) of type (2, 1) as the
evaluation index, denoted as ICC(2, 1). The model with the highest ICC(2, 1) value was
chosen as the optimal model (Mo).

2.5.2. Model Evaluation of HGS and Precision Evaluation of Gait Speed

After selecting Mo, we used LOSOCV to evaluate the degree of agreement and pre-
cision between the reference and estimated HGS, using the ICC(2, 1) and mean absolute
error (MAE). Additionally, we evaluated the adjusted coefficient of determination (R2) for
the multivariate regression models using all training data (not LOSOCV) and the Pearson’s
coefficient of correlation (r) between predictors and the outcome of HGS. For comparison,
we derived models by optimizing three other patterns of predictor combinations in the
same process: M1 (gait speed (GP02)), M2 (M1 plus other GPs in one stride), and M3 (M2
plus IPAs) (see Figure 4c).

We evaluated the average value of gait speed measured by the IMS in one trial and
used ICC(2, 1) and MAE to assess the agreement and precision between the reference and
measured values.

The guidelines for interpreting ICC inter-rater agreement are as follows: excellent
(>0.750), good (0.600–0.749), fair (0.400–0.599), and poor (<0.400) [66]. The guidelines for
interpreting R2 are as follows: none (<0.02), small (0.02 to 0.13), medium (0.14 to 0.26), and
large (>0.26). The guidelines for interpreting r are as follows: none (<0.100), small (0.100 to
0.299), medium (0.300 to 0.499), and large (>0.499) [67].

2.6. Designing Frailty Risk Score

We assumed that the distribution of HGS and gait speed of our subjects would follow
a normal distribution similar to that of the population of older Asian adults. Accord-
ing to [56], the mean values of HGS for males (N = 12,190) and females (N = 14,154)
over 60 years old are 34.7 and 21.9 kg, respectively, and the standard deviations are 7.1
and 4.8 kg, respectively. In [57], the baseline demographic and health characteristics of
1686 community-dwelling Japanese were demonstrated, and no significant difference in
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gait speed was observed between sexes. Thus, the calculated mean value and standard
deviation of gait speed for all subjects were 1.29 and 0.24 m/s, respectively.

We utilized a probability-distribution-based method to design the frailty risk score.
First, we calculated the Z-score of the HGS performance of males and females using
Equations (3) and (4), respectively, and that of gait speed using Equation (5), using the
mean value and standard deviation of HGS and gait speed for older Asian adults in [56,57].

ZHGS_m = (HGSm − 34.7)/7.1 (3)

ZHGS_ f =
(

HGS f − 21.9
)

/4.8 (4)

ZGS = (GS− 1.29)/0.24 (5)

Here, HGSm, HGSf, and GS are the HGS of the male subjects, the HGS of the female
subjects, and the gait speed of all subjects (no sex difference). ZHGS_m and ZHGS_f denote
the Z-scores of the HGS performance of males and females, and ZGS denotes the Z-scores
of the gait speed performance for the standard normal distribution.

Because Z-scores can theoretically be from −∞ to +∞, to constrain the score to 0 to
100, we used the cumulative percentage of the standard normal distribution as the frailty
risk score, which was calculated via the Z-scores mentioned before. Then, to ensure that
the scores were still in the range of 0 to 100, we propose performance scores of HGS for
males and females as Equations (6) and (7) and the performance score of gait speed as (8):

PHGS_m =
∫ ZHGS_m

−∞

1√
2π

exp
(
− x2

2

)
dx (6)

PHGS_ f =
∫ ZHGS_ f

−∞

1√
2π

exp
(
− x2

2

)
dx (7)

PGS =
∫ ZGS

−∞

1√
2π

exp
(
− x2

2

)
dx (8)

PHGS_m and PHGS_f denote the designed score of the HGS performance of males and
females, and PGS denotes the designed score of the gait speed performance. By following
the calculation process described above, we eliminated the sex difference in the HGS
distribution. Thus, the scores for males and females had the same distribution and could
be discussed together. Finally, to reflect the equal weight given to HGS and gait speed in
the J-CHS criteria, we propose a frailty risk score (Pfr) by combining the performance of the
two, as expressed by Equation (9).

Pf r = (PHGS_m + PGS)/2

or
Pf r =

(
PHGS_ f + PGS

)
/2

(9)

2.7. Evaluation Methods in Model Tests
2.7.1. Test 1

In Test 1, we utilized Bland–Altman (BA) plots [68,69] to assess the limit of agreement
(LoA) between IMS-assessed and reference values of gait speed and HGS. We computed
both the sample-based LoA and the confidence limits of LoA in the population. To examine
the existence of a fixed and proportional bias, we applied a t-test and Pearson’s correlation
test if the differences and averages between the two methods followed a normal distribution,
initially tested by a Kolmogorov–Smirnov (KS) test. The LoA of the 95% confidence interval
was established from the perfect agreement (PA) line ± 1.96 × standard deviation (σ),
resulting in upper and lower LoAs (ULoA and LLoA). Additionally, the 95% confidence
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limits of LoA were also determined, which included the upper and lower limits of ULoA
(UULoA and LULoA), as well as the upper and lower limits of LLoA (ULLoA and LLLoA).
T-tests were used for comparing differences between two groups, and ANOVA was used to
compare the differences among three or more groups, with all levels of significance set at
p < 0.05.

