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Abstract: Wide-range application scenarios, such as industrial, medical, rescue, etc., are in various
demand for human spatial positioning technology. However, the existing MEMS-based sensor
positioning methods have many problems, such as large accuracy errors, poor real-time performance
and a single scene. We focused on improving the accuracy of IMU-based both feet localization
and path tracing, and analyzed three traditional methods. In this paper, a planar spatial human
positioning method based on high-resolution pressure insoles and IMU sensors was improved, and a
real-time position compensation method for walking modes was proposed. To validate the improved
method, we added two high-resolution pressure insoles to our self-developed motion capture system
with a wireless sensor network (WSN) system consisting of 12 IMUs. By multi-sensor data fusion, we
implemented dynamic recognition and automatic matching of compensation values for five walking
modes, with real-time spatial-position calculation of the touchdown foot, enhancing the 3D accuracy
of its practical positioning. Finally, we compared the proposed algorithm with three old methods
by statistical analysis of multiple sets of experimental data. The experimental results show that this
method has higher positioning accuracy in real-time indoor positioning and path-tracking tasks. The
methodology can have more extensive and effective applications in the future.

Keywords: positioning; error compensation; plantar pressure; motion capture; WSN

1. Introduction

High-precision 3D indoor positioning and navigation methods [1] have a strong de-
mand for portability, real-time, high accuracy and stability in scenarios such as the safety
and security of rescue personnel and real-time worker location identification in industrial
scenes. However, with the improvement of social modernization and the complexity of
urban building structures, traditional navigation modes based on radio frequency naviga-
tion are difficult to meet the existing needs. Radio frequency navigation methods rely on
satellite timing positioning or signal reduction algorithms for spatial positioning [2–4]. Tra-
ditional civil frequency satellite positioning methods have poor positioning accuracy, with
an accuracy range of about 2 m. Although RTK or PPK technology based on differential
satellite positioning [5–7] has been applied in recent years, and its accuracy has also been
improved to a centimeter level. For rescue and industrial indoor scenes, satellite signals
cannot be effectively transmitted and received [8], which greatly limits the application
and development of this technology in indoor environments. However, various indoor
navigation technologies based on signal attenuation models, such as positioning based on
WIFI and UWB ultra-bandwidth [9,10], suffer from huge installation costs and relatively
complex usage mode. The use of this type of approach does not allow for high indoor
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positioning accuracy and requires dense pre-set dedicated RF tag nodes, with positioning
accuracy being greatly affected by node density and line-of-sight obstructions.

In the context of the rapid development of MEMS technology [11], especially with
respect to human wearable devices [12], the excellent characteristics of MEMS, such as
miniaturization and low power consumption, make it widely demanded and applied in
medical, industrial modernization, military, sport and other scenarios. Optical motion
capture methods or MEMS sensor motion capture method is commonly used in precise
positioning of the human body [13–15]. However, this positioning method based on special
equipment for remote video acquisition cannot be effectively applied in situations such as
fire-damaged scenes or earthquake rescue in which the space is small and the camera is not
arranged in advance and cannot be possible to get enough good line of sight [16,17]. The
inertial navigation positioning method can effectively avoid the limitation of relying on
external pre-arranged equipment. This method relies on the built-in sensors of the inertial
navigation system to sense the movement and rotation of the object and to obtain the
moving position and trajectory of the three-dimensional space by algorithm [18] integration.
However, the high-precision inertial navigation positioning method requires the use of a
high-precision fiber optic [19] gyroscope or a high-precision accelerometer [20], which is too
large for the human body to wear. Furthermore, the resolution circuit of the high-resolution
accelerometer [21] is relatively complex, so it cannot be used for portable applications in
body-worn devices.

