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Abstract: The von Neumann architecture with separate memory and processing presents a serious
challenge in terms of device integration, power consumption, and real-time information processing.
Inspired by the human brain that has highly parallel computing and adaptive learning capabilities,
memtransistors are proposed to be developed in order to meet the requirement of artificial intelligence,
which can continuously sense the objects, store and process the complex signal, and demonstrate an
“all-in-one” low power array. The channel materials of memtransistors include a range of materials,
such as two-dimensional (2D) materials, graphene, black phosphorus (BP), carbon nanotubes (CNT),
and indium gallium zinc oxide (IGZO). Ferroelectric materials such as P(VDF-TrFE), chalcogenide
(PZT), HfxZr1−xO2(HZO), In2Se3, and the electrolyte ion are used as the gate dielectric to mediate
artificial synapses. In this review, emergent technology using memtransistors with different materials,
diverse device fabrications to improve the integrated storage, and the calculation performance are
demonstrated. The different neuromorphic behaviors and the corresponding mechanisms in various
materials including organic materials and semiconductor materials are analyzed. Finally, the current
challenges and future perspectives for the development of memtransistors in neuromorphic system
applications are presented.
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1. Introduction

With the rapid development of information technologies such as the Internet of Things
and artificial intelligence (AI) technologies, it is challenging for conventional von Neu-
mann computing architecture hardware to satisfy the requirements of modern applications.
Emerging hardware-based neuromorphic computing structures with a high operating
speed, low-power operation, and minimal size-volume devices must be explored in terms
of the various materials capable of simulating the brain’s functions. These structures are
inspired by the human brain’s highly parallel computing and adaptive learning capa-
bilities [1–3]. In 1971, Cai hypothesized that, in addition to resistance, capacitance, and
inductance, there should be a fourth fundamental element in nature: the memristor, which
depicts the interaction between the magnetic flux and the charge via the element [4]. The
element resistance varies based on the charge that has previously flowed through it. In 2008,
Hewlett-Packard was the first company to develop nano memristors; the scientific commu-
nity has since witnessed an increasing wave of memristor research and development [5].
The memristor is one of the most efficient techniques to implement in nonvolatile memory,
which is advantageous for enhancing circuit integration. Memristors are regarded as the
best approach to implementing large-scale artificial neural networks due to their unique
nonlinear characteristics [6–9]. Traditional two-terminal memristor devices, however, lack
extra bias ports for controlling the conductivity response of the devices, so in the cross
array, a selection device (such as a selection transistor and memristor switch) is required
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to program a single node, which makes the circuit integration process more complex and
limits the integration density. In this instance, the emergence of a memtransistor with an
adjustable gate presents scientists with a novel concept. Memtransistors are three-terminal
devices with channel material stacks, the channel conductance is modulated by the gate, in
which the gate metals are regarded as the bottom electrode (BE) and the top electrode (TE),
and the channel resistance changes with the gate voltages [10,11]. In a single memtran-
sistor, it combines the memory resistance properties of the memristor with the switching
characteristics. By controlling the third end, it is possible to achieve continuous control
over the increase and decrease in the device’s conductance. Through the selection of the
component’s channel material, the component’s leakage current can be reduced to a lower
level. This not only improves the accuracy of integrated circuits, but also satisfies the
requirements of circuit integration, and has a promising future application in terms of
low power consumption and high AI computing level [12–14]. Emerging memtransistors
are used to realize an effective emulation of a neuromorphic system in hardware terms.
The device has various advantages, such as non-volatility, a simple structure, low power,
and miniaturization. In recent years, neuromorphic computing technologies with resistive
switching mechanisms have been investigated, and the different materials and various
device fabrications have been explored [15–18].

A variety of emerging devices have been proposed in order to realize neuromorphic
behaviors. Resistive random-access memory (RRAM) [19–21], phase-change random access
memory (PCRAM) [22], and magnetic random-access memory (MRAM) [23] have been
adapted by researchers. In recent years, emerging memtransistors have been considered
a promising technology, an alternative technical route in the future of neuromorphic
computing systems. The memtransistor combines memory and processing into one single
device that is similar to the biological synapse. As we know, the synapse has an important
role in the behavior of learning and memory; according to estimates, the human brain
contains 1011 neurons and 1015 synapses, of which synapses are crucial components of the
nervous system and connect neurons; simulating synapses with a single component is an
efficient way to create a new computing architecture that functions like the brain [24–27].
Presynaptic membranes, postsynaptic membranes, and synaptic gaps make up biological
synapses. By stimulating them with appropriate action potential, it is possible to regulate
the release of relevant neurotransmitters, leading to phenomena such as postsynaptic
excitation and postsynaptic inhibition [28–32]. Additionally, the precise modulation of the
synapse weight (the strength of the synaptic connections) by presynaptic/postsynaptic
action potentials is referred to as synaptic plasticity. Therefore, the memtransistor should
demonstrate the weight modulation (conductance) performance, and it is essential that the
device exhibits biological behavior, which confirms the memtransistor can be used in the
neuromorphic computing application [32–38].

In this review, different channel materials such as 2D materials, graphene, BP, carbon
nanotubes (CNT) and indium gallium zinc oxide (IGZO) are discussed. At the same time,
ferroelectric materials such as poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)),
chalcogenide (Pb (Zr,Ti) O3), HfxZr1-xO2(HZO), In2Se3, and the electrolyte ion-gate are
also demonstrated. Various emerging engineering device fabrications are investigated
to improve the device capabilities in in-memory-computing hardware for neuromorphic
system applications [39–42]. We focus on different materials, different device fabrications,
and different electrical performances regarding the memtransistors. In Section 2, the
resistive switching (RS) mechanisms and properties are discussed. In Section 3, the 2D-
materials-based memtransistor constructed for the neuromorphic system is presented. In
Section 4, the ferroelectric field-effect transistors are demonstrated, including the inorganic
ferroelectric gate, organic ferroelectric materials, and the 2D ferroelectric materials gate.
In Section 5, we focus on the electrolyte ion-gated field-effect transistors. In Sections 6
and 7, the future applications of memtransistors and the current challenges they present
are discussed.
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2. The Resistive Switching (RS) Mechanisms and Properties of Memtransistors

This section discusses the memtransistors based on various modulation principles.
The features of a memtransistor vary based on its structure and its manufacturing. It is
proven that memtransistors share a consensus regarding their essential electrical features.
The characteristics of resistive switching and the conductance modulation processes by
the gate are described. In Section 2.4, the various electrical properties of memtransistors
are exhibited.

2.1. Switching Mechanisms by the Charge Trapping for Stacking 2D Materials Heterostructure Device

The emergence of 2D materials has spurred the development of novel devices, and
heterogeneous structures created by stacking 2D materials with other semiconductor
materials or several 2D materials are often used in neuromorphic devices. However,
memtransistors based on 2D materials are typically susceptible to environmental influences,
as the majority of their memory functions rely on the trapping of carriers by inherent or
created defects at the material interface to modulate the transistor channel. The retention
of the trap state is unpredictable; hence, the charge trapping process typically results in
relatively short retention intervals in the device, while changes in other external factors
may also have a significant effect on the modulation mechanism [43,44].

The mechanism of trap charge capture is under the modulation of the applied electric
field, which adjusts the energy band of the channel, trap layer, and tunneling layer (di-
electric layer), allowing electrons or holes to migrate between different material layers or
through the thinning dielectric layer to reach the trap and be captured by the trap. Because
the energy band is often modified by the initial electric field without the effect of an external
electric field, it is difficult for the trapped carrier to pass the higher potential barrier and
return to its original state, resulting in a degree of nonvolatility. The trapped carriers also
produce an electric field that modifies the polarity of electrons or holes on the opposite
side of the dielectric layer. As depicted in Figure 1, researchers have introduced a floating
gate to optimize the contact and achieve the duality conducting behavior of the transistor;
by applying a negative voltage of a certain magnitude to the additional set of floating
gates, electrons tunnel through the intermediate h-BN layer into the graphene and remain
trapped there, causing holes in the WSe2 contact region on the graphene [45]. Thus, a
smaller hole potential barrier and a larger electron barrier can be simultaneously obtained
at the metal/semiconductor interface, resulting in P-type conductivity in the transistor.
N-type conductivity in the transistor can be achieved by applying a positive pressure of a
certain amplitude via a phase-diverse process.

Figure 1. Principle of formation for a bipolar transistor [45]. Copyright © 2022, Xingxia Sun et al.,
under exclusive license to Springer Nature Limited.
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2.2. Modulation of Ferroelectric Polarization in a Ferroelectric Field Effect Transistor

In comparison to other regulation systems, ferroelectric polarization regulation con-
trols the degree of ferroelectric dielectric polarization by applying a voltage in order to
obtain fine control of channel carriers. Figure 2a depicts a typical ferroelectric hysteresis
line, the polarization intensity of which regularly varies with the applied electric field. The
two parameter values that merit the most attention from researchers are the remaining
polarization value Pr when the electric field is zero, and the electric field value when the
polarization is zero (the coercivity field Ec). The former reveals the macroscopic polariza-
tion state of the ferroelectric body after the removal of the electric field and can indicate the
magnitude of its regulation ability to the outside world, which is an extremely important
indicator in the direction of non-volatile memory; the latter indicates the magnitude of the
modulation force required for the ferrite polarization flip, which must be carried out with
proper consideration in terms of storage and energy efficiency. The working mechanism
of the various types of heterostructure transistors mentioned in the previous section is
mostly based on the control of trap charge capture/release through the external action
of modulating the gate dielectric and channel material barriers to achieve various oper-
ating states of the transistor; compared to ferroelectric regulation, this type of regulation
mechanism is more uncontrollable and it is difficult for researchers to quantify this type
of regulation process in a more subtle way; unlike the various types of ferroelectric-based
devices, as shown in Figure 2a, the polarization intensity can be used to measure the
regulation strength of ferroelectricity on channel carriers, and the regulation strength has
a perfect correspondence with the applied electric field with reference to the hysteresis
line, which is more convenient for researchers to regulate the device working state, even
though this correspondence can be affected by the interface state, depolarization effect, and
internal trap state, but the hysteresis line still gives us a good guide [34,46–50].

Figure 2. Properties of ferroelectric materials. (a) The polarization intensity of ferroelectric materials
shows hysteresis curve when the electric field is scanned back and forth [51]. © IOP Publishing.
Reproduced with permission. All rights reserved. (b) The ferroelectric domains eventually form a
stable, uniformly oriented polarization under the external field [52].



Sensors 2023, 23, 5413 5 of 41

When a ferroelectric material is used as the gate dielectric, the orientation of ferro-
electric domains in the material tends to be consistent under the regulation of the applied
electric field, and finally, a stable ferroelectric polarization field is formed (Figure 2b). In
ferroelectric field effect transistors (FeFET), the N-channel material is used as an example,
the transistor transfer characteristic curve is tested by applying a regulated electric field at
the gate and a reading voltage at the source-drain (Figure 3a). In the process of gradually
increasing the gate voltage, the gate dielectric ferroelectric material is regulated by the
electric field, and a more stable polarization orientation is formed in the ferroelectric layer
during the process (Figure 3b) [53,54], and the shape of the transfer curve is similar to
that of the conventional transistor curve; after the gate voltage is applied to the maximum
value, the gate control voltage is gradually reduced by means of back sweeping. In the back
sweeping process, the transistor transfer curve appears to drift to the left compared with
the forward sweeping process. The size of the hysteresis window reflects the gate control
capability and the potential for neuromorphic calculation. The key for the formation of the
hysteresis window lies in the formation of a stable and effective polarization orientation of
the ferroelectric dielectric during the forward sweep (Figure 3c), which generates a corre-
sponding ferroelectric polarization field, and under the regulation of the polarization field,
the corresponding carriers are induced in the channel, forming a phenomenon similar to
that of depletion transistors, in which the threshold voltage decreases in N-type transistors,
while the amount of threshold voltage change is modulated by the magnitude of the gate
regulation voltage [55].

Figure 3. Using ferroelectric transistors to build artificial synapses. (a) Schematic of ferroelectric
transistor, which has a backgate; (b) The polarization state of the ferroelectric layer is adjusted by
the external electric field to control the channel carrier density [53,54]. Rights managed by AIP
Publishing; (c) Threshold voltage shift under ferroelectric polarization regulation and a hysteresis
in the transfer curve [55]. © 2020 WILEY−VCH Verlag GmbH & Co. KGaA, Weinheim; (d) The
scheme of the pulse on the ferroelectric transistor to simulate LTP/LTD [36,56]. Copyright © 2010,
American Chemical Society; (e) Mechanism of STDP in synapses [57,58]. Copyright © 1998 Society
for Neuroscience. Rights managed by AIP Publishing.

By pre-polarization, the ferroelectric dielectric forms a stable polarization field that
can regulate the channel, and with the non-volatile nature of the ferroelectric material, the
corresponding current value can be observed as a simulation of the PSC process by applying
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a reading voltage to the source-drain. At the same time, in the long-range modulation
process, the repeated application of voltage pulses will enhance the polarization effect in
the ferroelectric dielectric, the regulation ability of the channel will be enhanced, and the
value of PSC will continue to increase or decrease under the same reading voltage; however,
the enhancement of the polarization effect will reach saturation at a certain limit, i.e., the
current value will eventually reach saturation, and will not indefinitely increase with the
number of pulses. Through these properties, the researchers used ferroelectric transistors
to build artificial synapses and modeled some of the basic synaptic biophysics, such as
EPSC, PPF, LTP/LTD, and STDP (Figure 3d,e).

2.3. Non-Volatile Resistive Switching for Electrolyte Ion-Gated Transistors

The electrolyte ion-gated transistor is a recently proposed three-terminal memristor
device with a structure similar to a conventional field effect transistor. Electrolyte ion-gate
transistors use electrolytes as the gate dielectric material, where the electrolyte material
is characterized by being an insulator of electrons and holes, but a good conductor of
ions, such as H+, Li+, etc. The doping of the channel is achieved by applying different
gate voltage regulations to control the electrochemical reaction of the ion migration, thus
changing the concentration of carriers in the channel and causing the channel resistance to
change, which meets the requirements of a continuous, nonvolatile resistive state change
for synaptic devices [59]. The ion dynamics inherent in electrolyte-gated transistors are
complex, but in a general analysis of their operation, ions in the electrolyte can be driven
towards or even into the channel material at an external voltage, resulting in a change in
conductance, and these ion dynamics are very similar to the process of the presynaptic
triggering of synaptic vesicles [60,61].

2.4. Non-Volatile Resistive Switching for Electrolyte Ion-Gated Transistors

Memtransistors operate as a single synapse that displays memory properties, which
emulates the crucial characteristics of the brain in relation to the different materials. The
classic electrical characteristics of memtransistors are demonstrated as follows, and some
examples are shown in Table 1.

Table 1. Some parameters related to artificial synaptic devices that have been reported.

Device Type Structure Channel
Material Voltage Number

of States Ion/Ioff Hysteresis Linearity Power
Consumption Endurance Dynamic

Range Reference

vdw heterostructure
FET

h-
BN/WSe2/Al2O3/BP WSe2/BP 14 V 26 0.99577 >1.5 s [62]

WSe2/BN/Al2O3 WSe2 9 V * >1 s [63]

WSe2/WCL/h-BN WSe2 0.3 V 599 1.4 66 pJ [64]

MoTe2/PdSe2/Si, SiO2 MoTe2 10 V 1 [65]

WSe2/h-BN 20 V 130 1.1 × 106 >1 nJ 4.5 × 104 s [66]

MoS2/PTCDA MoS2 12 V 50 * 10 pJ 14.0 dB [67]

SnSe/BP/POx 20 V 20 ~nJ [68]

Ferroelectric
transistors

Si,
SiO2/TiO2/PZT/MoS2

MoS2 2.9 V 104 >4 V * 104 [69]

Poly-
GeSn/Ta2O5/HfZrOx/TiN GeSn 8 V 80 9.6 dB [70]

HZO/Si Si 3.2 V 32 106 2.5 V 1.73/1.86 104 [71]

HfO2/SiON/Si SiON 3 V >6 0.75 V [72]

SrRuO3/PZT/ZnO ZnO 6 V ~1 >10 years [73]

Al/IGZO/HZO/TiN IGZO 6 V 64 104 3 V 0.8028/0.6979 103 10 dB [74]

Al2O3/WOx/HZO/TiN WOx 3 V 16 4 V * 1500 s [75]

α-In2Se3/HfO2, Si In2Se3 2 V 106 3 V [76]

PVDF, PVP/P(IID-BT) P(IID-BT) 30 V 105 20 V * 75 pJ 104 81 dB [77]
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Table 1. Cont.