In the model testing stage, we evaluated the validity of gait speed measurement and
HGS estimation based on the ratio of test data in Group II+III, whose BA plots were within
the agreement range determined by the model test data for Group I, i.e., the success rate
of measurements denoted as KA. We considered the measurement to be successful by
the model when the difference between IMS-measured and reference values was located
inside the agreement interval, determined by the data of Group I. We used the optimistic
agreement range, i.e., the range between UULoA and LLLoA. Because the test data size
was limited, we utilized the probability-distribution-based method [44] to estimate KA
and eliminate randomness. We set the confidence level to 95%, assuming 5% of the
measurements as the outliers in this study. If over 95% of data were inside the agreement
interval, KA was considered to be 100%.

In the probability-distribution-based method, we hypothesized that the residual of BA
plots for training and test data to the PA line, denoted as RA and RT, followed a normal
distribution, RA ~ N(µA, σA

2) and RT ~ N(µT, σT
2). Here, µs and σs mean the averages and

standard deviation, respectively. Because the model was based on multivariate regression,
theoretically, µA ≡ 0. Furthermore, because of the limited data size, we calculated the 95%
confidence levels of µT, σA, and σT and obtained their upper and lower limits, (µTL, µTU),
(σAL, σAU), and (σTL, σTU), respectively. Hence, if we use an optimistic agreement range,
the agreement range of the residual should be fixed as −1.96σAL to 1.96σAU. By then, KA
should be in the area of N(µT, σT

2) inside the interval of −1.96σAL to 1.96σAU. Because µT
and σT are independent of each other, the largest and smallest areas for N(µTi, σTi

2) subject
to µTi ∈ [µTL, µTU] and σTi ∈ [σTL, σTU] would be the upper and lower limits of KA, denoted
as KAU and KAL, which can be expressed by Equations (10) and (11):

KAU = min
(

max
(∫ 1.96σAU
−1.96σAU

1√
2πσTi

exp
(
− (x−µTi)

2

2σ2
Ti

)
dx
)

/0.95, 1
)

subject to µTi ∈ [µTL, µTU ], σVi ∈ [σTL, σTU ]

(10)

KAL = min
(

min
(∫ 1.96σAU
−1.96σAU

1√
2πσTi

exp
(
− (x−µTi)

2

2σ2
Ti

)
dx
)

/0.95, 1
)

subject to µTi ∈ [µTL, µTU ], σVi ∈ [σTL, σTU ]

(11)

2.7.2. Test 2

After calculating the Pfrs of all subjects in Group III, we compared them with the expert-
rated scores and calculated the correlation (r) between them to evaluate the effectiveness of
the designed score.

For each subject, we obtained a total of six expert-rated scores. We preliminarily tested
the reliability of the six expert-rated scores based on the ICC values. The results showed
that the ICC(2, 1) was 0.490 (fair), and ICC(2, k) was 0.850 (excellent). Moreover, the KS
test indicated that the mean score of all subjects corresponding to six raters followed the
normal distribution (p = 0.987). These results showed that the score indicating a diagnosis
of frailty within the next 5 years for the subjects in Group III could be assessed using an
average of six expert-rated scores with high reliability. Additionally, as another statistical
processing method, we obtained the median values of the six expert-rated scores and the
rank of subjects according to each score. For each subject, we then calculated their average
rank. Thus, for the other patterns, we used the median value and averaged rank as the
reference frailty risk score of the subjects. The correlation analysis between the reference
frailty risk score for the other patterns and the designed frailty risk score is shown in the
Supplementary Materials.
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3. Results
3.1. SPM Analysis in HGS Estimation Model Construction

In a comparison between the males and females, their average waveforms appeared
approximately similar. In contrast, the standard deviation of waveforms, particularly in
the frontal and horizontal plane (Gy, Gz, Ey, and Ez), appeared to have more different
shapes (Figure 5).

Sensors 2023, 23, 5446 18 of 35 
 

 

Filtered by quadricep-activation %GCs (Qt), 10 GPCs and 14 GPCs ultimately remained 

for creating the same numbers of IMS predictors. 

  

(a) (b) 

Figure 5. Results of correlation analysis between foot motion and HGS using SPM for both (a) males 

(blue lines) and (b) females (red lines). Foot motion waveforms Ax, Ay, Az, Gx, Gy, and Gz were nor-

malized by the maximum instantaneous speed in one stride. The 95% confidence interval of a wave-

form is shown by double do�ed lines linked to foot motion signals. Statistic curves outside gray 

zones for each signal type indicate that intervals of GCs significantly correlated with HGS defined 

as GPCs. GC: gait cycle, SPM{F}: F statistic of vector field analysis by SPM-CCA, SPM{t}: statistic of 

post hoc scalar trajectory linear correlation test by SPM-PC. Single and double do�ed lines linked 

to SPM{F} and SPM{t} indicate critical RFT threshold of F and Šidák-corrected critical RFT threshold 

of t. 
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Table 3. Predictors in constructed multivariate linear regression model and their correlation anal-

yses with HGS for males. 

No. Detail Mean (SD) r Coef. pm 

Int. Interception   37.9 0.050 

Cm1 Age 70.3 (7.7) −0.599 −0.236 0.000 

Cm2 Height 166.7 (4.2) 0.428 0.185 0.055 

Figure 5. Results of correlation analysis between foot motion and HGS using SPM for both (a) males
(blue lines) and (b) females (red lines). Foot motion waveforms Ax, Ay, Az, Gx, Gy, and Gz were
normalized by the maximum instantaneous speed in one stride. The 95% confidence interval of a
waveform is shown by double dotted lines linked to foot motion signals. Statistic curves outside gray
zones for each signal type indicate that intervals of GCs significantly correlated with HGS defined as
GPCs. GC: gait cycle, SPM{F}: F statistic of vector field analysis by SPM-CCA, SPM{t}: statistic of
post hoc scalar trajectory linear correlation test by SPM-PC. Single and double dotted lines linked to
SPM{F} and SPM{t} indicate critical RFT threshold of F and Šidák-corrected critical RFT threshold of t.