The integrated inertial navigation method using MEMS manufacturing process [22]
has the characteristics of small volume, light weight and simple structure. As a portable
sensor scheme that can be worn on the human body, it is widely used in rescue scenarios
and other applications, for example, a watch accessory or integrated into clothing [23]. As
the precision of the monolithic integration sensor cannot be compared to that of larger light-
based gyroscopes and piezoelectric accelerometers, the data collected by the MEMS sensor
itself alone have a large drift in real-time position obtained by primary and secondary
integration of angular velocity and acceleration due to manufacturing accuracy errors
and low sampling frequency [24,25]. The traditional positioning method based on the
monolithic MEMS sensor often use the zero velocity detection methods (ZUPT) [26], which
relies on fixing the position of human lower limb leg or foot, by detecting the state of zero
relative velocity between the foot and ground, such as the supporting phase of human gait
to reduce the serious position deviation caused by sensor data drift. This method requires
to analyze and preprocess the whole data to obtain the characteristics of the overall drift
of the data, followed by data filtering to finally obtain more accurate positioning data.
Nevertheless, as a replay-based positioning method, it does not allow for good real-time
human location. Another solution is to use the method of whole-body wearable motion
capture [27], which detects the location of the person wearing the device. This method
can realize real-time positioning, but it can only rely on inertial data for landing detection
on the foot. In the implementation of landing detection, the sensor fixed near the foot
or lower limb may appear wrong landing detection, advance detection or lag landing
detection due to occasional small sliding movements [28,29]. Therefore, how to design
a positioning method suitable for the application scene with high accuracy, stability and
real-time requirements is a problem that needs to solve for indoor positioning technology.

This paper focused on improving the positioning accuracy of gait analysis based on
IMUs. By the motion capture system with 12 wireless IMU modules we implemented
before, the real-time position of each foot can be got within 20 ms. We attempted to get
more accurate position for real-time walking simulation, and it gave a try to add two high-
resolution pressure insoles to the system, which could be used in a particular example of
analyzing a footballer’s nifty footwork. The main aims and contributions of this paper are:

• Using high-spatial-resolution plantar-pressure insoles to capture plantar pressure
distribution has improved the accuracy of plantar pressure distribution when the foot
comes in contact with the ground, achieving recognition of five walking modes;
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• Analyzing and comparing three previous IMU landing point capture and path tracking
methods, conducting error analysis and proposing improved methods;

• Implementing a system with a fully wireless, synchronous and real-time transmission
software and hardware architecture, and completing on-site testing of five walk-
ing modes;

• Exploring the possibility of multi-scene adaptation and proposing a method for deter-
mining the position of feet under changing ground conditions.

2. Related Work

The positioning method of relying on IMU can achieve spatial positioning. How to
capture the time and position of touching the ground more accurately is the key to improve
the accuracy of the spatial positioning of inertial motion capture. Common methods for
judging the state of the foot touchdown are the feet ground height comparison method,
foot acceleration jitter judgment and insole pressure threshold judgment. The difference
between these three methods lies in the conditions that trigger the touchdown judgment;
the method for updating the position after triggering the touchdown condition is consistent.
~Vchange is the 3D vector from the touchdown foot pointing (~Pt) to the suspended foot (~Ps).
We defined two bool variables, TDR and TDL, representing the touchdown status of the
right or left foot, respectively. Assuming the right foot touches the ground, the action
vector is given by Equation (1); the action vector for the left foot touchdown is given by
Equation (2). Finally, the location of the current suspended foot is given by Equation (3):

~Vchange = ~VR2L = ~PL − ~PR, i f TDR = 1, (1)

~Vchange = ~VL2R = ~PR − ~PL, i f TDL = 1, (2)

~Ps = ~Pt + ~Vchange, (3)

where ~PR and ~PL are the positions of the right and left foot, respectively.
The problem is how to choose from Equations (1) and (2) to find ~Vchange. In the

following sections, three touchdown judgment methods are compared.

2.1. Judgment by Height of Left and Right Foot—Only IMU

Day to day, the human body, especially in an indoor environment, mostly experiences
flat walking situations. There is a change in the vertical drop when walking, and the
lowest point of both feet is the moment the human foot touches the ground. Hence, we can
judge which foot is touching the ground by comparing the vertical height drops, with the
following Equation (4):

TDR = 1, i f ~PLz > ~PRz,

TDL = 1, i f ~PRz > ~PLz,
(4)

where ~PRz and ~PLz are the z axis positions of the right and left foot, respectively.
The advantage of the both feet level height comparison algorithm is the simplicity

of the judgment, the low consumption of computing resources and the ability to quickly
determine which foot is in contact with the ground. However, there is a greater possibility
of misjudgment, mainly reflected in the following three aspects:

1. The purely flat walking area in the daily state is too idealized to guarantee the
horizontal state at the time of walking;

2. The angle error and error connection caused by the measurement error will lead to
the jumping error between the actual height position of the feet and the calculated
height position, which will lead to the estimation of the height of the feet not being
absolutely accurate;

3. The judgment of height comparison between the feet during walking and the moment
of contact between the foot and the ground do not coincide exactly. During the gait
cycle, only the middle of the support phase is identifiable, as the foot in contact with
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the ground does not produce large slips, while other transition moments produce a
situation where the position of the foot in contact with the ground moves relative to
the ground, so it will lead to incorrect judgments of the time of full contact with the
ground.