Device Type Structure Channel
Material Voltage Number

of States Ion/Ioff Hysteresis Linearity Power
Consumption Endurance Dynamic

Range Reference

Memtransistor (Ion
Transportation,

Electrochemical, etc.)

MoS2/SiO2 MoS2 20 V 256 0.99 17 pJ 104 34.9 dB [78]

CNT/SiOx/Au/SiOx/Pd CNT 8 V 120 50 dB [79]

LiClO4/α-MoO3/
Si, SiO2

α-MoO3 2.5 V 50 1.5 V * 0.16 pJ 1.62 dB [80]

Pt/Si/Li3POxSex/LiCoO3 1.5 V 90 7 × 102 19 dB [81]

WSe2, NiPS3, and
FePSe3/SiO2

WSe2, NiPS3,
and FePSe3

1.2 V 60 * 30 fJ 2.3 dB [82]

WSe2/WO3-X WSe2 4 V 30 * 100 dB [83]

“*” means a good linearity but no specific value given.

2.4.1. Current Switching Ratio

The current switching ratio of a field effect transistor: the comparison of the current
flowing through the channel in the open state of the field effect transistor and the current
size flowing through the channel in the closed state, while the source-drain voltage is
kept constant.

Irate =
Ion

Io f f

2.4.2. Power Consumption Calculation

The energy consumed by the neuromorphic device in a cycle is obtained by integrating
the product of current and voltage over the duration of the pulse over time.

E =

T0∫
Tspike

I × Vspike ∆t

2.4.3. Dynamic Range

The ratio of the maximum and minimum conductance values that a synaptic-like
neuromorphic device can achieve in long-range modulation.

Gmax

Gmin

Usually expressed in dB:

DynamicRange = 20 × lg
Gmax

Gmin

2.4.4. Multilevel Conductances

For ferroelectric transistors: the gate voltage controls the ferroelectric domains flipped
in the ferroelectric film to obtain different residual polarization strengths; i.e., different gate
voltages correspond to different residual polarization strengths. The residual polarization
state regulates the channel conductance state, and since the residual polarization state
determines the threshold voltage of the transistor, so the number of carriers in channel
varies with the residual polarization state, and the drain current is a function of the gate
voltage. In ferroelectric transistors with linear symmetric conductance variations, either
potentiation or depression, correspond to different conductance states by modulating
different residual polarizations [61].

2.4.5. Linearity

The process of synaptic weight increasing or decreasing under different stimulus is
called long-term potentiation and long-term depression effect. In the face of the continuous
change of synaptic weight, the parameter value of linearity is used to measure whether
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the synaptic weight linearly increases or decreases, and whether the weight in the two
processes is symmetrical. Most of the synaptic devices actually manufactured at this stage
rapidly increase at the early stage of enhancement, and the weight of depression rapidly
decreases at the later stage. How to use appropriate formulas to fit this state is an important
issue for researchers to consider. Seo proposed the following formula to fit the LTP/LTD
characteristic curve of the artificial synapse; where Gn represents the conductance value of
the synaptic device at the nth stimulation, Gn+1 represents the conductance value of the
next pulse, Gmax and Gmin represent the maximum and minimum conductance values in
the two process, respectively, and parameter α and parameter β represent the nonlinearity
of the conductivity interval update [71,84,85].

Gn+1 = Gn + ∆Gp = Gn + αpe−βp [(Gn−Gmin/(Gmax−Gmin) ]

Gn+1 = Gn + ∆GD = Gn − αDe−βD [(Gmax−Gn/(Gmax−Gmin) ]

3. Memory Advances with 2D Materials Heterostructure Devices for Constructing
Neuromorphic Systems

Researchers have investigated 2D materials for their potential applications and numer-
ous viewpoints, including optical components, quantum devices, and electronic devices.
In recent years, two-dimensional materials and their heterogeneous architectures have
demonstrated broadband optical response and high optical responsiveness, which are
characterized by rapid switching, multiple data storage, and extensive on/off compar-
isons in memory [13,39]. In addition, the ultra-thin body thickness and low-temperature
transfer enable the non-uniform integration of 2D materials with other material systems.
Emerging electronic product categories, such as portable electronics, biomedical electronics,
three-dimensional storage, and ultra-low power consumption, place a premium on the
scalability of devices. Furthermore, 2D materials have enabled the development of a new
scaling technology for devices. Over the past two decades, scientists have constructed a
variety of heterogeneous structures based on popular two-dimensional materials such as
graphene, molybdenum disulfide, hexagonal boron nitride (h-BN), etc. The advantages of
a high switching ratio and a lengthy retention duration are utilized by the gadgets. These
devices exhibit substantial neuromorphic computing application potential [37]. Due to
charge-trapping carriers in the original or fabricated flaws at the interface that modify
channel resistance, 2D-material-based memtransistors are sensitive to environmental vari-
ables. In memory devices, the charge-trapping technique typically results in relatively
brief retention durations. Neuromorphic devices obtained by combining different types of
2D materials with other semiconductor materials to construct heterogeneous have greater
potential and superior properties, such as light-sensitive range, environmental stability and
responsiveness, non-volatility, data storage capacity, and synaptic properties [85,86].

Synapses are the fundamental elements of human neural networks, and the release
of neurotransmitters in presynaptic neurons regulates synaptic signaling. When neuro-
transmitters diffuse through the synaptic gap and dock with receptors in postsynaptic
neurons, electrical stimulation generates a response in the postsynaptic nerve cell and
triggers a postsynaptic current (PSC), allowing information transfer from presynaptic to
postsynaptic neurons, where conductance (synaptic weight) regulation is referred to as
synaptic plasticity [61]. In recent years, heterostructures have been adopted by researchers
to build artificial synaptic devices. In 2017, Sangwan reported the realization of multi-
terminal memristor transistors by stacking MoS2 on SiO2 in a related compatible process
(Figure 4a). The device exhibits a superior switching ratio, as well as cycling durability
and stability. It also possesses good emulation of learning behaviors, such as LTP/LTD
and STDP in biological synaptic properties (Figure 4b,c). People can operate the device
by combining CMOS transistors with it to select the desired individual state [87]. In 2020,
Cho et al. reported a NbSe2/WSe2/Nb2O5 heterostructure constructed on SiO2/p+Si sub-
strate to simulate a novel neuromorphic synapse, which can provide excellent transistor
switching characteristics with some properties of two-dimensional materials and a good
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bonding mechanism [88]. In 2020, Pan et al. constructed a bipolar field effect transis-
tor combining homogeneous and heterogeneous by stacking multiple layers of WSe2 on
h-BN (Figure 5a). The use of WSe2 as a channel material allowed it to exhibit bipolar
tuning, and using the drain voltage polarity of the device as a control part, reconfigurable
digital logic functions were achieved by programming different combinations of input
signals; at the same time, reconfigurable STDP and pulse-tunable synaptic potentiation
or depression could be achieved with the help of a circuit composed of three devices,
significantly reducing circuit complexity (Figure 5b). It shows great promise for the future
use of this device for implementing reconfigurable multifunctional logic and neuromorphic
systems [89]. In two-dimensional-material-related devices, the migration and redistribution
of ions can cause local bias electric fields at the interface between the two-dimensional
material and electrode contacts, resulting in a reduced dynamic range of conductance
and linearity of the change curve of the device. To address this problem, in 2021, the
ACS-related journal reported the development of neuromorphic electronic synapses with
sulfur anion reservoirs by Song Hao et al. By stacking MoS2 and WO3 layers to form a
heterogeneous structure and acting as an anion storage pool with the help of the WO3
layer, the problems were effectively solved. The prepared device possesses high stimulus
responsiveness and achieves nearly linear conductance changes and up to 130 conductance
states in the long-range regulation, and the artificial neural network built with the device
achieves a 93.2% recognition rate in a dataset [90]. In 2020, Nature Electronic reported
the important results of Lee et al. who successfully achieved doping in two-dimensional
materials. Two-dimensional semiconductors have an atomic-level thickness, which facil-
itates the construction of next-generation electronic devices at the nano level. However,
controlling the conductive polarity of 2D materials by doping is difficult due to the lim-
ited physical space between atomic lattices. Based on a solid-state ion doping approach,
Lee et al. used superionic phase transitions in silver iodide to induce switchable ion doping
and constructed related devices by stacking multilayers of tungsten diselenide (WSe2)
(Figure 6a–c), successfully achieving reconfigurable devices with carrier-type transistors
and diodes with switchable polarity. In addition to this, the integration of ion-modulated
transport with 2D semiconductors is highly likely to facilitate the development of electronic
devices by effectively coupling electron transport with ion transport, resulting in novel
devices that integrate both functions in unconventional computing, information storage,
and advanced solid-state neuromorphic circuits [91].

Figure 4. A memtransistor with a structure of SiO2/MoS2. (a) Schematic diagram of a SiO2/MoS2

memtransistor [87]; (b) Post-synaptic current changes with the +30 V and −30 V pulse number,
showing long-term potentiation and depression. Under the continuous modulation of positive pulse,
the post-synaptic current is enhanced continuously, showing a long-term potentiation effect, which
can be well fitted by the red curve. The process of decreasing post-synaptic current can be well
fitted with green curve under negative pulse voltage modulation [87]; (c) SiO2/MoS2 memtransistor
simulates the spike-timing-dependent plasticity under the +40 V and −40 V pulse number. The
curves in different colors represent the fitting of synaptic weight changes under different modu-
lation modes [87]. Copyright © 2018, Macmillan Publishers Limited, part of Springer Nature. All
rights reserved.



Sensors 2023, 23, 5413 10 of 41

Figure 5. Bipolar field effect transistor with a structure of h-BN/WSe2. (a) Schematic diagram of
h-BN/WSe2 bipolar field effect transistor [89]; (b) Simulation of STDP characteristics by bipolar
FET, which shows two different types of synaptic plasticity learning rules. In the left figure, the
blue curve fits under the condition of increasing synaptic weight, while the red curve fits under
the condition of decreasing synaptic weight, both of which reflect the regulation mechanism of
synaptic weight changing with pulse interval. The different color curves in the right figure also
fit the changes in synaptic weight, but under different environmental conditions, the device will
show different regulatory mechanismsIn the left figure, the blue curve fits under the condition of
increasing synaptic weight, while the red curve fits under the condition of decreasing synaptic
weight, both of which reflect the regulation mechanism of synaptic weight changing with pulse
interval. The different color curves in the right figure also fit the changes in synaptic weight, but
under different environmental conditions, the device will show different regulatory mechanisms [89].
Copyright © 2020, Chen Pan et al., under exclusive license to Springer Nature Limited.

Figure 6. (a) Ion-doped field effect transistors [91]; (b) Device conducts bipolarly through phase
transition [91]; (c) Ionic phase transition in silver iodide induces switchable ion doping [91].
Copyright © 2020, Sung-Joon Lee et al., under exclusive license to Springer Nature Limited.
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While purely simulating biological synaptic properties, some researchers have taken
the memory perspective to build new memory devices through heterogeneous structures,
which usually have low power consumption, fast programming operation, and multi-
state storage, and also have the potential for neuromorphic computing. In 2013, Choi,
Lee et al. stacked graphene/h-BN/MoS2 to achieve ultrathin heterostructure memory de-
vices (Figure 7a), in which graphene and MoS2 are used as channel and charge capture
layers, and carriers reach the floating gate position through the tunneling layer h-BN to con-
trol the carrier transport in the channel. By changing the thickness of the two-dimensional
materials or changing the stacking order, the device storage window size and conducting
polarity can be controlled (Figure 7b); finally, the device exhibits a high current switching
ratio, high mobility, and good stability, etc. [92]. In 2018, Zhou Peng’s team constructed
a quasi-nonvolatile floating gate memory device using two-dimensional materials such
as WSe2, MoS2, h-BN, and HfS2 with a special stacking structure (Figure 8a). The device
construction process is fully compatible with silicon-based technology, which facilitates the
construction of an interoperable bridge between volatile and non-volatile storage, reduces
the power consumption for high-speed frequent erasing and reading, and enables the
construction of high-speed and low power consumption memories [93]. In 2016, Nguyen,
Kim et al. reported a floating-gate memory made of graphene/h-BN/MoS2 vertically
stacked (Figure 8b). A similar tunneling charge capture mechanism was used to charge
and discharge the floating gate, and the final device showed a current switching ratio of
up to 109 and an off-state current down to an order of 10−14; the device also had excellent
stretching properties, revealing its great promise for flexible wearable devices [94]. In
2018, a multi-bit non-volatile optoelectronic memory based on a single layer of tungsten
diselenide and a small number of hexagonal boron nitride heterostructures was reported
by a related research team at the National University of Singapore (Figure 8c). The tungsten
diselenide/boron nitride memory showed a memory switching ratio of approximately
1.1 × 106, guaranteeing more than 128 (7 bits) different storage states with a retention time
of more than 4.5 × 104 s [66]. In 2017, Juwon and Sangyeon et al. reported the concept of a
monolayer MoS2 optoelectronic memory device (Figure 8d), which operates through the
monolayer/dielectric interface functionalization using an artificially structured charge trap
layer to induce local electron capture and release. The built device has excellent photore-
sponsivity memory characteristics with a large linear dynamic range of ~4700 (73.4 dB),
a low turn-off current (<4 pA), and a storage lifetime of more than 104 s. In addition,
multi-stage detection of up to eight optical states was successfully demonstrated [95].

Figure 7. (a) Schematic diagram of ultra-thin heterostructure memory devices [92]; (b) Device storage
window regulation. The transfer characteristic curve of the device is measured by applying pulse on
the gate, in which the different color curve represents different pulse width [92]. Copyright © 2013,
Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
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Figure 8. (a) Schematic diagram of a quasi-non-volatile floating gate memory device [93].
Copyright © 2018, Chunsen Liu et al.; (b) Graphene/h-BN/MoS2 vertical stacking to form float-
ing grid memory [94], Copyright © 2016, Quoc An Vu et al.; (c) Schematic of WSe2/BN multi-bit
non-volatile optoelectronic memory [66], Copyright © 2018, Du Xiang et al.; (d) Schematic diagram
of MoS2 optoelectronic memory device [95]. Copyright © 2017, Juwon Lee et al.