According to the results of the SPM-CCA, a significant correlation was found between
the foot motion signal vectors for most of the stance phase and the end of the swing
phase (immediately before HS) and the HGSs for both sexes. A post hoc SPM-PC analysis,
represented by statistic SPM{t} curves, revealed the strength of the correlation between
each type of foot motion signal and the HGS. Significant GC intervals, referred to as GPCs,
were identified in the sections of curves that exceeded critical thresholds and correlated
with the HGSs. It is worth noting that the GPCs of the acceleration signals were more
fragmented due to the smaller smoothness of the acceleration waveform compared to
the angular velocities and sole-to-ground Euler angles. The shape of the statistic SPM{t}
curves and the location of the GPCs varied between males and females (see Figure 5).
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Consequently, 20 GPCs and 17 GPCs were obtained for males and females, respectively.
Filtered by quadricep-activation %GCs (Qt), 10 GPCs and 14 GPCs ultimately remained for
creating the same numbers of IMS predictors.

3.2. Feature Selection for HGS Estimation Model

To obtain the final optimal predictor combination Mo, consisting of IPA and GP
predictors, we inputted a total of 34 and 38 candidate predictors into LOSO-LASSO for
males and females, respectively. Referring to Figure 6, we determined Mo for males and
females by finding the highest ICC(2, 1), which included 16 and 8 finally selected predictors,
respectively. The selected predictors for constructing multivariate linear regression and
their correlation analyses with the HGS are listed in Tables 3 and 4.
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Figure 6. Results of LOSO-LASSO analysis to determine optimal predictor combination, Mo.
(a) Male, (b) female. The upper panels depict the regularization coefficient input into LOSO-LASSO.
The middle panels depict the number of predictors output from LOSO-LASSO. The bottom panels
depict the ICC(2, 1) values of the models constructed from each predictor combination output from
LOSO-LASSO.

Regarding the IPA predictors, age and height were selected for both males and females,
with medium to large effect sizes (age: r = 0.162 and 0.271; height: r = 0.428 and 0.682). In
particular, the age for males and height for females had the highest correlation with HGS.
These results indicate that the effect of age and body size on HGS was observed. Although
the effect size was small (r = 0.209), weight was also selected for the estimation model
for males.

Compared to females, more GP predictors were selected for males, with GP16
(r = 0.303, medium effect size; r = 0.199, small effect size) being present in the predic-
tor list for both sexes. This result suggests that subjects with higher HGSs have lower
maximum Gx in the dorsiflexion direction during the swing phase. Except for GP03, which
had a medium effect size (r = 0.338), the remaining GP predictors (GP05, 08, 09, 10, 18, 19)
only had effect sizes classified as none or small.
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Table 3. Predictors in constructed multivariate linear regression model and their correlation analyses
with HGS for males.

No. Detail Mean (SD) r Coef. pm

Int. Interception 37.9 0.050
Cm1 Age 70.3 (7.7) −0.599 −0.236 0.000
Cm2 Height 166.7 (4.2) 0.428 0.185 0.055
Cm3 Weight 66.8 (8.8) 0.209 0.191 0.000
Cm4 GP03 31.64 (4.83) 0.338 −0.525 0.000
Cm5 GP05 1.88 × 10−2 (0.75 × 10−2) 0.204 132 0.006
Cm6 GP08 −5.21 (3.83) −0.005 0.262 0.009
Cm7 GP09 3.64 (3.88) −0.049 0.246 0.013
Cm8 GP10 112.28 (9.20) 0.052 −0.222 0.000
Cm9 GP16 −97.05 (5.46) 0.303 0.314 0.000
Cm10 GP18 6.35 × 10−1 (0.61 × 10−1) −0.190 15.9 0.017
Cm11 GP19 9.41 × 10−2 (2.13 × 10−2) 0.065 116 0.000
Cm12 Ax, 97 to 98 −2.67 × 10−1 (1.41 × 10−1) 0.462 11.2 0.001
Cm13 Ay, 59 −5.76 × 10−1 (1.04 × 10−1) −0.487 −26.0 0.000
Cm14 Az, 61 to 63 −3.43 × 10−1 (0.84 × 10−1) −0.389 −8.11 0.054
Cm15 Gy, 15 to 16 −5.26 × 10−1 (8.01 × 10−1) −0.387 −1.58 0.000
Cm16 Gz, 12 to 16 4.35 × 10−1 (3.75 × 10−1) 0.582 4.98 0.000

GP03: maximum Ex in dorsiflexion direction; GP05: maximum circumduction; GP09: Ey at TO; GP10: cadence;
GP16: maximum Gx in dorsiflexion direction during swing phase; GP18: maximum Az in superior direction
during swing phase; GP19: Duration of HS to foot flat. GP05 was normalized by height of subject; GP16, GP18,
and GP19 were all normalized by maximum instantaneous speed in one stride. Cm12 to Cm16: IMS predictors,
signal type, and interval range of GPCs are depicted in “Detail” column. Interval range is in %GC. Units of
IMS predictors were the same as signals. Cm12 to Cm16 were all normalized by maximum instantaneous speed in
one stride. SD: standard deviation, r: linear correlation coefficient of predictor with HGS; Coef.: coefficient of
multivariate regression model using all participants’ data; pm: p-value of coefficient of multivariate regression
model, with significance level of pm < 0.05.

Table 4. Predictors in constructed multivariate linear regression model and their correlation analyses
with HGS for females.