2.2. Zero-Speed Detection and Positioning of Foot Jitter Acceleration—Only IMU

According to the law of the data in the gait cycle, the acceleration data of the foot will
be close to the stationary state when the foot is in a state of touching the ground [30,31].
After through filtering and threshold judgment, the triaxial acceleration vectors can obtain
the feet alternately time of quasi stationary state with the ground. As shown in Figure 1,
when the stationary data is 1, it is judged to be the moment when the foot touches the
ground and locks with the ground [32], determined by removing the 3D component of
gravity in the absolute space of the sensor, as shown by Equation (5):

TDR = 1, i f |AR| < Aa,

TDL = 1, i f |AL| < Aa,
(5)

where |AL| is the 3D acceleration value of the left foot, |AR| is the 3D acceleration value
of the right foot, Aa is the modulus length of the threshold foot acceleration for deter-
mining the stationary landing foot and scalars |AR| and |AL| represent the right and left
foot, respectively.

Time/s
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Figure 1. Acceleration and stationary during walking.

The advantage of the foot acceleration locking algorithm is that the state at the moment
of touchdown can be judged more quickly by acceleration and has the characteristic of a
more obvious data cycle. However, in the process of three-dimensional fixed measurement,
if the absolute acceleration analysis is adopted, that is, containing the numerical component
of gravitational acceleration in three axes, the numerical intelligence of the three-axis com-
ponents is not completely consistent with the data thresholds of different fixed positions
and attitudes. If the net three-dimensional acceleration method with gravitational accelera-
tion removed is used to measure the data, it is necessary to calculate the spatial attitude
of the data and eliminate the projection component of gravity, which is computationally
intensive. As the touchdown foot is not completely stable, this method will experience
acceleration jumps on the uneven and partially rugged ground, resulting in an incorrect
moment of touchdown judgment.
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2.3. Judgment by Net Data of Foot Pressure Insoles—IMU + Insole

Generally, the method of using pressure shoes to trigger and determine the contact
point is more accurate than the IMU method. The plantar pressure value is monitored
cyclically, and considered a touchdown state when it exceeds the threshold, as shown in
Equation (6):

TDR = 1, i f MaxPressureR > threshold,

TDL = 1, i f MaxPressureL > threshold,
(6)

Figure 2 shows the phases of the gait cycle starting with the right leg as an example,
which was mainly divided into four support types [33]. In the double support phase, where
both feet are touching the ground, the foot may slide on the ground. Then, in the single
support phase, the right foot touches the ground with no movement. In the third phase
(another double support phase), the left foot begins to touch the ground. In the last phase,
the left foot becomes the single support foot.

Figure 2. The phases of a gait cycle.

Due to the uniformity of the foot morphology, it is common to use the judgment
method of plantar pressure [34] net value for a quick moment-to-moment judgment of
whether there is a touchdown. However, this will cause a large error in the judgment when
the soles of the feet and the ground slide or the ground is relatively rugged and uneven.