Based on the good optical properties of some two-dimensional materials, some re-
searchers have developed optoelectronic modulation of FETs, which enables the simulation
of synaptic properties through optical/electrical synergistic control. In 2022, Ahn and
Chai et al. reported their vision sensor devices constructed using a bilayer MoS2 on a
high-K dielectric (Figure 9a). By introducing trap states on the MoS2 surface and using the
trap to store light information, they were able to dynamically modulate the characteristic
curve of the device under different lighting conditions. The device shows a dynamic
sensing range of up to 199 dB [96]. In 2018, to address a series of issues such as high
programming voltage, high static power consumption, and difficult integration in the
development of three-terminal optoelectronic memory devices, Tran et al. developed a mul-
tilevel nonvolatile floating-gate optical memory device based on a MoS2/h-BN/graphene
heterostructure (Figure 9b). The device exhibited a current switching ratio of up to 106, the
turn-off current could be maintained at a very low level of 10−14 A, and the endurance
cycle degree and retention time reached 104 cycles and 3.6 × 104 s. The channel could
be effectively modulated by controlling the migration of electrons in the graphene layer
through an applied photoelectric stimulus (Figure 9c), thus realizing an optical memory
device with a multilevel conductive state [97]. In 2018, Tian et al. innovatively employed a
distributed architecture by stacking graphene/2D perovskite/graphene interlayer struc-
tures on SiO2 substrates (Figure 10a) to achieve an optical memory device that has 730 A/W
responsiveness and a 74-day retention time. In addition to its good optical response, the
device is able to achieve reconfigurable biological synaptic properties with the help of
optical modulation (Figure 10b,c) and can achieve a good degree of simulation of learning
behaviors, such as PPF and STDP [98]. In 2022, Yang et al. built a novel optoelectronic
artificial synapse based on vdw heterostructures (Figure 11a), which was made by vertically
stacking MoS2/h-BN/graphene on a Si/SiO2 substrate, and by artificially modulating the
energy bands of the structured material. The device demonstrated positive (PPC) and
negative photoconductance NPC optoelectronic coupling modes; based on this mode, the
authors successfully constructed a variety of digital logic gates with reconfigurable capabil-
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ities. In addition, the device allows for the conductance modulation of the photoelectric
dual mode (Figure 11b), and successfully simulates the biological synaptic properties such
as STP and LTP/LTD [99].

Figure 9. (a) Double−layer MoS2-built vision sensor devices [96]. Copyright © 2022,
Fuyou Liao et al., under exclusive license to Springer Nature Limited; (b) Multi−state non−volatile
optical memory devices based on MoS2/h−BN/graphene heterostructures [97]; (c) Formation of
multi−level conductivity states with the continued light pulse for MoS2/h-BN/graphene heterostruc-
tures [97]. © 2018 WILEY−VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 10. Artificial optical synapses. (a) Schematic diagram of graphene/2D perovskite/graphene
sandwich structure for constructing ultra-sensitive artificial optical synapses [98]; (b) Artificial optical
synaptic light control PPF test [98]; (c) Artificial optical synaptic short-range plasticity and long-range
plasticity testing result [98]. Copyright © 2018, IEEE.
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Figure 11. (a) Schematic diagram of MoS2/h−BN/Gr architecture optical artificial synapse [99];
(b) Optical artificial synaptic simulation of biological properties. Under the weak light pulse stimu-
lation, the device shows short range plasticity, and the synaptic current returned to the initial state
after the removal of the light pulse. The device shows long-term plasticity under the stimulation of
strong light pulse, and the post−synaptic current remained at a high level after the removal of light
pulse [99]. © 2022 Wiley−VCH GmbH.

Despite the bimodal modulation of device optoelectronics, researchers have expanded
the practical application scenarios of neuromorphic devices. In 2018, Choi et al. from Korea
presented their research results on artificial visual synapses for color mixed-mode recog-
nition by implementing both synaptic and optical sensing functions on the h-BN/WSe2
heterogeneous structure (Figure 12a). An optic nerve synaptic device was constructed
by this device to demonstrate a visual sensing device with synaptic and optical sensing
functions; the device exhibited different synaptic behaviors such as LTP/LTD and STDP de-
pending on the light conditions (Figure 12b); also, a nearly linear weight update trajectory
was demonstrated in terms of synaptic plasticity, and the device was able to provide a large
number of stable conductance states in operation (each state’s variation of less than 1%) [64].
In 2020, Feng Miao’s team also demonstrated its simulation of bipolar cells and photore-
ceptors in living organisms in Science Advances. The device uses a WSe2/h-BN/Al2O3
heterostructure (Figure 13), which vertically integrates photoreceptors and bipolar cells
through a heterostructure that is simple and compact compared to the complex structure of
a silicon retina. The authors relied on this device to build pixel arrays and achieve reconfig-
urable artificial vision sensors by adjusting the gate voltage of each pixel for simultaneous
image sensing and processing; in iterative training for image recognition, an accuracy
of 100% was achieved in less than 10 cycles [63]. In 2021, Peng Zhou’s team created a
heterostructure device using two-dimensional materials, h-BN and WSe2, to replicate the
structural functions of the retina, and ultimately achieved efficient dynamic monitoring
detection. Figure 14a is a diagrammatic representation of the BP/Al2O3/WSe2/h-BN
heterostructure device structure. The authors used the device to construct the associated
circuitry for an integrated sensory-storage and computational biorational analog device
that senses optical stimulus, collects and converts signals to simulate an image perceptron,
and permits stimulation by programmable electrical and optical pulses to generate a non-
volatile positive photocurrent (PPC) and a negative photocurrent (NPC) (Figure 14b) [62].
Broadband convolution processing is crucial for high-precision image recognition; however,
it is challenging to implement broadband convolution processing for sensors using conven-
tional CMOS technology. Based on this problem, the research team of Zhou published their
research results regarding broadband image sensing and convolution processing with a
vdw heterostructure device this year. In the report, the authors used PdSe2/MoTe2 to build
a vdw heterostructure broadband convolution sensor (Figure 15a). The heterostructure
device has a gate-tunable positive and negative optical response, as well as a broadband
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linear gate-correlated optical response, which allows for different types of convolution
processing of remote sensing images (Figure 15b). The broadband convolutional processing
within this sensor improves the recognition accuracy of multi-band images compared to
conventional single-band convolutional neural networks [65].

Figure 12. (a) Schematic diagram of the h−BN/WSe2 heterogeneous structure vision sensing de-
vice [64]; (b) Electric pulses of different polarity are applied to the device under different light
conditions to simulate the excitation and inhibition of synapses. The black curve represents the dark
environment, and the remaining curves represent the corresponding color light test environment [64].
Copyright © 2018, Seunghwan Seo et al.

1 
 

 
Figure 13. WSe2/h-BN/Al2O3 heterostructure for bipolar cell simulation [63]. Copyright © 2020
Chen-Yu Wang et al., some rights reserved; exclusive license American Association for the Advance-
ment of Science.
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Figure 14. BP/Al2O3/WSe2/h-BN heterostructures [62]. (a) BP/Al2O3/WSe2/h-BN heterostruc-
tures simulate retina-related structures [62]; (b) PPC/NPC simulation of BP/Al2O3/WSe2/h-BN
heterostructures [62]. Copyright © 2021, Zhenhan Zhang et al., under exclusive license to Springer
Nature Limited.

Figure 15. PdSe2/MoTe2 vdw heterostructure. (a) Schematic of broadband convolution processing
sensor for PdSe2/MoTe2 vdw heterostructure [65]; (b) Wideband convolution processing sensor
implements different types of convolution processing. The gate pluse Vg is used to adjust the optical
responsiveness Rj, the incident light represents the input layer, the optical power Pj represents the
pixel value, and the final result of the convolutional operation represents the output optical current.
Each pixel can achieve weight adjustment and can achieve positive and negative light response [65].
Copyright © 2022, Lejing Pi et al. under exclusive license to Springer Nature Limited.

4. Ferroelectric Field Effect Transistors for Building Artificial Synaptic Elements

Ferroelectricity is a physical property shown by several dielectric substances. Many
ferroelectric compounds exist in nature and are collectively known as ferroelectrics. The
presence of spontaneous polarization and the reversal of polarization direction in response
to a change in the applied electric field are the two most important features of ferro-
electrics [46,49]. The introduction of perovskite oxide ferroelectric materials in the 19th
century, the development and perfection of the physical theory relating to ferroelectricity
in the 20th century, and the emergence of nanomaterials in the middle of the 1980s all led
to a rapid improvement in the ferroelectric materials preparation technology level. The
novel concepts of nanoscale ferroelectricity, ferroelectric thin film devices, ferroelectric thin
film batteries, etc., have attracted the attention of scientists to a great degree. Moreover,
the requirement for miniaturization, high-density, and low-cost electronic devices has
increased as a result of the ongoing progress of microelectronics technology, as shown by
integrated circuits. Conventional ferroelectric materials have collided and combined with
semiconductor systems, ushering in the era of integrated ferroelectrics in ferroelectricity
research [51,71].
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Common ferroelectric materials can be divided into three categories: inorganic ferro-
electrics, organic ferroelectrics, and two-dimensional ferroelectrics, with inorganic ferro-
electrics being the most widely used at this time, especially in the memory field; with or-
ganic ferroelectrics being more applicable to certain specific scenarios and two-dimensional
ferroelectrics having superior performance and the potential to shine in the development
of integrated circuits in the future. Regarding the application of ferroelectric materials
in the field of new devices for neuromorphic computing, there have been more reports
on two-terminal devices, which are typically presented as a simple metal/insulator (fer-
roelectric dielectric)/metal sandwich structure and can realize the resistive behavior of
the device and the simulation of synaptic properties via ferroelectric flipping. Based on a
simple sandwich structure, these devices are highly scalable and have great potential for
high-density cross-array integration, but they have major shortcomings in the precise regu-
lation of linear gradient conductance [100]; as a result, multi-terminal transistors utilizing
ferroelectric materials as gate dielectrics have become a research target for researchers to
advance this field.

4.1. Inorganic Ferroelectric Gate Field Effect Transistors for Building Artificial Synapses

The synaptic weight change of ferroelectric artificial synapses arises from the mul-
tilevel nonvolatile polarization modulation of ferroelectrics, which, when matched with
suitable electrode materials or buffer layers, can significantly increase their cyclic durabil-
ity [34]. In ferroelectric neuromorphic transistors, the polarization state of the ferroelectric
layer is controlled by gate pulses, and the source-drain current is used as an indirect re-
flection of its polarization state. Additionally, successive pulses are used to modulate the
incremental or decremental ferroelectric polarization in order to realize the multilevel con-
ductivity state. Early researchers focused on the application of FeFET in high-performance
memory, which stores information through the hysteresis window formed by ferroelec-
tric polarization, and used inorganic ferroelectric materials as gate dielectrics to regulate
transistors, such as chalcogenide (PZT), hafnium oxide, hafnium oxide-doped materials,
etc. In 2015, U.S. researchers Alexander Sinitskii et al. exhibited an optoelectronic mem-
ory device based on PZT and MoS2 (Figure 16a). The device employs the ferroelectric
material PZT as the gate dielectric, and a monolayer molybdenum disulfide (MoS2)-based
field-effect transistor was built and tested on a substrate to confirm that the device has
a large hysteresis window (Figure 16b). The device enables both optical/electrical write
and erase operations (Figure 16c), making it easier to use than traditional similar devices;
the threshold voltage drift phenomenon caused by ferroelectric polarization confirms the
device’s ability to operate in the neuromorphic field [69]. In 2013, Yu Nishitani effectively
simulated the biological synaptic learning function with the ZnO channel material and the
PZT ferroelectric gate dielectric-prepared FeFET (Figure 17a). By altering the channel con-
ductance to reflect the mass of the synaptic basic unit, it was possible to simulate features
such as STDP in the plasticity of artificial synaptic devices (Figure 17b) [101]. The following
year, Yu Nishitani et al. took the previous year’s device development results and expanded
them at the device application level. Using several FeFETs as leaky integrate fired (LIF)
neural network models in conjunction with CMOS technology, a PZT gate dielectric FeFET
on a CMOS circuit base was successfully stacked (Figure 17c). The constructed neural
network consists of nine neurons and one hundred and forty-four synapses (Figure 17d),
which, with the aid of nonvolatile continuous linear conductance modulation of FeFET
and STDP learning rules, forms a correlation learning matrix capable of recalling the initial
pattern by auto-learning when presented with incomplete multiple shaded pattern inputs.
In addition, this FET is applicable to different types of neural network models, demon-
strating the enormous potential of this artificial synapse for future applications in huge
neuromorphic circuits [73].
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Figure 16. (a) Schematic diagram of PZT gate dielectric device structure [69]; (b) Formation of
hysteresis window [69]; (c) Device optical/electrical erase and write operation demonstration [69].
Copyright © 2015, American Chemical Society.

Figure 17. (a) Schematic diagram of the artificial synapse of ZnO/PZT structure [101]; (b) The device
successfully implements the simulation of one of the STDP modes [101]. © The Japan Society of
Applied Physics. Reproduced by permission of IOP Publishing Ltd. All rights reserved; (c) Construc-
tion of ZnO/PZT structured artificial synapses on CMOS [73]; (d) Neural networks constructed by
artificial synapses [73]. Copyright © 2014, IEEE.
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FeFETs with inorganic chalcogenide gate dielectrics have significant limitations; be-
cause materials such as PZT are more complex and riskier to produce, and because the
ferroelectricity of chalcogenide materials disappears at a certain thickness, it limits the
possibility of continuous miniaturization of the characteristic size of these devices. The
reported discovery of ferroelectricity in hafnium oxide has shed new light on the evolution
of this subject in this context. The ferroelectric properties of hafnium oxide can be effectively
improved by doping it with other elements (Si, Zr, etc.); hafnium oxide as a high K material
has been used in relevant CMOS integrated circuit processes, and its development process
is mature and compatible with existing CMOS semiconductor processes. Based on the
above kinds of conditions, more reports on hafnium oxide or doped hafnium oxide dielec-
tric transistors have also appeared in recent years. In 2018, Matthew Jerry et al. published
their research regarding the fabrication process, parameter performance characterization,
and analytical modeling of ferroelectric field-effect transistors (Figure 18). The results
revealed the capacity to cause a subthreshold swing (SS) 2.3 kT/q, near-zero hysteresis
negative drain-induced potential barrier reduction, and negative differential resistance in
ferroelectric dielectric with the aid of an internal polarization flip. In addition, the causes
of Vt drift in FeFETs were identified and future development guidelines for FeFETs were
proposed [72].

Figure 18. Schematic diagram of the new FeFET with HZO gate medium [72]. Copyright © 2018, IEEE.

In addition to the research on high-performance FeFETs, reports of the application of
this type of transistor to build artificial synapses have also emerged. In 2017, Seungyeol
Oh proposed a novel type of HZO-based ferroelectric synapse device (Figure 19). The
researchers successfully identified 32 ferroelectric residual polarization states possessed
by the ferroelectric dielectric by employing various pulse test methodologies, and subse-
quently exploited this condition to develop a device correlation model. Si was still used
as the channel material in the model, and the final simulation results demonstrated that
the device was able to achieve superior LTP/LTD modulation effects, as well as strong
symmetry of conductance changes and high linearity in the enhancement and suppression
effects; the application to the MNIST dataset revealed an accuracy of 84%, indicating that
the HZO-based synaptic device has potential for future applications in high-density neuro-
morphic systems [71]. In the same year, H. Mulaosmanovic et al. successfully produced
a single ferroelectric artificial synapse utilizing 28 nm HKMG technology and a TiN/Si,
HfO2/SiON/Si stack structure (where HfO2 is the ferroelectric gate dielectric and SiON
is the channel material). With the aid of nonvolatile ferroelectric regulation, a continuous
change in channel conductance could be achieved in order to simulate the LTP/LTD ef-
fect; additionally, by controlling the time interval between pre-pulses and post-pulses, a
change in channel conductance could be observed, thereby enabling the simulation of the
STDP learning mechanism [102]. In 2019, Min-Kyu Kim et al. effectively reproduced some
synaptic properties using a nanoscale thickness of an HZO ferroelectric thin film transistor
(FeTFT) constructed with ferroelectric gate dielectric material and oxide semiconductor
channel material (IGZO) (Figure 20a). The FeTFT was able to achieve potentiation and
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depression behavior with a linearity of −0.8028/−0.6979 in long-range modulation using
ferroelectric polarization modulation (Figure 20b), while the ratio of maximum to minimum
values in conductance modulation exceeded 14.4; the neuromorphic computational system
constructed with this device was trained to achieve 91.1% accuracy in the recognition of
handwritten digit sets [74]. In 2020, one year after Kim’s study was published, Ang’s
team presented a new ferroelectric synaptic transistor based on the integration of two-
dimensional WS2 and inorganic ferroelectric HZO (Figure 21a). The device construction
procedure is fully compatible with existing semiconductor fabrication processes, and the
ferroelectric layer’s stability is exceptional. The researchers studied the influence of the an-
nealing temperature on the residual polarization strength of the ferroelectric HZO material,
while the transistor was able to obtain a current switching ratio of up to 105 based on the
modification of the ferroelectric polarization direction. In addition, by applying pulsed
stimulation at the gate control end, the ferroelectric synapse was able to imitate biological
synaptic properties, such as EPSC and LTP/LTD (Figure 21b), demonstrating the device’s
enormous potential for future neuromorphic engineering applications [55].