No. Detail Mean (SD) r Coef. pm

Int. Interception −17.3 0.178
Cf 1 Age 70.9 (5.9) −0.517 −0.349 0.000
Cf 2 Height 154.9 (6.6) 0.682 0.374 0.000
Cf 3 GP16 −102.37 (7.67) 0.199 −0.095 0.025
Cf 4 Ax, 3 −1.31 × 10−1 (0.76 × 10−1) 0.419 28.9 0.000
Cf 5 Ax, 13 to 14 −2.43 × 10−3 (2.43 × 10−3) −0.529 −819 0.000
Cf 6 Ax, 97 −2.25 × 10−1 (1.30 × 10−1) −0.362 −7.03 0.002
Cf 7 Ay, 69 −2.81 × 10−1 (0.46 × 10−2) 0.374 22.5 0.000
Cf 8 Gz, 2 14.44 (9.76) −0.325 0.244 0.000

GP16: maximum Gx in dorsiflexion direction during swing phase, which was normalized by maximum instan-
taneous speed in one stride. Cf 4 to Cf 8: IMS predictors, signal type, and interval range of GPCs are depicted in
“Detail” column. Interval range is in %GC. Cf4 to Cf8 were all normalized by maximum instantaneous speed. Units
of IMS predictors were the same as signals. SD: standard deviation; r: linear correlation coefficient of predictor
with HGS, Coef.: coefficient of multivariate regression model using all participants’ data, pm: p-value of coefficient
of multivariate regression model, with significance level of pm < 0.05.

For both males and females, five IMS predictors were ultimately selected (Cm12–Cm16,
Cf4–Cf8) by LOSO-LASSO. The corresponding GPCs are shown in Figure 7. Besides foot
motions in the sagittal (Y-Z) plane, such as Ay and Az (Cm13,14, Cf7), those in the frontal (X-Z)
and horizontal (X-Y) planes, such as Ax, Gy, and Gz (Cm12,15,16, Cf4–6,8), were suggested to
be essential for HGS estimation. Temporally, major parts of GPCs for females appeared
around HS (Cf4–6,8), where both the rectus femoris (RF) and vastus muscles (VAs) in the
quadriceps were mainly activated. In contrast, besides the GPCs (Cm12,15,16) in the %GCs
when both the RF and VAs activated, the male subjects also had more GPCs (Cm13,14) inside
the %GCs for which only the RF activated, which appeared around TO, than the female
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subjects (Cf7). These results may reflect the sex differences in muscle activation patterns
during gait.

Sensors 2023, 23, 5446 21 of 35 
 

 

the ground, female subjects with higher HGSs tended to have less acceleration in the me-

dial direction (or more acceleration in the lateral direction) (Cf5). At the end of the initial 

swing phase when the lower limb transitioned from acceleration to deceleration, the ac-

celeration in the anterior direction (Cf7) of female subjects began to approach zero as HGS 

increased.  

 

Figure 7. Selected IMS predictors for Mo and their corresponding GPCs for male and female subjects. 

Qt’s are marked as black blocks surrounded by green dashed line frames. Selected GPCs of each 

type of foot motion are also marked as blocks (male: blue, female: red). Qt: Quadricep-activation 

%GCs, including %GCs for which only rectus femoris (RF) activated and for both RF and vastus 

muscles (VAs). LR: loading response; MSt: mid-stance; TSt: terminal stance; PS: pre-swing; IS: initial 

swing; MSw: mid-swing; TSw: terminal swing; HS: heel strike; TO: toe-off. 

Furthermore, we also list the coefficients of predictors and their p-values in a multi-

variate regression model in Tables 2 and 3. Although the linear correlation coefficient with 

the HGS contained predictors with effect sizes only classified as none or small, the con-

structed models for both males and females had large effect sizes (R2 = 0.858, p < 0.001, and 

R2 = 0.773 and p < 0.001, respectively). 

3.3. Precision Evaluation of Gait Speed, Model Evaluation of HGS Estimation, and Test 1 

3.3.1. Gait Speed 

For all subjects, we evaluated the agreement between the 10 m average gait speed 

calculated from stopwatch-measured time in one trial and that calculated by averaging all 

strides of gait speed in 10 m intervals in one trial (see Figure 8a). The ICC agreement 

reached the “excellent” level with a value of 0.978. Compared to the reference value, the 

IMS achieved an MAE of 0.029 m/s, which is only 2.1% of the average gait speed of all 
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cating that the IMS-measured gait speed was on average 0.014 m/s greater than the stop-

watch-measured data (p < 0.001). There was also a proportional bias between the two 

measurements (r = −0.173, p = 0.006), indicating that IMS slightly overestimated the gait 
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Figure 7. Selected IMS predictors for Mo and their corresponding GPCs for male and female subjects.
Qt’s are marked as black blocks surrounded by green dashed line frames. Selected GPCs of each type
of foot motion are also marked as blocks (male: blue, female: red). Qt: Quadricep-activation %GCs,
including %GCs for which only rectus femoris (RF) activated and for both RF and vastus muscles
(VAs). LR: loading response; MSt: mid-stance; TSt: terminal stance; PS: pre-swing; IS: initial swing;
MSw: mid-swing; TSw: terminal swing; HS: heel strike; TO: toe-off.