3. Materials and Methods
3.1. System Architecture

Twelve IMUs and a pair of insoles with pressure sensors were combined to collect data,
as shown in Figure 3. However, in fact, we utilized seven IMUs marked with dark blue to
calculated the PR and PL, and insoles marked with orange to compensate for theerror. Each
cross symbol represents the location of the IMU, and every pressure insole is placed inside
corresponding shoe. All data needed are transmitted to the PC through WiFi with the UDP
protocol, and then analyzed in the software. The data transfer rate is 50 Hz. By analyzing
the UDP protocol data of wireless sensor, data delay rate is less than 10 ms. All data are
synchronized by timestamp alignment in multiple sensor data frames in the motion capture
software, and the error of the synchronized acquisition trigger time is controlled within
20 ms. The synchronized data are processed to form a 3D structure of the human rod
connection and a plantar pressure distribution image of both feet in self-developed gait
analysis software. This complete WSN system [35] can collect and analyze data during
human walking, identify the contact points of the foot and compare the actual walking
path with the reconstructed path data.
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The posture measurement system used in this work was self-designed, which is called
TRACKINGTM and typed as CRE-CC02, with 0.81° absolute angle accuracy tested by
the third-party institution CHANGCHENG INSTITUTE OF METROLOGY & MEASURE-
MENT. It is a nine-axis IMU with three axes, i.e., accelerometer (range: ±16 g), gyroscope
(range: ±2000◦/s) and magnetometer, available for multi-dimensional data fusion and
posture recognition relative to the ground coordinate. As shown in Figure 4, IMU can be
connected to the main chip (an MCU supporting wireless communication at the center of
Figure 4d) by the IIC bus in two ways. One way is to integrate the chip onto the board, as
shown in Figure 4e. Another way is to connect the module to the board through wires (see
Figure 4a,d,f). There are four combinations available depending on the way and location,
and we can choose from them according to actual needs. The product is powered by a
lithium-ion rechargeable battery (see Figure 4b). The appearance packaged in a shell (see
Figure 4c) and coordinate system definition is shown in Figure 4g,h. IMU’s data, including
quaternions, three axes of acceleration and three axes of angular velocity, are sent to the PC
at each sampling period. The size of the module in Figure 4g is 37 mm × 37 mm × 14 mm,
while the size of the module in Figure 4h is 25 mm × 10 mm × 4.5 mm.

5 & 7 

IMUs

2 Insoles 

PC

Wifi router

Error calibration against 

5 walking modes

Comparison with 3 

methods

Walking modes recognition 

& Error compensation

Positioning error analysis 

Figure 3. The architecture of the WSN system and the framework of this paper.

IMU2

IMU1

Figure 4. Structure of the IMU and its coordinate system.

While traditional plantar pressure insoles use eight or fewer pressure sensors, we
chose a high-resolution pressure insole (RPPS-99, LEGACT Technology Co., Ltd, Shenzhen,
China) with 99 points (measuring range: 0.1–10 kg, durability: 1 million times) for plantar-
pressure-data acquisition and analysis, as shown in Figure 5. Each insole is equipped with
an ESP32 Arduino to collect the AD value and send data to a PC by using WiFi. The figure
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also shows the distribution of plantar-pressure sensors and shoes used for experiments.
Due to the fact that insoles are not self-designed, the first step before the experiment is to
calibrate insoles using a pressure gauge (WDF-500, Wei Du Electronics Co., Ltd, Wenzhou,
China) with a measurement of 500 N and accuracy of ±1%. As shown in Figure 6a, the
pressure gauge is pressurized to the insole’s sense point by rotating the screw at the top
end. Then, 14 bit of AD voltage of the single point sampled by 50 Hz is printed in real
time through a serial port. The collected measurement values corresponding to pressure
values of 0–200 is calibrated using the MATLAB curve fitting tool, as shown in Figure 6b.
The result shows that the mathematical relationship between the pressure value and the
AD value of the insole is a cubic polynomial. After completing the calibration, multiple
plantar pressure data can be collected. In our experiments, the point at which the pressure
is greater than the threshold (5N) will have its value recorded, with an acquisition range of
5–200 N.

(a) (b) (c)

Figure 5. Structure of shoes and insoles for experiments. (a) Shoes; (b) Pressure insole; (c) Arduino
MCU.

a b

Figure 6. Insoles’ pressure numerical calibration. (a) Pressure calibration; (b) Fitted pressure curve.
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3.2. Error Analysis of the Foot Touchdown Position

3.2.1. Error in ~Pchange

Each of the above three methods (see Section 2) has its own advantages and disadvan-
tages, but none of them have been able to solve existing principal errors. In Figure 7, it is
assumed that both feet move along the desired straight line from left to right (right arrow
dotted line), and in fact, that the landing point is fitted as a spline curve (solid line with ar-
row), with a solid circle representing the landing point (~Pt) and a hollow circle representing
the position of one foot in the air ~Ps when another triggers a touchdown. The vector ~Vchange
is the change from a foot during touchdown and suspension (see Equation (3)). In theory,
the real action vector connects two adjacent landing points (i.e., ~Pchange), while ~Vchange leads
to errors in analyzing the touchdown to suspended foot position.

𝑉𝑐ℎ𝑎𝑛𝑔𝑒

Touchdown

Right foot

Suspended

Left foot

Error

𝑃𝑐ℎ𝑎𝑛𝑔𝑒

Figure 7. Principal error analysis of the algorithm.