Figure 19. HZO-based ferroelectric synapse device. (a) Simulation results of the transfer curve for
different polarization states [71]; (b) The parameters in simulation [71]; (c) 32 levels for potentiation
and depression [71]; (d) Pattern recognition accuracy increases with multi-level capability [71].
Copyright © 2017, IEEE.
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Figure 20. (a) Schematic of FeFET with IGZO channel [74]; (b) Experimental measurement result
of LTP/LTD effects through IGZO channel devices. In the figure above, different colors represent
different number of long range modulation cycles with an interval of 25 cycles. It can be seen that
pulse stimulation can still achieve good regulation of device conductance after 100 cycles. The
different colors in the figure below represent the conductance state of the device when different
pulses are applied [74]. Copyright © 2019, American Chemical Society.

Figure 21. (a) Schematic of a device with WS2/HZO structure [55]; (b) Experiment test result of the
LTP/LTD effect with different amplitude voltages on it [55]. © 2020 WILEY−VCH Verlag GmbH &
Co. KGaA, Weinheim.

4.2. Organic Ferroelectric Materials for Building a Neuromorphic Synaptic

In addition to the inorganic class of ferroelectrics being used to build FETs, the organic
class of ferroelectric materials also has some potential in building synaptic devices, such
as some artificial synapses with the help of P(VDF-TrFE) as the gate medium [103]. In
the production of organic ferroelectric FETs, PVDF films are frequently produced by spin
coating on the appropriate dependent layers; similarly, to improve the ferroelectricity of
PVDF films, annealing is required, albeit at a lower temperature (less than 200 ◦C) than
for inorganic ferroelectric materials [104,105]. In particular, during the precipitation of
organic ferroelectric materials, attention must be paid to the contact interface with channel
materials and electrode materials, etc., as there are significant differences in their formation
and structure compared to inorganic materials, and the compatibility of the process must
be considered in the process that follows precipitation.

In 2018, Hanlin Wang successfully fabricated a ferroelectric/electrochemical artificial
synapse using the organic ferroelectric substance P(VDF-TrFE)/P(VP-EDMAEMAES) as
the gate control medium (Figure 22a). The device achieves the simulation of synaptic
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behaviors such as STP and LTP through the degree of electrochemical doping by ferro-
electric polarization, and integrates sensing and storage in a single device, while different
forms of transitions such as STP can be achieved by applying pulses of amplitude or fre-
quency to the gate (Figure 22b). This work extends the non-volatile retention period of
the device to 104 s, which is much longer than the minute-level retention time of other
typical electrochemical transistors reported by prior studies. The neuromorphic visual
perception system constructed using this device is able to transform light signals of vary-
ing frequencies and intensities into corresponding synaptic impulses, and the converted
signals can differentiate between volatile and nonvolatile features [77]. The change in the
polarization state of the ferroelectric body by the applied electric field affects its potential
barrier distribution, and the average barrier height of the interlayer is typically used as a
criterion to delineate the high/low resistance state of the device to achieve the data storage
function; however, the change in the potential barrier under the applied electric field is
not abrupt, it gradually changes with the change in the electric field, thereby requiring a
different criterion to determine the high/low resistance. This indicates the possibility of
creating neuromorphic blocking devices for two-terminal ferroelectric devices. In 2022,
Bobo Tian’s team designed an ultra-low power machine vision sensor composed of a self-
powered Au/P(VDF-TrFE)/Cs2AgBiBr6/ITO device (Figure 23a), which exhibited excellent
bio-synaptic optoelectronic properties (Figure 23b), and was capable of performing both
static and dynamic vision tasks with a 99% accuracy in applications of face classification
and dynamic traffic flow recognition. The device is 99.97% and 100% accurate for face
classification and dynamic traffic recognition [106]. Based on the successful preparation of
the two-terminal synaptic device, the team further developed a low-power, highly robust
three-terminal memtransistor with the help of ferroelectric polymer PVDF as the gate
dielectric and MoS2 as the channel (Figure 24a). The device achieves quasi-continuous
and precise conductance regulation with the help of ferroelectric polarization regulation,
and successfully simulates synaptic characteristic behaviors such as LTP/LTD and STDP
(Figure 24b,c). In addition, the device has high stability, very low power consumption, and
a long lifetime. After extensive pulse tests, the switching ratio of the device still exceeds 104,
the power consumption per pulse test is less than 1 fJ, and the operating lifetime at spe-
cific frequencies exceeds 10 years; this demonstrates the great potential of the device for
large-scale neuromorphic circuits [107].

Figure 22. (a) P(VDF−TrFE)/P(VP−EDMAEMAES) gate−mediated artificial synapses [77];
(b) STP−LTP conversion through optical control [77]. © 2018 WILEY−VCH Verlag GmbH & Co.
KGaA, Weinheim.
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Figure 23. (a) Schematic diagram of the structure of two-terminal PVDF ferroelectric parts [106];
(b) EPSC simulation of two-terminal PVDF device [106]. © 2022 Jie Lao et al. Advanced Science
published by Wiley−VCH GmbH.

Figure 24. (a) Schematic diagram of PVDF−MoS2 structural device [107]; (b) Experiment simulation
of LTP/LTD effects with different types of pulse number increases in PVDF−MoS2 structured devices.
The orange curve shows the long range potentiation of the device under positive pulse voltage. The
more the number of pulses, the higher the maximum conductivity state the device can achieve. The
purple curve shows the long range depression under negative pulse voltage [107]; (c) Simulation of
STDP learning mechanism by PVDF−MoS2 structured devices [107]. © 2018 WILEY−VCH Verlag
GmbH & Co. KGaA, Weinheim.

4.3. Two-Dimensional Ferroelectric Materials Field-Effect Transistor Builds Neuromorphic Synapses

While traditional ferroelectric and two-dimensional materials are widely used to con-
struct new high-performance field-effect transistors, researchers have progressively become
aware of an emergent ferroelectric body. In2Se3 is a typical two-dimensional ferroelectric
material with a direct band gap and a small effective mass of electrons; in 2014, a report on
the preparation of In2Se3 transistors was published, but the performance of the transistors
mentioned in this report was abysmal compared to the devices prepared by their counter-
parts, such as InSe [108]. It was not until 2017 that Wenjun Ding proved the existence of
two-dimensional ferroelectric semiconductors for the first time at the theoretical level by
demonstrating that monolayer In2Se3 has spontaneous ferroelectric polarization perfor-
mance at room temperature through relevant theoretical calculations [109], which also un-
veiled a new dimension in the development of ferroelectric and two-dimensional materials.

Similar to conventional inorganic/organic ferroelectric materials, the 2D ferroelectric
material In2Se3 can also form two distinct polarization directions in the presence of an
external stimulus (Figure 25), and the modulation of a ferroelectric device is achieved
by regulating the channel using the polarization effect [110]. The characteristic curve
hysteresis phenomenon of 2D ferroelectric material transistors is caused by the internal
polarization of the channel material, so it avoids the effects of depolarization and interfacial
charge shielding, etc., and mitigates the issues of gate leakage and electrode contact.
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In 2020, Lin Wang et al. prepared a ferroelectric semiconductor field effect transistor
(FeSFET) based on α-In2Se3. The researchers covered a 50-nm high K alumina dielectric
with α-In2Se3 flakes, using Ti/Au as the source-drain electrode, and finally, covered with
a 15-nm thick alumina passivation layer. By modulating different degrees of ferroelectric
polarization, the device successfully simulated the biological synaptic properties of EPSC,
IPSC, LTP/LTD, and STDP, and achieved a 91.9% pattern recognition rate in artificial
neural networks, demonstrating the great potential of the device for neuromorphic circuit
construction [111]. In 2022, Keqin Liu et al. also developed an optoelectronic synapse based
on α-In2Se3 that could satisfy the integrated optoelectronic modulation (Figure 26a). This
synaptic device has a dynamic time response and can provide multi-mode and multi-scale
signal processing; meanwhile, due to the ferroelectric and optoelectronic properties of
α-In2Se3, the relaxation time scale and other temporal dynamics of the synapse can be
adjusted by optical stimulation (changing light intensity and wavelength) and electrical
stimulation (changing pulse amplitude and frequency), which enables the simulation of
synaptic properties such as PSC, PPF, PPD, LTP, and LTD (Figure 26b). Based on the
above multi-modal tuning, the authors used the synaptic device to build a mixed-signal
(multimode) reservoir computing (RC) system with tunable dynamics and multisensory
fusion (Figure 26c), which can be used to process multimodal digital data for digital
recognition tasks and to make predictions of time series [76].

Figure 25. In2Se3 crystal structure in different polarization directions [109]. Copyright © 2017, Wenjun
Ding et al.

Figure 26. In2Se3 photoelectric synapse [76]. (a) Schematic diagram of In2Se3 photoelectric
synapse [76]; (b) Photoelectric synapses simulated LTP/LTD performance [76]. (c) Schematic of
a multiple-timescale RC system [76]. Copyright © 2022, Keqin Liu et al., under exclusive license to
Springer Nature Limited.
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5. Electrolyte Ion-Gated Field Effect Transistors for Building Neuromorphic Systems

In addition to heterojunctions and ferroelectric FETs, electrolyte ion-gated FETs are
also commonly used to construct neuromorphic devices; as the name suggests, electrolyte
material is used as the gate medium, and the migration behavior of ions in the dielectric ma-
terial is controlled by the applied gate stimulus to achieve the accumulation or depletion of
carriers in the channel. There are three common ion-modulation operation modes: bilayer,
electro-chemical doping, and ion encapsulation [112,113]. In terms of transistor modulation,
the process of ion generation by this electrolyte under-gate voltage modulation is very
similar to the behavior of the biological presynaptic membrane stimulated to produce
neurotransmitters; thus, the use of electrolyte ion gate transistors to simulate biological
synapses may be more feasible [114]. Although this type of FET has a similar regulatory
mechanism to synapses, it is less stable due to the susceptibility of ion production and mi-
gration to external influences, and has a slight disadvantage in terms of its nonvolatility and
precise conductance regulation comparable to heterojunction structures [115,116]. Though
electrolytic ion gate transistors have some of these problems, researchers can attenuate their
effects on transistor performance by selecting different channel materials and electrolyte
materials because, unlike heterojunctions and ferroelectric field effect transistors (hetero-
junctions are limited by the need to use thin two-dimensional semiconductor materials,
and ferroelectric transistors require materials with ferroelectric polarization effects in the
dielectric layer), these types of transistor channel materials and dielectric layer materials
are more widely selected, including new two-dimensional materials, various types of
organic/inorganic electrolyte dielectrics, etc.; considering different structures and materials
can also achieve the preparation of high-performance neuromorphic devices.

The first presentation concerns the double-layer mode; in 2014, Qing Wan disclosed
oxide-based synaptic transistors that are gated by nanogranular SiO2-based proton conduc-
tor sheets (Figure 27a). Controlling the electrolyte material to adjust the channel conduc-
tance regulates the gate voltage. SiO2-based nanoparticle films and chitosan films are used
as the gate dielectric, and the voltage applied to the gate is first coupled to the common
bottom conductive layer and then to the channel layer. The gate bias is directly laterally
coupled into the semiconductor channel via a transverse double-layer capacitor. The device
uses IZO as the channel material to realize the preparation of synaptic transistors based on
lateral coupling and successfully replicates neuromorphic device characteristics including
EPSC, LTP (Figure 27b,c), dynamic filtering, and spatiotemporal correlation signal process-
ing [117]. In 2018, Yi Yang et al. developed an optoelectronic neuromorphic device utilizing
IGZO double-layer transistors (Figure 28a). The entire device was constructed on an ITO
glass substrate, a solid electrolyte sheet was produced by spin coating on the ITO, and
the IGZO channel and IZO electrode were afterward formed by sputtering. The device is
able to realize the integrated regulation of photoelectricity, which can effectively simulate
important synaptic behaviors such as EPSC, PPF (Figure 28b), and LTP, and can complete
the transition of the inhibitory and enhancement effect via gate voltage control, which is
significant for the field of photoelectric neuromorphology [113].

Figure 27. (a) Schematic diagram of SiO2 double-layer thin film transistor [117]; (b) SiO2 bilayer thin-
film transistor EPSC testing [117]; (c) SiO2 bilayer thin-film transistor long-time modulation [117].
Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All
Rights Reserved.
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Figure 28. (a) Schematic diagram of IGZO double-layer phototransistor [113]; (b) IGZO double-layer
phototransistor PPF experiment testing result [113]. Copyright © 2018, IEEE.

There have been an equal number of reports on both modes of electrochemical mod-
ulation and ionic embedding: first, carbon nanotubes have been shown to have great
potential in constructing low-power consumption biological synaptic devices; in 2014,
Kim et al. used carbon nanotubes (CNT) as the channel material possessing dynamic logic
and learning functions for biological synaptic devices. Additionally, CNT have been shown
to have great potential in constructing low-power consumption biological synaptic devices
(Figure 29a). In this instance, CNT precipitation was generated by repeatedly dipping the
silica substrate into the CNT solution, and a single-walled CNT formed the final channel.
This CNT transistor successfully simulated LTP/LTD, STDP (Figures 29b and 30), and
is able to conduct some typical biological synaptic learning memory operations, show-
ing its broad future application potential in pattern recognition, intelligent computing,
and other disciplines [118]. In 2016, ChangJin Wan et al. constructed a flexible neural
device using graphene substrate material and graphene oxide electrolytes (Figure 31a),
in which graphene was precipitated on top of the PET flexible substrate using the chemi-
cal vapor deposition (CVD) method, and the graphene layer was found to have a small
deviation from the mean value and a good uniformity of film resistance. The neuromor-
phic device with great flexibility and strong electrical characteristics was completed, and
the device successfully implemented the logic operation related to spatiotemporal cor-
relation (Figure 31b), which can effectively enhance the development of neuromorphic
computing [119]. In 2017, using two-dimensional material MoS2 and polyvinyl alcohol elec-
trolyte, Jie Jiang manufactured a neuromorphic synapse with numerous inputs (Figure 32a),
in which several inputs can be connected to the MoS2 channel, making the transistor’s
time-dependent channel conductance modification more realistic. The device successfully
replicates synaptic characteristics such as EPSC and PPF (Figure 32b) and can handle pulse
modulation-type logic operations and analog multiplication operations (Figure 33) via
multiple input gating [120]. In 2020, Da-Shan Shang developed a new device based on
polystyrene sulfonate (PEDOT: PSS) film as the channel material and Nafion film as the
solid electrolyte for organic electrochemical synapses. The modulation of the channel
current of this transistor is affected by the ambient humidity; by controlling the ambient
humidity at 26.1%, the device can successfully simulate the synaptic characteristics of STP
and PPF, and can realize STP to LTP transition operation. This organic electrochemical
synaptic transistor provides a potential impetus for the development of flexible electronic
devices and humidity detectors, etc. [121].
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Figure 29. (a) Schematic diagram of CNT channel synaptic device [118]; (b) STDP characteristics of
CNT−channel synaptic devices [118]. Copyright © 2013 WILEY−VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 30. Using EPSC change to reflect the LTP/LTD characteristics in CNT channel synaptic
transistors [118]. Copyright © 2013 WILEY−VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 31. (a) Schematic diagram of a flexible neuron device based on graphene/PET substrate
material and graphene oxide electrolyte [119]; (b) Simulation of EPSC and spatiotemporal corre-
lated logic operations by a flexible neuron device [119]. © 2016 WILEY−VCH Verlag GmbH & Co.
KGaA, Weinheim.
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Figure 32. (a) Schematic diagram of MoS2/Polyvinyl alcohol electrolyte multi-input synaptic de-
vice [120]; (b) MoS2/Polyvinyl alcohol electrolyte synaptic device PPF simulation test [120]. © 2017
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 33. MoS2/Polyvinyl alcohol electrolyte synaptic device logic operation simulation [120].
© 2017 WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim.