By referencing the mean value and linear correlation coefficients of the selected IMS
predictors with the HGS, the direction of foot motions during these phases and the changing
trend as HGS increased could be determined. Male subjects with stronger HGSs had strong
acceleration in the anterior and superior direction (Cm13,14) immediately before and after
TO. During the early mid-stance phase, when the foot approaches the defined neutral
position, male subjects with stronger HGSs had higher angular velocities in the direction of
eversion and internal rotation (Cm15,16). Immediately after the heel rocker occurred, female
subjects with stronger HGSs tended to have lower acceleration in the lateral direction
and lower angular velocity in the internal rotation direction (Cf4,8). Combining the two
predictors, the results may suggest that female subjects with stronger HGSs tend to have a
higher ability to land their feet stably and smoothly. After the foot has completely hit the
ground, female subjects with higher HGSs tended to have less acceleration in the medial
direction (or more acceleration in the lateral direction) (Cf5). At the end of the initial swing
phase when the lower limb transitioned from acceleration to deceleration, the acceleration
in the anterior direction (Cf7) of female subjects began to approach zero as HGS increased.

Furthermore, we also list the coefficients of predictors and their p-values in a mul-
tivariate regression model in Tables 2 and 3. Although the linear correlation coefficient
with the HGS contained predictors with effect sizes only classified as none or small, the
constructed models for both males and females had large effect sizes (R2 = 0.858, p < 0.001,
and R2 = 0.773 and p < 0.001, respectively).
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3.3. Precision Evaluation of Gait Speed, Model Evaluation of HGS Estimation, and Test 1
3.3.1. Gait Speed

For all subjects, we evaluated the agreement between the 10 m average gait speed
calculated from stopwatch-measured time in one trial and that calculated by averaging
all strides of gait speed in 10 m intervals in one trial (see Figure 8a). The ICC agreement
reached the “excellent” level with a value of 0.978. Compared to the reference value, the
IMS achieved an MAE of 0.029 m/s, which is only 2.1% of the average gait speed of all
subjects in Group I.
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Figure 8. Precision evaluation results of gait speed. (a) Agreement plots. (b) BA plots of data in
Group I (green) and Group II+III (yellow). PA line: black chained line; ULoA and LLoA: black dashed
line; UULoA, LULoA, ULLoA, and LLLoA: black dotted line; fitting proportional bias line: blue
dashed line. For data in Group II+III, lower to upper limits of KA, i.e., KA = KAL − KAU, are depicted
in the figure.

From the BA plots of data for Group I (see Figure 8b), we observed a fixed bias
indicating that the IMS-measured gait speed was on average 0.014 m/s greater than the
stopwatch-measured data (p < 0.001). There was also a proportional bias between the two
measurements (r = −0.173, p = 0.006), indicating that IMS slightly overestimated the gait
speed when the gait speed became slower (y = −0.034x + 0.060). The agreement interval
for testing data for Group II+III was determined by the BA plots generated from the data
for Group I. According to KAL and KAU calculated using Equations (8) and (9), the IMS
successfully assessed 100% of gait speed data for subjects in Group II+III with an MAE
precision of 0.029 m/s.

3.3.2. HGS

The results presented in Figure 9a suggest that gait speed alone or combined with
other common GPs is not an effective predictor for estimating HGS. From the results
shown in Figure 9a, it can be inferred that gait speed is significantly correlated with HGS
among male and female subjects, with moderate effect sizes (r = 0.384, 0.337, p = 0.048,
0.048), but estimating HGS based solely on gait speed is not feasible due to the poor ICC
agreement between the estimated and reference values. However, when additional GPs
were added as predictors by using the LOSO-LASSO model (M2), significant improvements
were observed for ICC, MAE, and R2. The ICC agreement for males and females improved
from poor to fair and good, respectively, while the R2 improved from small to large.
Specifically, for the males, the ICC agreement improved from fair to good with the aid
of IPAs. Additionally, the optimal model (Mo) that included IMS predictors resulted in
a substantial improvement in ICC agreements, MAE, and R2, where the ICCs reached
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excellent for both males and females with MAE and R2 values improving to 2.88 and 2.57
kg and 0.86 and 0.77, respectively. Further details on M2 and M3 predictor combinations
can be found in the Supplementary Materials.
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Figure 9. (a) HGS estimation agreement plots of males and females by models constructed by
predictor combinations of Mo, M1, M2, and M3. Blue and red dots mean data of males and females,
and black dashed lines in all panels of (a) mean perfect agreement. “ICC” in figures means ICC value
of ICC(2, 1). (b) Bland–Altman plots of Mo case for males and females of Group I. PA line: black
chained line; ULoA and LLoA: black dashed line; UULoA, LULoA, ULLoA, and LLLoA: black dotted
line; fitting proportional bias line: blue dashed line. (c) Results of HGS estimation model test using
data from Group II+III and optimistic agreement interval determined using data from Group I shown
in (b). All male subjects belonged to Group III, marked as blue triangles. Lower to upper limits of KA,
i.e., KA = KAL − KAU, are depicted in (c). Black dashed circle in (c) means subjects in Group III who
did not agree with the reference data well.

The differences between the reference and estimated values of Group I data fol-
lowed a normal distribution, as shown in Figure 9b. The Bland–Altman plots of Group
I for both males and females did not reveal any proportional biases (p = 0.76, 0.09) be-
tween the measurements. In terms of the HGS model test results using Group II+III data,
the HGS estimation was successful for 5/6 males and 36/39 females within the agree-
ment interval. According to Equations (10) and (11), 48.0–100.0% of male subjects and
89.1–100.0% of female subjects were estimated successfully. However, it appeared that HGS
was overestimated for males in Group II+III.

3.4. Test 2: Validity of Designed Frailty Risk Score with Estimated HGS

In Test 2, the scores of male and female subjects were evaluated together because the
experts did not consider biological sex. For both males and females in Group III, there
was no significant linear correlation between HGS and gait speed (r = 0.025, p = 0.963, and
r = 0.170, p = 0.302, respectively). Even after calculating PHGS and PGS, there was still no
significant linear correlation between the performance scores (r = 0.363, p = 0.075), possibly
due to the small sample size and insufficient statistical power.