3.2.2. Error in ~PR, ~PL

For real-time path tracking in gait analysis, we expected to capture more accurate land-
ing points. A three-dimensional real-time pose model of human bones [36] is constructed
in gait analysis using spatial pose equations. Here, the additional five IMU modules were
not considered. Each position and posture information of lower limbs can obtained with
link-frame assignment [37], as shown in Figure 8, relying on data of seven IMUs (one at
the waist and six at the lower limbs, see Figure 3). Here, O0 represents hip joint, O1.x and
O2.x represent the centers of articulation (knee and ankle joints) and O3.x represent the
end of feet. Among them, two purple marker points (O3.x) represent the foot position (i.e.,
~PR, ~PL), which is from the transformation matrix, as shown in Equation (7) within the
motion capture system:

0
3R = 0

1R
1
2R2

3R, (7)

where ~PR/~PL is from the last column of a matrix 0
3R, which represents O3.x relative to O0,

and x refers to both legs.
Since the wrapping between the shoe and the foot is a loosely fixed relationship, the

position of the foot relative to the shoe is not fixed during walking. As shown in Figure 9,
P1 to P3 is the leftmost position of the foot in the shoe, P2 to P4 is the rightmost position,
P5 to P7 is the foremost position and P6 to P8 is the rearmost position. The movement
of the feet relative to the calves (in Figure 8, O3.x is relative to O2.x, and x refers to both
legs) only involves rotation, without a translation motion; the IMU fixed on the shoe has a
displacement relative to the foot during walking, which leads to errors in calculating ~PR, ~PL
by a kinematic transformation matrix.
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O1.2O1.1

O2.1

O2.2

O3.2O3.1

O0

Figure 8. Link-frame assignment of the whole body. The first three pictures axes of IMUs at their
positions, while the last two pictures are the simplified joint coordinate system.

P1 P2 P3 P4 P5 P6 P7 P8

Figure 9. Possible relative positions of a foot in a shoe during walking.

3.3. Proposed Improvement—IMU + Insole

In order to improve the accuracy of real-time path tracing in gait analysis, considering
errors in ~PR, ~PL and ~Pchange, this paper improves the threshold judgment method of insole
pressure (see Section 2.3).

By using pressure insoles with high spatial resolution, we can more accurately locate
the force point of the foot, as shown in Figure 10. Obviously, there are different force points
when we walk on different paths, such as going straight, turning, etc. The walking mode
can be realized through the position relationship of the maximum pressure point on the
front and back soles of both feet during walking.

After analyzing the plantar-pressure points in the process of walking, we carried out
more fine-error-position compensation. We have defined five walking modes: straight
forward walking, small angle left turn, small angle right turn, large angle left turn and
large angle right turn, as shown in Figure 11. The small turning radius is 2 m, and the large
turning radius is 4 m. In the path tracking process, not only should the touchdown trigger
be identified, but also the walking mode. According to the real-time recognized walking
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mode, we compensate for the error of each step to achieve higher positioning accuracy, as
shown in Equation (8). The flow of the real-time compensation algorithm realized with the
software is shown in Figure 12.

~Ps = ~Pt + ~Vchange + εP, (8)

where εP is the compensation value, which depends on the recognized walking mode.

1 2 3

4 5 6

7 8 9

File

Play

P

S FW BW REC DISP

File

Play

P

S FW BW REC DISP

File

Play

P

S FW BW REC DISP

File

Play

P

S FW BW REC DISP

File

Play

P

S FW BW REC DISP

File

Play

P

S FW BW REC DISP

File

Play

P

S FW BW REC DISP

File

Play

P

S FW BW REC DISP

File

Play

P

S FW BW REC DISP

Figure 10. Plantar pressure (2 × 99 points) analysis during walking. Steps 1–9 represent the plantar
pressure distribution during a gait cycle. Button abbreviation: P(Pause), S(Stop), FW(Forward),
BW(Backward), REC(Record), DISP(Display).

1

2

3

4

5

Figure 11. Five walking modes for error compensation. 1. Left turn with r = 4 m; 2. Left turn with
r = 2 m; 3. Go straight; 4. Right turn with r = 2 m; 5. Right turn with r = 4 m. The black dots represent
the straight line gait.