Nonvolatile redox reactions are also relevant in electrolyte transistors: in 2017, Alec
Talin’s team constructed a solid-state non-volatile electrochemical synaptic device based on
lithium ion-doped Li1-xCoO2 (Figure 34a), which achieves channel resistance regulation
through lithium ion insertion/extraction regulation (Figure 34b). The ion migration in
this process only needs to cross a low potential barrier, which satisfies the need for low
voltage regulation while maintaining non-volatility. The research points to the direction
of solid-state non-volatile electrochemical transistors for neuromorphic systems and has
the potential to be applied in low-power, high-precision dense array construction [122].
In 2018, Jiadi Zhu et al. developed a related synaptic transistor based on two-dimensional
vdw crystal (Wse2, NiPS3, and FePSe3) materials (Figure 35a). Different thicknesses and
structures of vdw materials were used, and the synaptic plasticity was then systematically
regulated by applying different pulse numbers, durations, rates, and polarities at the gate
control side, and finally, the successful simulation of EPSC, PPF, LTP/LTD (Figure 35b),
and STDP was achieved. The device also has a very high linearity in the long-range
modulation of conductance and an operating power consumption of about 30 fJ per spike
pulse, indicating the wide promise of the device for neuromorphic devices [82].
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Figure 34. (a) Schematic diagram of lithium ion-doped non-volatile electrochemical synapses [122];
(b) Simulation of Li+ doped non−volatile electrochemical synaptic LTP/LTD properties [122]. © 2016
WILEY−VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 35. (a) Schematic diagram of a synaptic transistor based on a 2D vdw semiconductor [82];
(b) Simulation of LTP/LTD characteristics based on 2D vdw semiconductor synaptic transistors. The
black represents the long range potentiation and the red represents the long range depression [82].
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

6. Memtransistor for Neuromorphic Applications

Emerging artificial intelligence and cloud computing have increasingly invaded peo-
ple’s daily lives as science and technology have continued to advance. These data-intensive
computing approaches are extremely dependent on the current level of computing, in
which neuromorphic computing has arisen onto the scene. To address the computing
demands of modern science and industry, researchers have developed new computing
paradigms based on novel architectures, and neuromorphic computing has been applied in
numerous ways. Artificial neural networks, spiking neural networks, convolutional neural
networks, and reservoir computing are typical neuromorphic computing techniques. Artifi-
cial neural networks are implemented on digital computers, which find it difficult to escape
the confines of von Neumann architecture; nevertheless, the hardware-based Crossbar
Arrays structure provides a novel way out (Figure 36a); spiking neural networks resemble
intra-biological learning, and spike control is used to adjust synaptic weights, which has
certain efficiency advantages; convolutional neural networks are frequently used in visual
information processing, and the emergence of amnestic devices has started a new chapter
in their application in neuromorphic computing. Reservoir computing is an extension of
recurrent neural networks with short-term memory and nonlinear modulation capabilities.
Reservoir computing is comparable to memristors and has paved the path for its use in
neuromorphic computing (Figure 36b) [85,123,124]. Today, the design of synaptic hardware
devices has reached a certain level of development, and scientists are actively considering
how to transfer the synaptic properties of hardware to neuromorphic computing to meet
the needs of dynamic visual sensing, image recognition, and information encryption.
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Figure 36. (a) Crossbar Arrays structure; the crossbar is a resistive cell, the weight is indicated by the
resistance [123]. (b) Reservoir computing principal diagram [123].

The concept of the memristor has been explored since its inception, and researchers
have explored its great potential for neuromorphic networks based on its unique resistive
memory properties [125]. The two-terminal devices are usually capacitive, with the upper
and lower electrodes holding the resistive material, making them easier to design and fab-
ricate. This type of device has received a lot of attention in the early days, and researchers
have invested a lot of effort and achieved remarkable results. For example, in 2022, Feng
Zhang’s group built a complete in-store computing circuit based on a two-terminal random
memory device, and the circuit structure achieved a high energy efficiency ratio of up to
62.11 TOPS/W and a bit density of 58.2 bit/um2 (Figure 37) [126]. Based on reservoir com-
puting technology, the computational system built with two-terminal amnesia was able to
achieve efficient signal processing with an accuracy of 96.6% and 97.9% in temporal arrhyth-
mia detection and spatiotemporal dynamic gesture recognition tasks, conducted by the
Huaqiang Wu group at Tsinghua University (Figure 38) [127]. While two-terminal amnestic
devices are having an impact in the hands of researchers, three-terminal (multi-terminal)
transistor amnestic devices are seen as another important branch for future neuromorphic
device development due to their unique gating mechanism and mature theoretical founda-
tion. As mentioned above, the process of controlling the various states of a transistor device
through certain conditions of the gate is very similar to the process of neuromorphic devices
that release neurotransmitters and regulate the strength of connections [128]. Transistors
are also able to achieve larger current switching ratios through gate control, maintaining
large on-state currents to meet faster operation while maintaining very low current levels
in the off-state, thus reducing power consumption, which is an advantage in building
large-scale, highly integrated neural networks in the future. In 2018, Changjin Wan built
a neuronal device based on ion channels for NeuTap (a neuromorphic tactile processing
system that can receive external information for perceptual learning), resistive pressure
sensors, and synaptic transistors that enable the basic simulation of bio-sensory neuronal
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function, a basic simulation of neuronal function (Figure 39). The resistive pressure sensor
turns the pressure stimulus into an electrical signal, and the ion conductor conveys the
electrical signal to the synaptic transistor via interface ion/electron coupling to complete
the transmission and transformation of the signal. Several touch modes are available on
the neural device, which is also capable of distinguishing between distinct spatiotemporal
signal properties and external inputs. After multiple training sessions, the accuracy of the
device’s recognition is enhanced, and the device’s characteristics demonstrate a strong
resemblance to perceptual neurons, making it suitable for future use in fields such as neu-
romorphic artificial skin and brain-computer interfaces [129]. Progress has also been made
in pattern recognition and learning associations. In 2013, Yukihiro et al. from Japan built
the first neuromorphic network for pattern recognition using a three-terminal non-volatile
memory device. The neuromorphic chip was based on CMOS circuit technology and used
ferroelectric-like memristor devices, which were trained to recognize incomplete pattern
inputs through correlation learning matrices [42]. In 2020, Yue L et al. created a 32 × 32
array of electrolyte gate transistors with a number of advantageous properties, including
quasi-linearity, good durability, high switching speed, low readout conductance, and low
power consumption, enabling the array to achieve efficient learning and recognition. Based
on this, the authors built a hardware version of a spiking neural network (SNN) for spa-
tiotemporal information processing (Figure 40), which may be applied to motion direction
recognition in tactile sensing systems, creating a new application scenario for future neuro-
morphic computing [130]. In 2022, the team led by Tian revealed significant progress in
their modeling of the biological brain’s associative skills. The team constructed a perceptual
learning network based on a three-terminal device to mimic the weight regulation process
of integrate and fire (IF) neurons during accumulation and release in living organisms; the
connection strength was varied by modulating the conductance via the gate voltage, and IF
neurons were then used to recall the training object. Using partial digital information, the
circuit network successfully achieves an associative recall of all digital images from 0 to 9
following suitable training [131].

Figure 37. High-precision NVCIM solution based on MLSS 3D VRRAM [126]. Copyright © 2022,
Qiang Huo et al.
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Figure 38. Architecture of the RC hardware system [127]. Copyright © 2022, Yanan Zhong et al.,
under exclusive license to Springer Nature Limited.

Figure 39. Schematic of the conceptual design of NeuTap [129]. © 2018 WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim.

Figure 40. Artificial tactile sensor arrays, where tactile sensors receive spatiotemporal tactile signals
and input them into synaptic arrays, which are then processed and recognized by the SNN, and
finally output spikes by the output neurons [130]. © 2020 Wiley-VCH GmbH.

Neuromorphic networks inspired by living organisms have received a great deal
of attention for their higher efficiency [117] and lower power consumption than tradi-
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tional vision systems in machine vision, and has led to many advances in neuromorphic
vision [1,35]. The human visual system consists of the eyes, the optic nerve network, and
the cerebral cortex, as shown in Figure 41. Visual information from the outside world is
first received by the eye, where the signal is focused and adjusted by the lens, and then
transmitted to the retina, which perceives and pre-processes the visual signal, extracting
relevant information from it. The processed information is then passed through the optic
nerve network and finally conveyed to the visual cortex of the brain for final processing
to form vision [132,133]. Throughout the process of vision formation, the retina extracts
the key features of the signals as they are received at the front end, thus eliminating the
need for a multitude of redundant data from the perceptual part of the visual information
and greatly reducing the pressure of data transmission, also with a much faster rate than
any other visual sensing system available today. In 2022, Yuchen Cai et al. constructed
a neuromorphic machine vision system (NMVS) (Figure 42) that integrates a front-end
retinal morphological sensor and a back-end convolutional neural network (CNN) based
on a single ferroelectric semiconductor transistor (FST) device architecture, allowing it to
display broadband retina-like light adaptation, a large dynamic range, a programmable
operation, and an accuracy of up to 93.0%, indicating its great potential for artificial bio-
logical vision [134]. A hardware solution for the CNN mentioned in that report is shown
in Figure 43, containing four parts: a convolutional layer, a pooling layer, an activation
function layer, and a fully connected layer. The architecture is mainly divided into a feature
extraction part with convolutional and down-sampling layers, and a classification part [133].
The convolutional layer is obtained by a sliding window-by-window calculation of the
convolutional kernel on the upper input layer. Each parameter in the convolutional kernel
is equivalent to a weight parameter in a traditional neural network and is connected to the
corresponding local pixel; the result on the convolutional layer is obtained by multiplying
the sum of each parameter of the convolutional kernel with the corresponding local pixel
value [135]. In convolutional neural networks, lower-level convolutional layers extract
low-level features, such as edges, lines, and corners, and higher-level convolutional layers
extract higher-level features; the data processing and circulation patterns of the two are
very similar. In 2020, Feng’s team used the WSe2/h-BN/Al2O3 heterostructure to simulate
bipolar cells and photoreceptors, integrating both types of cells through the heterostructure
to make the vision system more compact; the pixel array constructed by the device built a
reconfigurable vision sensor with an accuracy of 100% in less than 10 training cycles [63].
In 2021, Zhou’s team used a device constructed from the WSe2/h-BN heterostructure to
simulate the positive/negative photocurrent response of bipolar cells in the retina, and then
used the device to build an integrated retinal simulation device to achieve 100% separation
detection of moving trichromatic trolleys without ghosting [62]. In 2022, Chai et al. used a
double layer of MoS2 phototransistors to simulate horizontal and photoreceptor cells in the
retina; the different states of the transistors were modulated by a trap capture mechanism,
allowing the phototransistor array to display both light/dark adaptation states, creating
an effective sensing range (up to 199 dB) and enabling image contrast enhancement [96].
In addition, visual synaptic devices have also been reported, such as the aforementioned
Changhwan Choi et al., who constructed an optic nerve synaptic device using h-BN as a
channel modulation layer to regulate the conductance of the WSe2 channel, demonstrating
a visual sensing device with synaptic and optical sensing capabilities [8]. In summary,
there are two main types of neuromorphic vision sensors based on some novel devices:
(1) dismembering the parts of the human visual system to analyze their working mecha-
nisms and constructing corresponding architectural devices with a view to reproducing
their functions; (2) building artificial optoelectronic synaptic devices to simulate the work-
ings of visual neural networks. In comparison, the first option is closer to the one in which
researchers simulate visual sensing through human organs and cells, and it is easier to
imitate the working mechanism of an individual particular part; the disadvantage lies
in the fact that scientists today do not have a thorough understanding of the mode of
operation of various types of working cells, but only a general description of their role
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and macroscopic regulatory mechanisms at the systemic level. As far as optoelectronic
synaptic devices are concerned, FET-based optical signal modulation synaptic devices can
be used as large bandwidth, low interconnection energy devices and help build new neural
network architectures. With the current trend in brain-like and neuromorphic computing,
visual sensors built with synaptic and neural components may be more easily integrated
and coupled into various neuro-mimetic circuits in the future [40,41]. However, there are
still some challenges that need to be overcome, such as device reliability, reproducibility,
etc. Only a small fraction of excitatory synaptic functions have been simulated, and more
researchers are expected to study them in the future to bring us more results for the benefit
of humanity.

Figure 41. Schematic diagram of the human vision system architecture.

Figure 42. Hardware implementation of FST-based NMVS [134]. © 2022 Wiley-VCH GmbH.

Figure 43. CNN computation flow diagram [135]. Copyright © 2020, IEEE.
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7. Conclusions and Future Perspectives

In this review, the new emerging materials used as the channel materials and gate stack
layers used as modulation mediums for memtransistor fabrications are discussed. First, we
discuss the resistive switching mechanisms related to the different device fabrications. The
key characteristics of memtransistors are demonstrated in Section 2. Then, we focus on the
main emerging trends in memtransistors, such as 2D materials stack-based memtransistors,
the charging carrier in the interface, and the stacking sequence, which have an important
influence on the device characteristics. As for the voltage-tunable ferroelectric domain
structure memtransistors, the resistive switching characteristics result in the ferroelectric
gate modulation. The role of ferroelectric polarization on the channel materials is discussed
in detail. How to design the structure of ferroelectric synapse devices, and some techno-
logical measures to improve the properties of ferroelectric media (for example, annealing
after the precipitation of ferroelectric medium) also have potential influence on the resistive
switching characteristics. It is worth pointing out that the hafnium-based material’s com-
patibility and excellent ferroelectricity enable the transistor to be continuously modulated,
giving the device greater potential in future neuromorphic applications. At the same time,
the non-negligible depolarization effect due to the non-ideal electrodes of ferroelectrics
and the polarization instability should be given more attention. Transistors in the form
of electrolyte-ion grids rely on various types of ion migration to operate in a manner that
is very similar to that of biological synapses, and therefore, have a natural advantage in
simulating biological synaptic operations and behaviors. In this context, important artifi-
cial synapse characteristics, such as paired-pulse facilitation (PPF), spike-rate-dependent
characteristics (SRDP), and spike-timing-dependent plasticity (STDP), potentiation, and
depression behavior, are demonstrated.

New artificial synaptic devices indicate a new route for neural morphology computing.
However, there are still a number of issues to be resolved in the process of preparing various
synaptic devices. Due to their exceptional external sensitivity, two-dimensional materials
have been widely utilized in the development of memristor-based synaptic devices. How-
ever, the industrial preparation technology for large-scale, high-quality, and wafer-level
two-dimensional materials is still very complicated; the bonding, interface optimization,
and dependability of two-dimensional materials with other types of semiconductor ma-
terials require additional research. These issues impede the large-scale integration of
two-dimensional synaptic device series arrays. The discovery of ferroelectric polarization
in hafnium materials enables the incorporation of ferroelectric transistors into the existing
mature CMOS technology. However, at smaller dimensions, the ferroelectric characteris-
tics of hafnium-based materials are significantly impacted by oxygen vacancies, interface
traps, etc., which have a significant impact on the normal operation of devices. The use
of electrolyte materials as gate media can improve the capacity to control carriers in the
channel, but in the presence of a rapidly varying electric field, the protons in the gate media
are unable to respond in time, hence slowing the device’s response speed. In addition to
the inherent drawbacks of various types of synaptic devices, synaptic devices face some
common obstacles: the simulation degree of existing artificial synaptic devices for the
synaptic mechanism is still relatively shallow, the majority of devices can only simulate
basic synaptic behavior, and the cognitive level of the higher-level plasticity-containing
learning mechanism is low. Existing reported synaptic devices have no benefit in terms
of device performance over traditional devices with established technology. Researchers
must investigate the stability of gadget function and the ongoing shrinking of feature
size. In addition, there are no industry-recognized evaluation standards for comparing
the performance of various types of synaptic devices. In the design of circuit networks,
the emergence of multi-terminal memtransistors gives a novel solution to the problem
of series current leakage channels in the two-terminal device circuit networks. However,
in order for the synaptic device to accurately and efficiently operate, it must be subject
to stringent and stable control, so it is necessary to implement a larger-scale peripheral
circuit, which reduces the working efficiency and scalability of the circuit and imposes
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stricter requirements on how to ensure the uniformity of device performance during device
preparation [30,61,85,86,136].