The ICC agreement between the three types of performance scores based on reference
and IMS-estimated values is shown in Figure 10. PGS had an excellent level of agreement
with an ICC(2,1) of 0.959 (Figure 10b), while PHGS only had a poor level with an ICC(2,1) of
0.282 (Figure 10a), possibly due to a few subjects who did not agree well with the reference
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data. However, when PHGS and PGS were combined with Pfr, the ICC value improved to a
good level at 0.727 (Figure 10c).
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Figures 11 and 12 show the correlations between the expert-rated score and the three
types of performance scores based on reference and IMS-estimated values. The expert-rated
score had a significant negative correlation with reference data-based PGS and Pfr, with
large effect sizes (r = −0.555, −0.503; p = 0.004, 0.010), but not with reference data-based
PHGS (r = −0.225, p = 0.280) (Figure 11). However, the PHGS based on IMS-estimated data
had a significant negative correlation with the expert-rated score with a large effect size
(r = −0.525, p = 0.007), and the Pfr based on IMS-estimated data had a higher effect size
(r = −0.676, p < 0.001) than the reference data-based one. These results indicate that the
performance scores based on IMS-estimated data are more consistent with the experts’
diagnostic reasoning.
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We conducted a statistical analysis of the difference in expert-rated scores between
subjects classified as pre-frail and robust based on the J-CHS score (Figure 13). We found no
significant difference between the subject groups that scored 1 to 2 and 0, which may be due
to the difficulty in precisely scoring subjects who are on the boundary of robust/pre-frail
conditions based only on gait observation. Nevertheless, the average value of the robust
group was lower than that of the pre-frail group.
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Furthermore, we tested the three types of performance scores on the basis of IMS-
estimated data for the pre-frail and robust groups (Figure 14). Despite the t-test showing
no significant difference between the two groups in either HGS or gait speed performance
scores, the overall performance Pfr of the robust group was significantly higher than that
of the pre-frail group. This suggests that the frailty risk score was consistent with the
J-CHS criteria.
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Figure 14. Boxplot of three types of performance scores calculated from IMS-estimated values in
pre-frail and robust groups: (a) PHGS, (b) PGS, (c) Pfr. The green dot in (a) means the outlier point
(values exceeding 1.5 times the interquartile range are displayed as outliers). Lines in the boxes
indicate the median values; crosses in the boxes indicate the mean values of each group. PF: pre-frail,
R: robust.
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4. Discussion
4.1. Some Significant GP Predictors for HGS Estimation

Although gait speed has been suggested to be correlated with HGS in previous stud-
ies [32,33], in this study, gait speed was not selected as a predictor for the HGS estimation
model for either male or female subjects. Instead, other spatiotemporal parameters were
discovered to be significant for HGS estimation in our designed model. These param-
eters played a key role in the optimal model for HGS estimation based on the analysis
of ICC agreement. After applying the LOSO-LASSO method, essential GP predictors
were selected.

One of the essential GP predictors is the maximum sole-to-ground angle in the dorsi-
flexion direction (GP03), which has a relatively high positive correlation with HGS in males.
As shown in Figure 5, GP03 occurs immediately before heel strike. During this phase of
the gait cycle, the ankle joint is in a neutral status; i.e., the foot is perpendicular to the tibia.
Therefore, the value of GP03 is determined by the degree of knee extension [70]. When the
knee extensor, i.e., quadriceps, becomes weaker, the knee cannot be extended sufficiently,
which causes GP03 to become smaller.

Another essential GP predictor for both sexes is the maximum angular velocity in
the dorsiflexion direction during the swing phase (GP16). Unlike GP03, the negative
correlation coefficient between HGS and GP16 suggests that subjects with a higher HGS
have a lower absolute value of GP16, i.e., a value closer to zero. This can be explained as
follows: According to Figure 5, GP16 is most likely to occur during the initial swing phase.
During this phase, the upper leg rotates forward (blue arrow on upper leg in Figure 15),
and the knee joint gradually increases flexion. Passively, the lower leg lifts behind the
central line of the body (yellow arrow in Figure 15), which prevents the lower leg from
rotating forward too early by overcoming the gravity force (green arrow in Figure 15). At
the same time, the ankle joint spontaneously reduces plantarflexion, which rotates the foot
forward (blue arrow on foot in Figure 15). The Gx waveform during this phase reflects
the counterbalance motion of the knee and ankle joint [70]. Furthermore, Nene et al. [71]
suggested that the rectus femoris muscle controls the degree of knee flexion. Therefore,
when the quadriceps, especially the rectus femoris, becomes weaker, the antagonizing
muscle power that prevents the lower leg from rotating forward along with gravity also
decreases. Consequently, GP16 becomes larger in the dorsiflexion direction.

4.2. Some Significant IMS Predictors for HGS Estimation

Through SPM analysis of the correlation between HGS and the foot motion waveforms,
we discovered a number of effective IMS predictors, and five IMS predictors were finally
selected by LOSO-LASSO. As shown in Figure 7, the major parts of GPCs for the females
appeared around HS (Cf4–6,8), where both the RF and VAs in the quadriceps were mainly
activated, while the male subjects also had more GPCs (Cm13,14) inside the %GCs for which
only the RF was activated, which appeared around TO, than the female subjects (Cf7).
Di Nardo et al. [72] suggested that female subjects have more complex activation patterns
in VAs. Bailey et al. [73] indicated that in older adults’ gait, the activation level of RF for
males is higher than that for females according to a study using electromyography. The
results shown in Figure 6 may reflect sex-dependent muscle activation during gait.