7 IMUs PL , PR

2 Insoles Walking mode 𝜀P

Vchange

Pn+1

Pn

To be improved

Figure 12. Flow of the touchdown position calculation with compensation.
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The rules table for walking modes recognition and compensation values corresponding
to the five modes were obtained with the experiments. All three participants had normal
arched feet. Each person walked 50 steps at a time and repeated this three times along
each path, for a total of 45 trials. We firstly marked a series of points on the path, with a
jagged distribution of an average of 0.5–0.6 m intervals, as shown with the black points
in Figure 11. Other paths are similar. Participants were asked to step on the marker point
for each foot landing. By comparing the measured values ~PL, ~PR with the actual value of
the corresponding marked point, we were able to obtain the error compensation values
for both feet in each walking mode. Finally, we took the average error of nine trials as the
compensation values for each mode, as shown in Table 1.

Table 1. Compensation values.

εP/mm Left Foot Right Foot
Direction Left Turn Forward Right Turn Left Turn Forward Right Turn

Axis x y x y x y x y x y x y

Going straight – 0.34 0.55 – – −0.23 0.62 –
Turning r = 4 m 0.19 0.27 – −0.94 −0.52 0.97 −0.48 – −0.16 0.24
Turning r = 2 m 0.35 0.97 −1.28 −1.73 1.25 −1.8 −0.34 1.02

Furthermore, we established the coordinate position of the high-resolution pressure
insole, as shown in Figure 13. By comparing the foot pressure distribution characteristics
under five walking modes, areas with obvious recognition were identified. PF1 and PF2
positions were selected latitudinally, and PL1, PL2, PL3, PR1 and PR2 longitudinally. The
fourteen pressure sensing points covered are the key data for determining the walking
mode. The discriminant criteria are summarized in Table 2 after the experiments. BW is
the body weight of the human body. When the Step detected is less than the threshold
Lw (15 cm here, because it can filter out the situation of walk dragging along the ground),
and the total pressure at the relevant positions exceeds 0.7 times the body weight, it can
be considered to be in a stationary standing state. FL represents the left foot pressure, FR
represents the right foot pressure and the subscripts correspond to the pressure area in
Figure 13. For example, FLPR1 > th means that when the pressure value in the PR1 area of
the left foot is greater than the threshold, it is determined that the left foot is in a 4 m radius
right turn mode. Based on Table 1, the compensation value [x, y] is equal to [−0.94, −0.52].
∑ FLPRi is the sum of FLPR1 and FLPR2. ‘&’ means logical ‘and’; ‘|’ means logical ‘or’. th is
the pressure threshold for triggering judgment.
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Figure 13. Coordinate position of the pressure insoles and possible position of max force point under
when standing still (Red: high pressure; Blue: low pressure; white: no pressure). The number 1–99
represent the position of each sensor in a insole.
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Table 2. Walking modes’ discriminant criteria.

Trigger Condition Standing Still Going Straight Turing r = 4 m Turing r = 2 m

Left
Foot

Turn Left
–

FLPR1 > th FLPR2 > th

Turn Right (FLPL2 | FLPL3) > th FLPL1 > th

Both Forward
Step < Lw (15 cm) &
(∑ FLPRi + ∑ FRPRi)

> 0.7 ∗ BW

Step > Lw (15 cm) &
(No others trigger) &
(FLPF1 + FRPF1−

FLPF2 − FRPF2) > th

–

Right
Foot

Turn Left
–

(FRPL2 | FRPL3) > th FRPL1 > th

Turn Right FRPR1 > th FRPR2 > th

3.4. Comparison Experiments

To verify that the improved compensation algorithm is more accurate than the previous
three methods (see Section 2), we designed repeated experiments of walking on a flat
ground. In the experiment, we asked each subject to wear wireless IMUs and wireless
plantar pressure insoles and walk counterclockwise from point A along a straight line
to points B, C and D, and finally back to point A. Figure 14a shows a top view of the
experimental site, where the checkerboard grid represents the dimensions of the floor tiles,
each measuring 400 mm × 400 mm, with AB and CD measuring 7 × 400 mm and BC
and DA measuring 10 × 400 mm. We collected the motion capture and plantar pressure
synchronization data from four healthy representative subjects (see Table 3) of different
body shapes, 10 times/person, for a total 40 trials.