Overall, emerging memtransistors present exciting opportunities to improve device
performance and new operation mechanisms for neuromorphic system applications. Re-
search at the material, device, and system levels should be simultaneously adopted. The
future of neuromorphic computing is expected to be used in all kinds of life and work
scenarios, and high efficiency and low power consumption are still the goals of future
circuit system development, applied to future human intelligent living patterns and to
improve our living conditions.

Author Contributions: Conceptualization, M.Z.; formal analysis, M.Z. and T.Y.; investigation, M.Z.,
T.Y., Z.F. and C.J.; resources, M.Z., T.Y., Z.F. and C.J.; writing—original draft preparation, T.Y. and
M.Z.; writing—review and editing, M.Z.; visualization, T.Y.; supervision, M.Z.; project administration,
M.Z.; funding acquisition, M.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: We acknowledge support from the Opening Project of Key Laboratory of Microelectronics
Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences under
Grant No. E1YS034 and Y9YS034001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the date is from the references we have cited.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lukas, M.; Joanna, S.; Stefan, W.; Dmitry, K.; Aday, J.; Thomas, M. Ultrafast machine vision with 2D material neural network

image sensors. Nature 2022, 579, 62–66.
2. Ming, C.; Lixue, X.; Zhenhua, Z.; Yi, C.; Yuan, X.; Yu, W.; Huazhong, Y. TIME: A Training-in-memory Architecture for Memristor-

based Deep Neural Networks. In Proceedings of the 54th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX,
USA, 18–22 June 2017; pp. 1–6.

3. Eyal, R.; Sergey, G.; Daniel, S.; Shahar, K. A fully analog memristor-based neural network with online gradient training. In
Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016;
pp. 1394–1397.

4. Leon, O.C. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519.
5. Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83, Erratum in Nature

2009, 459, 1154. [CrossRef] [PubMed]
6. Yang, J.J.; Strukov, D.B.; Stewart, D.R. Memristive devices for computing. Nat. Nanotechnol. 2012, 8, 13–24. [CrossRef] [PubMed]
7. Kuzum, D.; Yu, S.; Wong, H.P. Synaptic electronics: Materials, devices and applications. Nanotechnology 2013, 24, 382001.

[CrossRef]
8. Ielmini, D.; Wong, H.-S.P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333–343. [CrossRef]
9. Mohammed, A.Z.; John Paul, S.; Wei, D.L. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29.
10. Stoddart, A. Electronic devices: Making multi-terminal memtransistors. Nat. Rev. Mater. 2018, 3, 18014. [CrossRef]
11. John, R.A.; Tiwari, N.; Patdillah, M.I.B.; Kulkarni, M.R.; Tiwari, N.; Basu, J.; Bose, S.K.; Ankit, Y.C.J.; Nirmal, A. Self healable

neuromorphic memtransistor elements for decentralized sensory signal processing in robotics. Nat. Commun. 2020, 11, 4030.
[CrossRef]

12. Huang, C.H.; Chang, H.; Yang, T.Y.; Wang, Y.C.; Chueh, Y.L.; Nomura, K. Artificial synapse based on a 2D-SnO2 memtransistor
with dynamically tunable analog switching for neuromorphic computing. ACS Appl. Mater. Interfaces 2021, 13, 52822–52832.
[CrossRef]

13. Liao, K.; Lei, P.; Tu, M.; Luo, S.; Jiang, T.; Jie, W.; Hao, J. Memristor Based on Inorganic and Organic Two-Dimensional Materials:
Mechanisms, Performance, and Synaptic Applications. ACS Appl. Mater. Interfaces 2021, 13, 32606–32623. [CrossRef] [PubMed]

14. Feichi, Z.; Jiewei, C.; Xiaoming, T.; Xinran, W.; Yang, C. 2D Materials Based Optoelectronic Memory: Convergence of Electronic
Memory and Optical Sensor. AAAS Res. 2019, 17.

15. Boyn, S.; Grollier, J.; Lecerf, G.; Xu, B.; Locatelli, N.; Fusil, S.; Girod, S.; Carrétéro, C.; Garcia, K.; Xavier, S.; et al. Learning through
ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 2017, 8, 14736. [CrossRef] [PubMed]

https://doi.org/10.1038/nature06932
https://www.ncbi.nlm.nih.gov/pubmed/18451858
https://doi.org/10.1038/nnano.2012.240
https://www.ncbi.nlm.nih.gov/pubmed/23269430
https://doi.org/10.1088/0957-4484/24/38/382001
https://doi.org/10.1038/s41928-018-0092-2
https://doi.org/10.1038/natrevmats.2018.14
https://doi.org/10.1038/s41467-020-17870-6
https://doi.org/10.1021/acsami.1c18329
https://doi.org/10.1021/acsami.1c07665
https://www.ncbi.nlm.nih.gov/pubmed/34253011
https://doi.org/10.1038/ncomms14736
https://www.ncbi.nlm.nih.gov/pubmed/28368007


Sensors 2023, 23, 5413 37 of 41

16. Kang, D.; Jang, J.T.; Park, S.; Ansari, M.H.R.; Bae, J.-H.; Choi, S.-J.; Kim, D.M.; Kim, C.; Cho, S.; Kim, D.H. Threshold-Variation-
Tolerant Coupling-Gate α-IGZO Synaptic Transistor for More Reliably Controllable Hardware Neuromorphic System. IEEE
Access 2021, 9, 59345–59352. [CrossRef]

17. Yu, E.; Cho, S.; Park, B.-G. A Silicon-Compatible Synaptic Transistor Capable of Multiple Synaptic Weights toward Energy-Efficient
Neuromorphic Systems. Electronics 2019, 8, 1102. [CrossRef]

18. Yu, S.; Cho, K.; Park, B.-G. A Quantum-Well Charge-Trap Synaptic Transistor with Highly Linear Weight Tunability. IEEE J.
Electron Devices Soc. 2020, 8, 834–840. [CrossRef]

19. Wong, H.S.P.; Lee, H.Y.; Yu, S.; Chen, Y.S.; Wu, Y.; Chen, P.S.; Lee, B.; Chen, F.T.; Tsai, M.J. Metal–Oxide RRAM. Proc. IEEE 2012,
100, 1951–1970. [CrossRef]

20. Seok, J.Y.; Song, S.J.; Yoon, J.H.; Yoon, K.J.; Park, T.H.; Kwon, D.E.; Lim, H.; Kim, G.H.; Jeong, D.S.; Hwang, C.S. A Review of
Three-Dimensional Resistive Switching Cross-Bar Array Memories from the Integration and Materials Property Points of View.
Adv. Funct. Mater. 2014, 24, 5316–5339. [CrossRef]

21. Zhu, D.; Li, Y.; Shen, W.; Zhou, Z.; Liu, L.; Zhang, X. Resistive random access memory and its applications in storage and
nonvolatile logic. J. Semicond. 2017, 38, 071002. [CrossRef]

22. Raoux, S.; Burr, G.W.; Breitwisch, M.J.; Rettner, C.T.; Chen, Y.-C.; Shelby, R.M.; Salinga, M.; Krebs, D.; Chen, S.-H.; Lung, H.-L.;
et al. Phase-change random access memory: A scalable technology. IBM J Resd Dev. 2008, 52, 465. [CrossRef]

23. Tehrani, S.; Slaughter, J.; Chen, E.; Durlam, M.; Shi, J.; DeHerren, M. Progress and outlook for MRAM technology. IEEE Trans.
Magn. 1999, 35, 2814–2819. [CrossRef]

24. Attwell, D.; Laughlin, S.B. An Energy Budget for Signaling in the Grey Matter of the Brain. J. Cereb. Blood Flow Metab. 2001, 21,
1133–1145. [CrossRef] [PubMed]

25. Indiveri, G.; Liu, S.-C. Memory and Information Processing in Neuromorphic Systems. Proc. IEEE 2015, 103, 1379–1397. [CrossRef]
26. Machens, C.K. Building the Human Brain. Science 2012, 338, 1156–1157. [CrossRef] [PubMed]
27. Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B.D.; Adam, G.C.; Likharev, K.K.; Strukov, D.B. Training and operation of an integrated

neuromorphic network based on metal-oxide memristors. Nature 2015, 521, 61–64. [CrossRef]
28. Esser, S.K.; Merolla, P.A.; Arthur, J.V.; Cassidy, A.S.; Appuswamy, R.; Andreopoulos, A.; Berg, D.J.; McKinstry, J.L.; Melano, T.;

Barch, D.R.; et al. Convolutional networks for fast, energy-efficient neuromorphic computing. arXiv 2016, arXiv:1603.08270.
[CrossRef]

29. Cheng, Z.; Ríos, C.; Pernice, W.H.P.; Wright, C.D.; Bhaskaran, H. On-chip photonic synapse. Sci. Adv. 2017, 3, e1700160. [CrossRef]
30. Xiao, Z.; Huang, J. Energy-Efficient Hybrid Perovskite Memristors and Synaptic Devices. Adv. Electron. Mater. 2016, 2, 1600100.

[CrossRef]
31. Destexhe, A.; Marder, E. Plasticity in single neuron and circuit computations. Nature 2004, 431, 789–795. [CrossRef]
32. Zucker, R.S.; Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405. [CrossRef]
33. Zheng-Dong, L.; Ming-Min, Y.; Yang, L.; Marin, A. Emerging Opportunities for 2D Semiconductor/Ferroelectric Transistor-

Structure Devices. Adv. Mater. 2021, 33, 2005620.
34. Oh, S.; Hwang, H.; Yoo, I.K. Ferroelectric materials for neuromorphic computing. APL Mater. 2019, 7, 091109. [CrossRef]
35. Peisong, W.; Ting, H.; He, Z.; Yang, W.; Qing, L.; Zhen, W.; Xiao, F.; Fang, W.; Peng, W. Next-generation machine vision systems

incorporating two-dimensional materials: Progress and perspectives. Infomat 2022, 4, 12275.
36. Sung Hyun, J.; Ting, C.; Idongesit, E.; Bhavitavya, B.; Pinaki, M.; Wei, L. Nanoscale Memristor Device as Synapse in Neuromorphic

Systems. Nano Lett. 2010, 10, 1297–1301.
37. Zhou, F.; Zhou, Z.; Chen, J.; Choy, T.H.; Wang, J.; Zhang, N.; Lin, Z.; Yu, S.; Kang, J.; Wong, H.-S.P.; et al. Optoelectronic resistive

random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782. [CrossRef]
38. Evelyn, T.; Halid, M.; Thomas, M. Perspective on ferroelectric, hafnium oxide based transistors for digital beyond von-Neumann

computing. Appl. Phys. Lett. 2021, 118, 050501.
39. Bai, S.; Tao, G.; Guangdong, Z.; Shubham, R.; Yixuan, J.; Lan, W.Y.; Norman, Z.; Yimin, A.W. Synaptic devices based neuromorphic

computing applications inartificial intelligence. Mater. Today Phys. 2021, 18, 100393.
40. Chai, Y.S.; Chun, S.H.; Sun, Y.; Kim, K.H. Charge-Driven Transtive Devices via Electric Field Control of Magnetism in a Helimagnet.

Am. Phys. Soc. 2021, 5, 054046. [CrossRef]
41. He, C.; Tang, J.; Shang, D.-S.; Tang, J.; Xi, Y.; Wang, S.; Li, N.; Zhang, Q.; Lu, J.-K.; Wei, Z.; et al. Artificial Synapse Based on van

der Waals Heterostructures withTunable Synaptic Functions for Neuromorphic Computing. ACS Appl. Mater. Interfaces. 2020,
12, 11945. [CrossRef]

42. Kaneko, Y.; Nishitani, Y.; Ueda, M.; Tsujimura, A. Neural network based on a three-terminal ferroelectric memristor to enable
on-chip pattern recognition. In VlSI Technology; IEEE: New York, NY, USA, 2013.

43. Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [CrossRef]
44. Zhang, D.; Schoenherr, P.; Sharma, P.; Seidel, J. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater. 2022, 8,

25–40. [CrossRef]
45. Sun, X.; Zhu, C.; Yi, J.; Xiang, L.; Ma, C.; Liu, H.; Zheng, B.; Liu, Y.; You, W.; Zhang, W.; et al. Reconfigurable logic-in-memory

architectures based on a two-dimensional van der Waals heterostructure device. Nat. Electron. 2022, 5, 752–760. [CrossRef]
46. Liao, J.; Wen, W.; Wu, J.; Zhou, Y.; Hussain, S.; Hu, H.; Li, J.; Liaqat, A.; Zhu, H.; Jiao, L.; et al. Van der Waals Ferroelectric

Semiconductor Field Effect Transistor for In-Memory Computing. ACS Nano 2023, 17, 6095–6102. [CrossRef] [PubMed]

https://doi.org/10.1109/ACCESS.2021.3072688
https://doi.org/10.3390/electronics8101102
https://doi.org/10.1109/JEDS.2020.3011409
https://doi.org/10.1109/JPROC.2012.2190369
https://doi.org/10.1002/adfm.201303520
https://doi.org/10.1088/1674-4926/38/7/071002
https://doi.org/10.1147/rd.524.0465
https://doi.org/10.1109/20.800991
https://doi.org/10.1097/00004647-200110000-00001
https://www.ncbi.nlm.nih.gov/pubmed/11598490
https://doi.org/10.1109/JPROC.2015.2444094
https://doi.org/10.1126/science.1231865
https://www.ncbi.nlm.nih.gov/pubmed/23197519
https://doi.org/10.1038/nature14441
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1126/sciadv.1700160
https://doi.org/10.1002/aelm.201600100
https://doi.org/10.1038/nature03011
https://doi.org/10.1146/annurev.physiol.64.092501.114547
https://doi.org/10.1063/1.5108562
https://doi.org/10.1038/s41565-019-0501-3
https://doi.org/10.1103/PhysRevApplied.16.054046
https://doi.org/10.1021/acsami.9b21747
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/s41578-022-00484-3
https://doi.org/10.1038/s41928-022-00858-z
https://doi.org/10.1021/acsnano.3c01198
https://www.ncbi.nlm.nih.gov/pubmed/36912657


Sensors 2023, 23, 5413 38 of 41

47. Mikolajick, T.; Slesazeck, S.; Schroeder, U.; Lomenzo, P.D.; Breyer, E.T.; Mulaosmanovic, H.; Hoffmann, M.; Mittmann, T.;
Mehmood, F.; Max, B. Next Generation Ferroelectric Memories enabled by Hafnium Oxide. In Proceedings of the 2019 IEEE
International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 15.5.1–15.5.4. [CrossRef]

48. Hojoon, R.; Haonan, W.; Fubo, R.; Wenjuan, Z. Ferroelectric Tunneling Junctions Based on Aluminum oxide/ Zirconium-Doped
Hafnium oxide for neuromorphic computing. Sci. Rep. 2019, 9, 20383.

49. Nicolò, Z.; Paolo, P.; Muhammad, A.A. A memory window expression to evaluate the endurance of ferroelectric FETs. Appl. Phys.
Lett. 2022, 117, 152901.

50. Aziz, A.; Breyer, E.T.; Chen, A.; Chen, X.; Datta, S.; Gupta, S.K.; Hoffmann, M.; Hu, X.S.; Ionescu, A.; Jerry, M.; et al. Computing
with ferroelectric FETs: Devices, models, systems, and applications. In Proceedings of the 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 1289–1298.