Kobayashi et al. [48] demonstrated the differences in GPs between sexes. Rowe et al. [74]
analyzed the sex differences in kinetics and kinematics of lower limbs in detail, which
indicated that more differences were found in frontal and horizontal planes. In this
study, we also observed a difference in foot motion waveforms, which also belong to
the gait in the lower limbs, between male and female subjects, especially in the frontal
plane and transverse plane. Our results agreed with the findings demonstrated in these
previous studies.

We analyzed the correlation between the balance ability, represented by the outcome
of the FRT, and foot motion with the same subjects in Group I in our previous study [45].
We found several significant GPCs by paying attention to the gait phases related to the
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activation of the tibialis anterior (TA) and calf muscles (gastrocnemius (GA) and soleus
(SO)). The TA has two periods of activity: one is during the early stance phase (1–15%GC),
and the other is from the late pre-swing to the end swing phase (55–100%GC). Partial
quadricep-activated gait phases overlap with the TA at the moments before and after HS.
Different from the GPCs in the HGS assessment model, there were no GPCs selected at
the end of the swing phase, i.e., the second period of TA activity, in the balance ability
assessment model, which may suggest that the power needed for knee extension contributes
less to balance ability. In contrast, similar to the balance ability assessment model, the HGS
estimation model also has GPCs in the early stance phase (the first period of TA activity).
In this period, the quadriceps control the lower limb to prevent excessive knee flexion, and
at the same time, the TA contributes to decelerating the passive plantarflexion and foot
pronation to make the posture more stable [69]. A previous study discovered that HGS was
significantly correlated with the outcome of FRT in the older Asian population [75]. We
also found that the HGS was significantly correlated with the outcome of FRT in our study
(male: r = 0.456, p = 0.017; female: r = 0.390, p = 0.020). We think that the correlation may be
related to the common parts of GPCs in both models during the early stance phase right
after HS.
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Figure 15. Gait motion of early and late initial swing phase. Spring mark means rectus femoris. Red
lines mean segments of lower limbs. Gray dashed line means original position of each segment. Red
circles mean approximate position of knee and ankle joints. Orange dashed line means central line of
body. Black bold point means approximate position of hip joint. Blue arrow means rotational motion
direction, which increases angular velocity in dorsiflexion direction on IMS. Yellow arrow means
rotational motion direction, which decreases angular velocity in dorsiflexion direction on IMS. Green
line arrow means direction of gravity, and green dashed arrow means projection of gravity vector in
direction perpendicular to segment of lower leg.

4.3. Results Regarding Model Test and Designed Frailty Risk Score

The agreement between reference data and IMS-estimated data for PHGS only reached
a “poor” level due to the estimated HGSs of one male and two female subjects that de-
viated from the reference values (Figure 10a, marked with three dashed black circles). It
appears that IMS did not estimate the HGS of these three subjects accurately compared
to the hydraulic hand dynamometer which is considered as the gold standard. However,
the reference HGS only reflected the static systemic muscle strength of the upper limb.
Figure 11a indicates that there was no significant correlation between the reference HGS
and the expert-rated score, while Figure 12a suggests that IMS-estimated HGS was sig-
nificantly correlated with the expert-rated score. Furthermore, compared to the results in
Figures 11c and 12c, our designed frailty risk score using IMS-estimated values agreed
more with the clinical experts. These results may be due to the fact that our model focused
on gait performance and reflected dynamic muscle conditions via the lower limbs. More-
over, experienced clinicians and physiotherapists tend to rely on information extracted
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from gait observation for making their decisions in clinical practice. The ICC(2, k) of the
HGS between reference and IMS-estimated values reached 0.886 and 0.902 for males and
females, respectively, indicating that the average value of the dynamometer and IMS-
estimated HGS can be used in clinical practice to better approach subjects’ systemic muscle
strength reality.

Our designed frailty risk score was significantly correlated with the expert-rated score
(r = −0.676, p < 0.001), indicating the reliability of frailty risk assessment using IMS and our
designed frailty risk score. Additionally, significant differences were found in the designed
frailty risk score between subjects in the group with a J-CHS score of 0 and those with a
score of 1 to 2, further supporting the use of our proposed method for frailty assessment.

4.4. Outlook for this Technology

As a feasibility study, we temporarily recorded foot motion data in the onboard
memory of IMSs during the experiments and transferred the data to a personal computer
after the gait measurements were completed. However, in daily use, a real-time algorithm
for frailty assessment is necessary. In our previous studies, we proposed an online algorithm
for estimating stride parameters for daily gait analysis using an IMS [29], as well as
an algorithm for integrating the process of IMS predictor construction into the online
algorithm [44]. By using the same algorithms, we believe that daily frailty assessment can
be performed using an IMS.

In this study, we did not diagnose whether the subjects were frail or not, as all recruited
subjects were able to come to the laboratory using public transportation. Therefore, we
assumed that they were in generally good health. The characteristics of the subjects can
be observed from their J-CHS scores, but the frailty risk score does not directly represent
the probability of an individual being diagnosed as frail. Instead, it reflects the relative
degree of frailty in the population. To obtain more evidence supporting our frailty risk
score, future longitudinal cohort studies should be conducted to track the frailty of subjects.
Additionally, an epidemiological study regarding the frailty risk score is needed to improve
its interpretability in connection with the real probability of being diagnosed as frail.