(a) (b)

Trial 1

Trial 2

Trial 3

Figure 14. Data collection and path tracking in the walking experiments. (a) Walking experiments;
(b) Real-time positioning and track record.

Table 3. The information of the subjects.

Gender Height/cm Weight/kg Shoe Size/mm

1 female 172 63 245
2 male 168 52.5 255
3 female 160 50 235
4 male 183 81 270
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During each experiment, the data of all IMUs and insoles are synchronously collected
by the computer, and the real-time virtual motion capture of IMU can be seen with the gait
analysis software, as shown in Figure 14b. After all the experiments were completed, we
used four methods to reconstruct the walking path (see right side in Figure 14). Finally,
we compared the deviation between the walking paths fitted by the four methods and the
preset test rectangular path.

4. Results

For the convenience of description, we have agreed on the identification of four
methods as follows:

Method I: Judgment by height of both feet;
Method II: Zero-speed detection;
Method III: Net data of plantar pressure;
Method IV: Improved compensation algorithm.

After using these four methods to process data and reconstruct paths separately, we
obtained position values of the four marked points A, B, C and D. It should be noted that
point A data represent the value when walking back to the starting point. In Figure 15,
where blue, green, cyan and red correspond to the data points results of the above four
methods, Figure 15a shows the absolute positions at each point, and Figure 15b shows
the net bias of all points after subtracting the absolute positional deviation. Method IV
outperforms the other methods in terms of absolute value response and net deviation in
both mean position and dispersion. Figure 16 shows the mean and net deviation results in
the x-direction and y-direction at points A, B, C and D (four boxes from left to right in each
subblock) with the four methods. Both figures show that the fourth set of data outperforms
the previous sets in terms of mean, median and deviation values.

Method IV Method III Method II Method I

AB

C D

y
/m

y
/m

x/m x/m

(a) (b)
0.5

0

-0.5

-1

-1.5

-2.5

-3

-3.5

-4

-4.5
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3
0 0.05 0.1 0.15 0.2-0.05

-2

Figure 15. (a) Absolute positions of the four methods; (b) The net deviations of all points.
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By comparing the mean, median standard deviation and variance of the four points
under different methods, as shown in Table 4, we found that Method IV has the lowest
mean/median bias and variance at each point. This result indicates that the values obtained
by the fourth method are closer to the target point than the previous three methods.

31 2 4 5 6 7 8 9 10 11 12 13 14 15 16

B
ia

s/
m

m

0.2

0.15

0.1

0.05

0

-0.05

0.2

0.15

0.1

0.05

0

-0.05

31 2 4 5 6 7 8 9 10 11 12 13 14 15 16

I                II              III            IV I                II              III            IV

Bias of X-axis Bias of Y-axis

B
ia

s/
m

m

Figure 16. Comparison of the position bias by four methods in the X, Y direction.

Table 4. Mean, median, standard deviation and variance of the four methods at the four points.

Point No. &
Method No.

Mean Value Median Standard Deviation Variance

X/mm Y/mm X/mm Y/mm X/mm Y/mm X/mm2 Y/mm2

A

I 0.1556 −0.1141 0.1569 −0.1134 0.0298 0.0225 0.0009 0.0005
II −0.0267 −0.1606 −0.0286 −0.1579 0.0154 0.0322 0.0002 0.001
III 0.0073 −0.1733 0.009 −0.1717 0.0149 0.0373 0.0002 0.0014
IV −0.0063 −0.0289 −0.008 −0.0289 0.0152 0.0162 0.0002 0.0003

B

I 0.1226 0.0865 0.1247 0.0872 0.0317 0.0283 0.001 0.0008
II 0.068 0.034 0.0709 0.029 0.0234 0.0212 0.0005 0.0004
III 0.0844 0.0461 0.0824 0.0452 0.0255 0.0202 0.0007 0.0004
IV 0.017 −0.0208 0.0152 −0.0204 0.0202 0.0198 0.0004 0.0004

C

I 0.0478 0.2299 0.0483 0.2207 0.0287 0.039 0.0008 0.0015
II 0.0071 0.043 0.0077 0.0379 0.0259 0.0333 0.0007 0.0011
III 0.0259 0.1708 0.0273 0.1704 0.0286 0.0415 0.0008 0.0017
IV 0.0029 0.015 0.0007 0.0217 0.0283 0.0309 0.0008 0.001