51. Mulaosmanovic, H.; Breyer, E.T.; Dünkel, S.; Beyer, S.; Mikolajick, T.; Slesazeck, S. Ferroelectric field-effect transistors based on
HfO2: A review. Nanotechnology 2021, 32, 502002. [CrossRef] [PubMed]

52. Cady, W.G. Piezoelectricity: Volume Two: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals;
Courier Dover Publications: New York, NY, USA, 2018.

53. Böscke, T.S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011,
99, 102903. [CrossRef]

54. Qin, S.; Liu, Y.; Wang, X.; Xu, Y.; Shi, Y.; Zhang, R.; Wang, F. Light-activated artificial synapses based on graphene hybrid
phototransistors. In CLEO: Science and Innovations; Optica Publishing Group: Washington, DC, USA, 2016; p. SW1R.4. [CrossRef]

55. Chen, L.; Wang, L.; Peng, Y.; Feng, X.; Sarkar, S.; Li, S.; Li, B.; Liu, L.; Han, K.; Gong, X.; et al. A van der Waals Synaptic Transistor
Based on Ferroelectric Hf0.5Zr0.5O2 and 2D Tungsten Disulfide. Adv. Electron. Mater. 2020, 6, 2000057. [CrossRef]

56. Bliss, T.; Collingridge, G. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 1993, 361, 31–39.
[CrossRef]

57. Bi, G.Q.; Poo, M.M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength,
and postsynaptic cell type. J. Neurosci. 1998, 18, 10464–10472. [CrossRef]

58. Wang, J.; Chen, Y.; Kong, L.-A.; Fu, Y.; Gao, Y.; Sun, J. Deep-ultraviolet-triggered neuromorphic functions in In-Zn-O phototransis-
tors. Appl. Phys. Lett. 2018, 113, 151101. [CrossRef]

59. Xianbao, B.; Han, X.; Dashan, S.; Yue, L.; Hangbing, L.; Qi, L. Ion-Gated Transistor: An Enabler for Sensing and Computing
Integration. Adv. Intell. Syst. 2020, 2, 2000156.

60. Yao, Y.; Huang, W.; Chen, J.; Wang, G.; Chen, H.; Zhuang, X.; Ying, Y.; Ping, J.; Marks, T.J.; Facchetti, A. Flexible complementary
circuits operating at sub-0.5V via hybrid organic–inorganic electrolyte-gated transistors. Proc. Acad. Natl. Sci. USA 2021,
118, 2111790118. [CrossRef] [PubMed]

61. Jiang, S.; Nie, S.; He, Y.; Liu, R.; Chen, C.; Wan, Q. Emerging synaptic devices: From two-terminal memristors to multiterminal
neuromorphic transistors. Mater. Today Nano 2019, 8, 100059. [CrossRef]

62. Zhang, Z.; Wang, S.; Liu, C.; Xie, R.; Hu, W.; Zhou, P. All-in-one two-dimensional retinomorphic hardware device for motion
detection and recognition. Nat. Nanotechnol. 2021, 17, 27–32. [CrossRef] [PubMed]

63. Wang, C.-Y.; Liang, S.-J.; Wang, S.; Wang, P.; Li, Z.; Wang, Z.; Gao, A.; Pan, C.; Liu, C.; Liu, J.; et al. Gate-tunable van der Waals
heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 2020, 6, eaba6173. [CrossRef]

64. Seo, S.; Jo, S.-H.; Kim, S.; Shim, J.; Oh, S.; Kim, J.-H.; Heo, K.; Choi, J.-W.; Choi, C.; Oh, S.; et al. Artificial optic-neural synapse for
colored and color-mixed pattern recognition. Nat. Commun. 2018, 9, 1–8. [CrossRef]

65. Pi, L.; Wang, P.; Liang, S.-J.; Luo, P.; Wang, H.; Li, D.; Li, Z.; Chen, P.; Zhou, X.; Miao, F.; et al. Broadband convolutional processing
using band-alignment-tunable heterostructures. Nat. Electron. 2022, 5, 248–254. [CrossRef]

66. Xiang, D.; Liu, T.; Xu, J.; Tan, J.Y.; Hu, Z.; Lei, B.; Zheng, Y.; Wu, J.; Neto, A.H.C.; Liu, L.; et al. Two-dimensional multibit
optoelectronic memory with broadband spectrum distinction. Nat. Commun. 2018, 9, 2966. [CrossRef]

67. Wang, S.; Chen, C.; Yu, Z.; He, Y.; Chen, X.; Wan, Q.; Shi, Y.; Zhang, D.W.; Zhou, H.; Wang, X.; et al. A MoS2 /PTCDA hybrid
heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 2019, 31, 1806227. [CrossRef]

68. Tian, H.; Cao, X.; Xie, Y.; Yan, X.; Kostelec, A.; DiMarzio, D.; Chang, C.; Zhao, L.-D.; Wu, W.; Tice, J.; et al. Emulating Bilingual
Synaptic Response Using a Junction-Based Artificial Synaptic Device. ACS Nano 2017, 11, 7156–7163. [CrossRef] [PubMed]

69. Lipatov, A.; Sharma, P.; Gruverman, A.; Sinitskii, A. Optoelectrical Molybdenum Disulfide (MoS2)-Ferroelectric Memories. ACS
Nano 2015, 9, 8089–8098. [CrossRef] [PubMed]

70. Chou, C.; Lin, Y.; Huang, Y.; Chan, C.; Wu, Y. Junctionless Poly-GeSn ferroelectric thin-film transistors with improved reliability
by interface engineering for neuromorphic computing. ACS Appl. Mater. Interfaces 2020, 12, 1014–1023. [CrossRef] [PubMed]

71. Oh, S.; Kim, T.; Kwak, M.; Song, J.; Woo, J.; Jeon, S.; Yoo, I.K.; Hwang, H. HfZrOx-Based Ferroelectric Synapse Device with
32 Levels of Conductance States for Neuromorphic Applications. IEEE Electron Device Lett. 2017, 38, 732–735. [CrossRef]

72. Jerry, M.; Smith, J.A.; Ni, K.; Saha, A.; Gupta, S.; Datta, S. Insights on the DC Characterization of Ferroelectric Field-Effect-
Transistors. In Proceedings of the 2018 76th Device Research Conference (DRC), Santa Barbara, CA, USA, 24–27 June 2018;
pp. 1–2.

73. Kaneko, Y.; Nishitani, Y.; Ueda, M. Ferroelectric Artificial Synapses for Recognition of a Multishaded Image. IEEE Trans. Electron
Devices 2014, 61, 2827–2833. [CrossRef]

74. Kim, M.-K.; Lee, J.-S. Ferroelectric Analog Synaptic Transistors. Nano Lett. 2019, 19, 2044–2050. [CrossRef]

https://doi.org/10.1109/iedm19573.2019.8993447
https://doi.org/10.1088/1361-6528/ac189f
https://www.ncbi.nlm.nih.gov/pubmed/34320479
https://doi.org/10.1063/1.3634052
https://doi.org/10.1364/cleo_si.2016.sw1r.4
https://doi.org/10.1002/aelm.202000057
https://doi.org/10.1038/361031a0
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1063/1.5039544
https://doi.org/10.1073/pnas.2111790118
https://www.ncbi.nlm.nih.gov/pubmed/34716274
https://doi.org/10.1016/j.mtnano.2019.100059
https://doi.org/10.1038/s41565-021-01003-1
https://www.ncbi.nlm.nih.gov/pubmed/34750561
https://doi.org/10.1126/sciadv.aba6173
https://doi.org/10.1038/s41467-018-07572-5
https://doi.org/10.1038/s41928-022-00747-5
https://doi.org/10.1038/s41467-018-05397-w
https://doi.org/10.1002/adma.201806227
https://doi.org/10.1021/acsnano.7b03033
https://www.ncbi.nlm.nih.gov/pubmed/28656774
https://doi.org/10.1021/acsnano.5b02078
https://www.ncbi.nlm.nih.gov/pubmed/26222209
https://doi.org/10.1021/acsami.9b16231
https://www.ncbi.nlm.nih.gov/pubmed/31814384
https://doi.org/10.1109/LED.2017.2698083
https://doi.org/10.1109/TED.2014.2331707
https://doi.org/10.1021/acs.nanolett.9b00180


Sensors 2023, 23, 5413 39 of 41

75. Halter, M.; Bégon-Lours, L.; Bragaglia, V.; Sousa, M.; Offrein, B.J.; Abel, S.; Luisier, M.; Fompeyrine, J. Back-End, CMOS-
Compatible Ferroelectric Field-Effect Transistor for Synaptic Weights. ACS Appl. Mater. Interfaces 2020, 12, 17725–17732.
[CrossRef]

76. Liu, K.; Zhang, T.; Dang, B.; Bao, L.; Xu, L.; Cheng, C.; Yang, Z.; Huang, R.; Yang, Y. An optoelectronic synapse based on
α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 2022, 5, 761–773.
[CrossRef]

77. Wang, H.; Zhao, Q.; Ni, Z.; Li, Q.; Liu, H.; Yang, Y.; Wang, L.; Ran, Y.; Guo, Y.; Hu, W.; et al. A Ferroelectric/Electrochemical
Modulated Organic Synapse for Ultraflexible, Artificial Visual-Perception System. Adv. Mater. 2018, 30, 1803961. [CrossRef]

78. Wang, L.; Liao, W.; Wong, S.L.; Yu, Z.G.; Li, S.; Lim, Y.; Feng, X.; Tan, W.C.; Huang, X.; Chen, L.; et al. Artificial Synapses Based on
Multiterminal Memtransistors for Neuromorphic Application. Adv. Funct. Mater. 2019, 29, 1901106. [CrossRef]

79. Sharbati, M.T.; Du, Y.; Torres, J.; Ardolino, N.D.; Yun, M.; Xiong, F. Low-power, electrochemically tunable graphene synapses for
neuromorphic computing. Adv. Mater. 2018, 30, 1802353. [CrossRef] [PubMed]

80. Yang, C.; Shang, D.; Liu, N.; Fuller, E.J.; Agrawal, S.; Talin, A.A.; Li, Y.; Shen, B.; Sun, Y. All-Solid-State Synaptic Transistor with
Ultralow Conductance for Neuromorphic Computing. Adv. Funct. Mater. 2018, 28, 1804170. [CrossRef]

81. Yang, C.S.; Shang, D.S.; Liu, N.; Shi, G.; Shen, X.; Yu, R.C.; Li, Y.Q.; Sun, Y. A Synaptic Transistor based on Quasi-2D Molybdenum
Oxide. Adv. Mater. 2017, 29, 1800195. [CrossRef]

82. Zhu, J.; Yang, Y.; Jia, R.; Liang, Z.; Zhu, W.; Rehman, Z.U.; Bao, L.; Zhang, X.; Cai, Y.; Song, L.; et al. Ion Gated Synaptic Transistors
Based on 2D van Der Waals Crystals with Tunable Diffusive Dynamics. Adv. Mater. 2018, 30, 1800195. [CrossRef] [PubMed]

83. Huh, W.; Jang, S.; Lee, J.Y.; Lee, D.; Lee, J.M.; Park, H.; Kim, J.C.; Jeong, H.Y.; Wang, G.; Lee, C. Synaptic Barristor Based on
Phase-Engineered 2D Heterostructures. Adv. Mater. 2018, 30, e1801447. [CrossRef]

84. Jang, J.W.; Park, S.; Burr, G.W.; Hwang, H.; Jeong, Y.H. Optimization of Conductance Change in Pr1–xCaxMnO3-Based Synaptic
Devices for Neuromorphic Systems. IEEE Electron Device Lett. 2015, 36, 457–459. [CrossRef]

85. Seo, S.; Lee, J.-J.; Lee, H.-J.; Lee, H.W.; Oh, S.; Heo, K.; Park, J.-H. Recent Progress in Artificial Synapses Based on Two-Dimensional
van der Waals Materials for Brain-Inspired Computing. ACS Appl. Electron. Mater. 2020, 2, 371–388. [CrossRef]

86. Castellanos-Gomez, A.; Duan, X.; Fei, Z.; Gutierrez, H.R.; Huang, Y.; Huang, X.; Quereda, J.; Qian, Q.; Sutter, E. Van der Waals
heterostructures. Nat. Rev. Methods Prim. 2022, 2, 58. [CrossRef]

87. Sangwan, V.K.; Lee, H.-S.; Bergeron, H.; Balla, I.; Beck, M.E.; Chen, K.-S.; Hersam, M.C. Multi-terminal memtransistors from
polycrystalline monolayer molybdenum disulfide. Nature 2018, 554, 500–504. [CrossRef]

88. Park, W.; Jang, H.Y.; Nam, J.H.; Kwon, J.-D.; Cho, B.; Kim, Y. Artificial 2D van der Waals Synapse Devices via Interfacial
Engineering for Neuromorphic Systems. Nanomaterials 2020, 10, 88. [CrossRef]

89. Pan, C.; Wang, C.-Y.; Liang, S.-J.; Wang, Y.; Cao, T.; Wang, P.; Wang, C.; Wang, S.; Cheng, B.; Gao, A.; et al. Reconfigurable
logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 2020, 3, 383–390.
[CrossRef]

90. Hao, S.; Ji, X.; Liu, F.; Zhong, S.; Pang, K.; Lim, K.; Chong, T.; Zhao, R. Monolayer MoS2/WO3 Heterostructures with Sulfur
Anion Reservoirs as Electronic Synapses for Neuromorphic Computing. ACS Appl. Nano Mater. 2021, 4, 1766–1775. [CrossRef]

91. Lee, S.-J.; Lin, Z.; Huang, J.; Choi, C.S.; Chen, P.; Liu, Y.; Guo, J.; Jia, C.; Wang, Y.; Wang, L.; et al. Programmable devices based on
reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nat. Electron. 2020, 3, 630–637.
[CrossRef]

92. Choi, M.S.; Lee, G.-H.; Yu, Y.-J.; Lee, D.-Y.; Lee, S.H.; Kim, P.; Hone, J.; Yoo, W.J. Controlled charge trapping by molybdenum
disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 2013, 4, 1624. [CrossRef] [PubMed]

93. Liu, C.; Yan, X.; Song, X.; Ding, S.; Zhang, D.W.; Zhou, P. A semi-floating gate memory based on van der Waals heterostructures
for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404–410. [CrossRef] [PubMed]

94. Vu, Q.A.; Shin, Y.S.; Kim, Y.R.; Nguyen, V.L.; Kang, W.T.; Kim, H.; Luong, D.H.; Lee, I.M.; Lee, K.; Ko, D.-S.; et al. Two-terminal
floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 2016, 7, 12725. [CrossRef]

95. Lee, J.; Pak, S.; Lee, Y.-W.; Cho, Y.; Hong, J.; Giraud, P.; Shin, H.S.; Morris, S.M.; Sohn, J.I.; Cha, S.; et al. Monolayer Optical
Memory Cells Based on Artificial Trap-Mediated Charge Storage and Release. Nat. Commun. 2017, 8, 14734. [CrossRef]

96. Liao, F.; Zhou, Z.; Kim, B.J.; Chen, J.; Wang, J.; Wan, T.; Zhou, Y.; Hoang, A.T.; Wang, C.; Kang, J.; et al. Bioinspired in-sensor
visual adaptation for accurate perception. Nat. Electron. 2022, 5, 84–91. [CrossRef]

97. Tran, M.D.; Kim, H.; Kim, J.S.; Doan, M.-H.; Chau, T.K.; Vu, Q.A.; Kim, J.-H.; Lee, Y.H. Two-Terminal Multibit Optical Memory
via van der Waals Heterostructure. Adv. Mater. 2018, 31, e1807075. [CrossRef]

98. Tian, H.; Wang, X.; Wu, F.; Yang, Y.; Ren, T.-L. High Performance 2D Perovskite/Graphene Optical Synapses as Artificial Eyes.
In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018;
IEEE: New York, NY, USA, 2018; pp. 38.6.1–38.6.4.