To improve the HGS estimation model’s precision, future studies should focus on
increasing the sample size. To improve the agreement of the frailty risk score with experts’
diagnostic reasoning, IMS estimation should include three additional items in the J-CHS
criteria: activity level, fatigue, and weight loss. Gokalgandhi et al. [28] suggested that
daily activity and calorie consumption could be monitored by smart shoes. However,
an estimation method via IMSs for the other two items is still lacking. In their study,
Luo et al. [76] proposed a pilot method for assessing fatigue via wearable sensors that
utilized vital signs such as heart rate, blood pressure, skin temperature, and steps, but did
not include other GPs. Previous kinematic studies [77,78] have shown that fatigue and
weight loss can impact kinematic patterns. Therefore, assessing fatigue and weight loss
using IMSs alone is promising but requires further investigation in the future.

5. Conclusions

In this study, we demonstrated the potential for long-term frailty assessment using
IMSs, which required two key tasks. The first task was to accurately measure gait speed
using IMSs and construct an HGS estimation model via foot motion. The second task was to
create a frailty risk score that can continuously assess frailty and validate its effectiveness.

For the first task, we confirmed that IMSs can measure gait speed with high accuracy,
with an ICC agreement with reference data of over 0.97. By analyzing the correlation
between HGS and foot motion waveforms using SPM-LOSO-LASSO, we discovered novel
GPs and IMS predictors for HGS estimation. Specifically, we found that male subjects had
more GPC components inside the %GCs for which only the RF was activated, while female
subjects had more GPC components inside the %GCs for which both the VAs and RF were
activated. We successfully constructed sex-dependent HGS estimation models, both of
which achieved “excellent” ICC agreement, MAEs below 2.9 kg, and large effect sizes (R2
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over 0.77). By testing the model on a separate sample of subjects, we found that 48.0–100%
of males and 89.1–100% of females were within the agreement interval, indicating the
robustness of our model for other older individuals.

For the second task, we successfully designed a novel analog frailty risk score by
combining the HGS performance and gait speed performance of the subjects aiding by the
normal distribution of HGS and gait speed of the Asian older population. This score had
a large effect size correlation with the expert-rated score, demonstrating its validity and
agreement with clinical experts’ diagnostic reasoning.

In the future, an epidemiological study is needed to improve the interpretability of
the frailty risk score in connection with the real probability of being diagnosed with frailty.
Furthermore, to better align with clinical experts’ diagnostic reasoning, an IMS assessment
of three other items related to activity, weight loss, and fatigue is needed.
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Appendix A

The acronyms and symbols used in this manuscript are listed in Table A1.

Table A1. The acronyms and symbols used in the manuscript.

Symbol Description Symbol Description

%GC Percentage gait cycle LR Loading response
AWGS Asian Working Group on Sarcopenia LULoA Lower limit of ULoA

Ax The acceleration signal of x-axis M1–M3 Three other patterns of predictor combinations
Ay The acceleration signal of y-axis MAE Mean absolute error
Az The acceleration signal of z-axis MCU Micro-control unit

BA plots Bland–Altman plots Mo The optimal model
BMI Body mass index MSt Mid-stance
CCA Canonical correlation analysis MSw Mid-swing
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Table A1. Cont.

Symbol Description Symbol Description

CHS Cardiovascular health study PeC Pearson’s correlation
Ci The i-th predictor variable Pfr Frailty risk score

EMBC Conference of the IEEE Engineering in Medicine
and Biology Society PGS Designed score of the gait speed performance

Ex The SGA signal of x-axis PHGS_f
Designed score of the HGS

performance of females
Ey The SGA signal of y-axis PHGS_m Designed score of the HGS performance of males
Ez The SGA signal of z-axis PS Pre-swing

FRT Functional reach test Qt Quadricep-activation %GCs
GA Gastrocnemius r Pearson’s coefficient of correlation
GC Gait cycle R2 Adjusted coefficient of determination
GP Gait parameter RA Residual of BA plots for training data

GPC Gait phase cluster RT Residual of BA plots for test data
GS Gait speed RF Rectus femoris
Gx The angular velocity signal of x-axis RFT Random field theory
Gy The angular velocity signal of y-axis RTC Real-time clock
Gz The angular velocity signal of z-axis SGA Sole-to-ground angle

H1–H100 100 candidate models SO Soleus
HGS Hand grip strength SPM Statistical parametric mapping
HGSf HGS of the female subjects SPM{F} F statistic of vector field analysis by SPM-CCA

HGSm HGS of the male subjects SPM{t} Statistic of post hoc scalar trajectory linear
correlation test by SPM-PC

HS Heel strike TA Tibialis anterior
ICC Intraclass correlation coefficient Te The end of %GCs of GPCs
IMS In-shoe motion sensor TO Toe-off
IMU Inertial measurement unit TSt Terminal stance
IPA Individual physical attribute Ts The start of %GCs of GPCs
ISw Initial swing TSw Terminal swing

J-CHS Japanese version of the Cardiovascular
Health Study ULLoA Upper limit of LLoA

KA The success rate of measurements ULoA Upper LoA
KAL Lower limit of KA UULoA Upper limit of ULoA
KAU Upper limit of KA VA Vastus muscle

KS test Kolmogorov–Smirnov test W The waveform of the foot motion signals
LASSO Least absolute shrinkage and selection operator ZGS Z-scores of the gait speed
LLLoA Lower limit of LLoA ZHGS_m Z-scores of the HGS performance of males
LLoA Lower LoA ZHGS_f Z-scores of the HGS performance of females

LoA Limit of agreement β
The set of fitted least-squares

regression coefficients
LOSO Leave-one-subject-out β0 The residual of the linear regression

LOSOCV Leave-one-subject-out cross-validation λ
Non-negative regularization parameter

input to LASSO
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