D

I 0.0103 0.1145 0.0048 0.1132 0.0216 0.031 0.0005 0.001
II −0.0197 0.0274 −0.0166 0.0286 0.0203 0.019 0.0004 0.0004
III −0.0181 0.0846 −0.0178 0.0825 0.0177 0.0247 0.0003 0.0006
IV −0.0044 0.01 −0.0007 0.0075 0.0176 0.0178 0.0003 0.0003

The original data of A, B, C and D obtained by the four methods were statistically
analyzed, and the data of central tendency and dispersion degree of each group of data
were obtained, as shown in Table 4. Comparing the mean and median values obtained by
the four methods at points A, B, C and D, we can see that the mean and median values
obtained by the second method are smaller than those obtained by the first method, the
mean and median values obtained by the third method are smaller than those obtained by
the second method and the mean and median values of X and Y obtained by the fourth
method are closer to 0 compared to those obtained by the first three methods. This indicates
that the values obtained by the fourth method are closer to the target point than the first
three methods.
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5. Discussion and Conclusions

By comparing the standard deviation and variance values obtained by the four meth-
ods at four points A, B, C and D, it can be found that the standard deviation and variance
values of X and Y obtained by the second method are less than those of the first method, the
values obtained by the third method is less than that of the second method and the values
obtained by the fourth method are the least. The results show that the fourth method has a
lower degree of data dispersion, shown by the statistical results in the scatter diagram, see
Figure 15.

In our research, we proposed a improved feet positioning compensation method,
using a practical multi-sensor data acquisition and analysis system. By sensing the walking
mode through high-spatial-resolution plantar pressure, the system automatically matches
the compensation values obtained from the experiments. Compared to other methods, it
has higher accuracy to recognize touchdown and trace path in gait analysis. In a sense,
this is a compensation method based on statistical error [38], so it can achieve even better
results under test conditions within the preset mode range. It was reported that none of
17 proposed algorithms can be generally preferred over the others in gait event detection
from IMU measurements, taking the IMU position, target variable and computational
approach into account [39]. Our method, error compensation against waking modes, is
generally applicable to those algorithms for improving positioning accuracy.

This paper only tested the four methods under situation of walking on a flat ground.
As a next step, we will also carry out experiments on human–object hybrid recognition [40]
for indoor staircase scenes, corridor scenes, slope scenes, door scenes, etc. When the
amount of data for various walking modes is large enough, we will use machine learning
and deep learning algorithms to achieve end-to-end automated walking mode recognition
and position compensation systems.

When using IMU and pressure insoles for tracking and positioning, there are several
limitations that affect the accuracy limit:

1. Fixed bias and motion shift of sensors: the solution to this is to fix the module tightly
to the skeletal position of the body limbs and avoid fixing it to unstable muscle parts.

2. Interference of magnetic field disturbance to IMU: it is suggested to avoid using this
method in areas with strong magnetic fields and to keep it away from magnetic fields
in the process of preservation.

3. Partial bending of insoles: the solution to this is to use the fourth method to support
the process of phase.

4. Sliding of insoles in shoes; tying the shoelace tightly may be better.

The first two factors affect all four methods, while the latter two factors are only related
to Method III and IV. That is to say, the method we propose is related to all four factors.
These errors can be minimized as much as possible, though they cannot be completely
eliminated, by improving the experimental design, equipment, environment, etc.

The high-precision wearable positioning method can break through the limitations
of indoor positioning that only relies on the single technology of RF, can be used in
a scene without an RF layout and with a low RF signal and does not require higher
positioning accuracy. The method in this paper improves the real-time positioning accuracy
of wearable systems, which has a positive significance for related fields, such as gait analysis,
wearable device applications, etc. Compared with the external positioning reference
systems, wearable active positioning solution can rely on its own actual position and
dynamic real-time offset to achieve real-time positioning. It will provide positioning
support to rescue operations, in scenarios where external infrastructure is damaged, due to
fires, earthquakes, etc.

In this paper, a positioning method based on IMU and pressure insole for path tracing
was improved. We collected real-time data of whole-body movement and plantar pressure
distribution. After repeated experiments and statistical analysis, the results show that this
method has a higher accuracy than the previous three methods. Our system, implemented
based on the improved method, can achieve real-time (within 20 ms) and high-precision
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(within a 0.05 mm standard deviation) indoor positioning and path tracing. This study has
certain practical significance.
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