99. Yang, Q.; Luo, Z.; Zhang, D.; Zhang, M.; Gan, X.; Seidel, J.; Liu, Y.; Hao, Y.; Han, G. Controlled Optoelectronic Response in van
der Waals Heterostructures for In-Sensor Computing. Adv. Funct. Mater. 2022, 32, 202207290. [CrossRef]

100. Das, S.; Sebastian, A.; Pop, E.; McClellan, C.J.; Franklin, A.D.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A.V.;
Appenzeller, J.; et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 2021, 4, 786–799.
[CrossRef]

https://doi.org/10.1021/acsami.0c00877
https://doi.org/10.1038/s41928-022-00847-2
https://doi.org/10.1002/adma.201803961
https://doi.org/10.1002/adfm.201901106
https://doi.org/10.1002/adma.201802353
https://www.ncbi.nlm.nih.gov/pubmed/30033599
https://doi.org/10.1002/adfm.201804170
https://doi.org/10.1002/adma.201700906
https://doi.org/10.1002/adma.201800195
https://www.ncbi.nlm.nih.gov/pubmed/29665150
https://doi.org/10.1002/adma.201801447
https://doi.org/10.1109/LED.2015.2418342
https://doi.org/10.1021/acsaelm.9b00694
https://doi.org/10.1038/s43586-022-00139-1
https://doi.org/10.1038/nature25747
https://doi.org/10.3390/nano10010088
https://doi.org/10.1038/s41928-020-0433-9
https://doi.org/10.1021/acsanm.0c03205
https://doi.org/10.1038/s41928-020-00472-x
https://doi.org/10.1038/ncomms2652
https://www.ncbi.nlm.nih.gov/pubmed/23535645
https://doi.org/10.1038/s41565-018-0102-6
https://www.ncbi.nlm.nih.gov/pubmed/29632398
https://doi.org/10.1038/ncomms12725
https://doi.org/10.1038/ncomms14734
https://doi.org/10.1038/s41928-022-00713-1
https://doi.org/10.1002/adma.201807075
https://doi.org/10.1002/adfm.202207290
https://doi.org/10.1038/s41928-021-00670-1


Sensors 2023, 23, 5413 40 of 41

101. Nishitani, Y.; Kaneko, Y.; Ueda, M.; Fujii, E.; Tsujimura, A. Dynamic Observation of Brain-Like Learning in a Ferroelectric Synapse
Device. Jpn. J. Appl. Phys. 2013, 52, 04CE06. [CrossRef]

102. Mulaosmanovic, H.; Ocker, J.; Muller, S.; Noack, M.; Muller, J.; Polakowski, P.; Mikolajick, T.; Slesazeck, S. Novel ferroelectric FET
based synapse for neuromorphic systems. In Proceedings of the 2017 Symposium on VLSI Technology, Kyoto, Japan, 5–8 June
2017.

103. Wang, X.; Chen, Y.; Wu, G.; Li, D.; Tu, L.; Sun, S.; Shen, H.; Lin, T.; Xiao, Y.; Tang, M.; et al. Two-dimensional negative capacitance
transistor with polyvinylidene fluoride-based ferroelectric polymer gating. NPJ 2D Mater. Appl. 2017, 1, 38. [CrossRef]

104. Sun, Y.; Wang, R.; Liu, K. Substrate induced changes in atomically thin 2-dimensional semiconductors: Fundamentals, engineering,
and applications. Appl. Phys. Rev. 2017, 4, 011301. [CrossRef]

105. McGuire, F.A.; Cheng, Z.; Price, K.; Franklin, A.D. Sub-60 mV/decade switching in 2D negative capacitance field-effect transistors
with integrated ferroelectric polymer. Appl. Phys. Lett. 2016, 109, 093101. [CrossRef]

106. Lao, J.; Yan, M.; Tian, B.; Jiang, C.; Luo, C.; Xie, Z.; Zhu, Q.; Bao, Z.; Zhong, N.; Tang, X.; et al. Ultralow-Power Machine Vision
with Self-Powered Sensor Reservoir. Adv. Sci. 2022, 9, 2106092. [CrossRef]

107. Tian, B.; Liu, L.; Yan, M.; Wang, J.; Zhao, Q.; Zhong, N.; Xiang, P.; Sun, L.; Peng, H.; Shen, H.; et al. A Robust Artificial Synapse
Based on Organic Ferroelectric Polymer. Adv. Electron. Mater. 2019, 5, 1800600. [CrossRef]

108. Nalwa, S.H. A review of molybdenum disulfide (MoS2) based photodetectors: From ultra-broadband, self-powered to flexible
devices. RSC Adv. 2020, 10, 30529–30602. [CrossRef]

109. Ding, W.; Zhu, J.; Wang, Z.; Gao, Y.; Xiao, D.; Gu, Y.; Zhang, Z.; Zhu, W. Prediction of intrinsic two-dimensional ferroelectrics in
In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 2017, 8, 14956. [CrossRef]

110. Han, G.; Chen, Z.-G.; Drennan, J.; Zou, J. Indium Selenides: Structural Characteristics, Synthesis and Their Thermoelectric
Performances. Small 2014, 10, 2747–2765. [CrossRef]

111. Wang, L.; Wang, X.; Zhang, Y.; Ma, T.; Leng, K.; Chen, Z.; Abdelwahab, I.; Loh, K.P. Exploring Ferroelectric Switching in α-In2Se3
for Neuromorphic Computing. Adv. Funct. Mater. 2020, 30, 2004609. [CrossRef]

112. Rufeng, Z.; Yao, W.; Yang, T.; Yuanli, C.; Yuedan, W. Organic Electrochemical Transistor based on Polypyrrole/Crosslinked
Chitosan/Nylon Fibers. J. Wuhan Univ. Technol. Mater. Sci. 2022, 37, 1080–1086.

113. Yang, Y.; He, Y.; Nie, S.; Shi, Y.; Wan, Q. Light Stimulated IGZO-Based Electric-Double-Layer Transistors for Photoelectric
Neuromorphic Devices. IEEE Electron Device Lett. 2018, 39, 897–900. [CrossRef]

114. Queenan, B.N.; Lee, K.J.; Pak, D.T.S. Wherefore Art Thou, Homeo (Stasis) Functional Diversity in Homeostatic Synaptic Plasticity.
Neural Plast. 2012, 2012, 718203. [CrossRef]

115. Lee, J.; Kaake, L.G.; Cho, J.H.; Zhu, X.-Y.; Lodge, T.P.; Frisbie, C.D. Ion Gel-Gated Polymer Thin-Film Transistors: Operating
Mechanism and Characterization of Gate Dielectric Capacitance, Switching Speed, and Stability. J. Phys. Chem. C 2009, 113,
8972–8981. [CrossRef]

116. Ye, J.T.; Inoue, S.; Kobayashi, K.; Kasahara, Y.; Yuan, H.T.; Shimotani, H.; Iwasa, Y. Liquid-gated interface superconductivity on an
atomically flat film. Nat. Mater. 2009, 9, 125–128. [CrossRef] [PubMed]

117. Zhu, L.Q.; Wan, C.J.; Guo, L.Q.; Shi, Y.; Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic
systems. Nat. Commun. 2014, 5, 3158. [CrossRef]

118. Kim, K.; Chen, C.-L.; Truong, Q.; Shen, A.M.; Chen, Y. A Carbon Nanotube Synapse with Dynamic Logic and Learning. Adv.
Mater. 2012, 25, 1693–1698. [CrossRef]

119. Wan, C.J.; Liu, Y.H.; Feng, P.; Wang, W.; Zhu, L.Q.; Liu, Z.P.; Shi, Y.; Wan, Q. Flexible Metal Oxide/Graphene Oxide Hybrid
Neuromorphic Transistors on Flexible Conducting Graphene Substrates. Adv. Mater. 2016, 28, 5878–5885. [CrossRef]

120. Jiang, J.; Guo, J.; Wan, X.; Yang, Y.; Xie, H.; Niu, D.; Yang, J.; He, J.; Gao, Y.; Wan, Q. 2D MoS2Neuromorphic Devices for Brain-Like
Computational Systems. Small 2017, 13, 1700933. [CrossRef]

121. Lu, P.-P.; Shang, D.-S.; Yang, C.-S.; Sun, Y. An organic synaptic transistor with Nafion electrolyte. J. Phys. D Appl. Phys. 2020,
53, 485102. [CrossRef]

122. Fuller, E.J.; Gabaly, F.E.; Léonard, F.; Agarwal, S.; Plimpton, S.J.; Jacobs-Gedrim, R.B.; James, C.D.; Marinella, M.J.; Talin, A.A.
Li-Ion Synaptic Transistor for Low Power Analog Computing. Adv. Mater. 2017, 29, 1604310. [CrossRef] [PubMed]

123. Joksas, D.; AlMutairi, A.; Lee, O.; Cubukcu, M.; Lombardo, A.; Kurebayashi, H.; Kenyon, A.J.; Mehonic, A. Memristive, Spintronic,
and 2D Materials Based Devices to Improve and Complement Computing Hardware. Adv. Intell. Syst. 2022, 4, 2200068. [CrossRef]

124. Huang, X.; Liu, C.; Zhou, P. 2D semiconductors for specific electronic applications: From device to system. NPJ 2D Mater. Appl.
2022, 6, 51. [CrossRef]

125. Huang, J.-N.; Wang, T.; Huang, H.-M.; Guo, X. Adaptive SRM neuron based on NbO memristive device for neuromorphic
computing. Chip 2022, 1, 100015. [CrossRef]

126. Huo, Q.; Yang, Y.; Lei, D.; Fu, X.; Ren, Q.; Xu, X.; Luo, Q.; Xing, G.; Chen, C.; Si, X.; et al. A computing-in-memory macro based on
three-dimensional resistive random-access memory. Nat. Electron. 2022, 5, 469–477. [CrossRef]

127. Zhong, Y.; Tang, J.; Li, X.; Liang, X.; Liu, Z.; Li, Y.; Xi, Y.; Yao, P.; Hao, Z.; Bin Gao, B.; et al. A memristor-based analogue reservoir
computing system for real-time and power-efficient signal processing. Nat. Electron. 2022, 5, 672–681. [CrossRef]

128. Kim, M.-K.; Park, Y.; Kim, I.-J.; Lee, J.-S. Emerging Materials for Neuromorphic Devices and Systems. iScience 2020, 23, 101846.
[CrossRef]

https://doi.org/10.7567/JJAP.52.04CE06
https://doi.org/10.1038/s41699-017-0040-4
https://doi.org/10.1063/1.4974072
https://doi.org/10.1063/1.4961108
https://doi.org/10.1002/advs.202106092
https://doi.org/10.1002/aelm.201800600
https://doi.org/10.1039/D0RA03183F
https://doi.org/10.1038/ncomms14956
https://doi.org/10.1002/smll.201400104
https://doi.org/10.1002/adfm.202004609
https://doi.org/10.1109/LED.2018.2824339
https://doi.org/10.1155/2012/718203
https://doi.org/10.1021/jp901426e
https://doi.org/10.1038/nmat2587
https://www.ncbi.nlm.nih.gov/pubmed/19935665
https://doi.org/10.1038/ncomms4158
https://doi.org/10.1002/adma.201203116
https://doi.org/10.1002/adma.201600820
https://doi.org/10.1002/smll.201700933
https://doi.org/10.1088/1361-6463/abad63
https://doi.org/10.1002/adma.201604310
https://www.ncbi.nlm.nih.gov/pubmed/27874238
https://doi.org/10.1002/aisy.202200068
https://doi.org/10.1038/s41699-022-00327-3
https://doi.org/10.1016/j.chip.2022.100015
https://doi.org/10.1038/s41928-022-00795-x
https://doi.org/10.1038/s41928-022-00838-3
https://doi.org/10.1016/j.isci.2020.101846


Sensors 2023, 23, 5413 41 of 41

129. Wan, C.; Chen, G.; Fu, Y.; Wang, M.; Matsuhisa, N.; Pan, S.; Pan, L.; Yang, H.; Wan, Q.; Zhu, L.; et al. An Artificial Sensory Neuron
with Tactile Perceptual Learning. Adv. Mater. 2018, 30, e1801291. [CrossRef]

130. Li, Y.; Lu, J.; Shang, D.; Liu, Q.; Wu, S.; Wu, Z.; Zhang, X.; Yang, J.; Wang, Z.; Lv, H.; et al. Oxide-Based Electrolyte-Gated
Transistors for Spatiotemporal Information Processing. Adv. Mater. 2020, 32, 2003018. [CrossRef]

131. Ren, Y.; Tian, B.; Yan, M.; Feng, G.; Gao, B.; Yue, F.; Peng, H.; Tang, X.; Zhu, Q.; Chu, J.; et al. Associative learning of a
three-terminal memristor network for digits recognition. Sci. China Inf. Sci. 2022, 66, 122403. [CrossRef]

132. Li, J.N.; Tian, Y.H. Recent advances in neuromorphic vision sensors: A survey. Chin. J. Comput. 2021, 44, 1258–1286.
133. Krestinskaya, O.; Salama, K.N.; James, A.P. Learning in Memristive Neural Network Architectures Using Analog Backpropagation

Circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 719–732. [CrossRef]
134. Cai, Y.; Wang, F.; Wang, X.; Li, S.; Wang, Y.; Yang, J.; Yan, T.; Zhan, X.; Wang, F.; Cheng, R.; et al. Broadband Visual Adaption and

Image Recognition in a Monolithic Neuromorphic Machine Vision System. Adv. Funct. Mater. 2022, 33, 2212917. [CrossRef]
135. Krestinskaya, O.; James, A.P.; Chua, L.O. Neuromemristive Circuits for Edge Computing: A Review. IEEE Trans. Neural Netw.

Learn. Syst. 2019, 31, 4–23. [CrossRef] [PubMed]
136. Li, N.; Wang, Q.; He, C.; Li, J.; Li, X.; Shen, C.; Huang, B.; Tang, J.; Yu, H.; Wang, S.; et al. 2D Semiconductor Based Flexible

Photoresponsive Ring Oscillators for Artificial Vision Pixels. ACS Nano 2023, 17, 991–999. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/adma.201801291
https://doi.org/10.1002/adma.202003018
https://doi.org/10.1007/s11432-022-3503-4
https://doi.org/10.1109/TCSI.2018.2866510
https://doi.org/10.1002/adfm.202212917
https://doi.org/10.1109/TNNLS.2019.2899262
https://www.ncbi.nlm.nih.gov/pubmed/30892238
https://doi.org/10.1021/acsnano.2c06921

	Introduction 
	The Resistive Switching (RS) Mechanisms and Properties of Memtransistors 
	Switching Mechanisms by the Charge Trapping for Stacking 2D Materials Heterostructure Device 
	Modulation of Ferroelectric Polarization in a Ferroelectric Field Effect Transistor 
	Non-Volatile Resistive Switching for Electrolyte Ion-Gated Transistors 
	Non-Volatile Resistive Switching for Electrolyte Ion-Gated Transistors 
	Current Switching Ratio 
	Power Consumption Calculation 
	Dynamic Range 
	Multilevel Conductances 
	Linearity 


	Memory Advances with 2D Materials Heterostructure Devices for Constructing Neuromorphic Systems 
	Ferroelectric Field Effect Transistors for Building Artificial Synaptic Elements 
	Inorganic Ferroelectric Gate Field Effect Transistors for Building Artificial Synapses 
	Organic Ferroelectric Materials for Building a Neuromorphic Synaptic 
	Two-Dimensional Ferroelectric Materials Field-Effect Transistor Builds Neuromorphic Synapses 

	Electrolyte Ion-Gated Field Effect Transistors for Building Neuromorphic Systems 
	Memtransistor for Neuromorphic Applications 
	Conclusions and Future Perspectives 
	References

