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Abstract: The understanding of roads and lanes incorporates identifying the level of the road, the
position and count of lanes, and ending, splitting, and merging roads and lanes in highway, rural,
and urban scenarios. Even though a large amount of progress has been made recently, this kind
of understanding is ahead of the accomplishments of the present perceptual methods. Nowadays,
3D lane detection has become the trending research in autonomous vehicles, which shows an exact
estimation of the 3D position of the drivable lanes. This work mainly aims at proposing a new
technique with Phase I (road or non-road classification) and Phase II (lane or non-lane classification)
with 3D images. Phase I: Initially, the features, such as the proposed local texton XOR pattern
(LTXOR), local Gabor binary pattern histogram sequence (LGBPHS), and median ternary pattern
(MTP), are derived. These features are subjected to the bidirectional gated recurrent unit (BI-GRU)
that detects whether the object is road or non-road. Phase II: Similar features in Phase I are further
classified using the optimized BI-GRU, where the weights are chosen optimally via self-improved
honey badger optimization (SI-HBO). As a result, the system can be identified, and whether it is
lane-related or not. Particularly, the proposed BI-GRU + SI-HBO obtained a higher precision of 0.946
for db 1. Furthermore, the best-case accuracy for the BI-GRU + SI-HBO was 0.928, which was better
compared with honey badger optimization. Finally, the development of SI-HBO was proven to be
better than the others.

Keywords: bidirectional gated recurrent unit; local Gabor binary pattern histogram sequence; local texton
XOR pattern; median ternary pattern; road lane classification; self-improved honey badger optimization

1. Introduction

Transportation is becoming an essential part of contemporary society’s everyday rou-
tine. As the number of vehicles has rapidly increased in recent decades, the frequency of
traffic accidents and the provocation of traffic jamming have become increasingly notice-
able [1–3]. The entire country suffers tremendous economic losses as a result of road traffic
accidents, which pose a major threat to people’s safety. In this situation, more and more
drivers are opting for the lane maintenance system [4–6]. In a lane-keeping system, lane
line recognition and lane offset estimation are strongly tied to the implementation of the
lane-keeping function, which has a direct impact on the system’s resilience and real-time
performance [6,7].

Road lane recognition using image processing and machine learning approaches has
been a popular topic of study in both the advanced and developing worlds [8–10]. Since
the number of vehicles has increased, several clever technologies have been developed
to assist drivers in driving safely. Lane recognition is a significant feature of any driver
assistance system. Scientists working on lane detection are now confronting numerous
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important obstacles, including achieving dependability in the face of sunlight and backdrop
clutter [11,12]. The advancement of image processing methods and the development of
cheap visual sensor devices have opened the way for a variety of autonomous road lane
recognition approaches in recent years. The actuality that the textures are alike makes
automated road-lane-detecting techniques feasible. The fact that the textures of lanes are
distinguishable from the background of the concrete surface makes automatic road lane
recognition techniques feasible [13–15].

Due to the following scenarios, lane detection becomes difficult: With less understand-
ing of the road geometry, lane-marking alternatives develop the presence of surrounding
impediments, which obscure lane markings or are misinterpreted as lane markings. On-
road signage or writing, as well as shadow effects, are frequently recommended as lane
feature locations. The variation in illumination affects color and intensity. Several special-
ists have approved lane detection algorithms in the previous two decades. Feature-based or
model-based approaches are used in traditional lane-detecting systems [16,17]. To extract
lane line information, the feature-oriented method primarily employs the color and gradi-
ent variation in lane lines. The detection quality of the lane line identification schemes that
depend on conventional techniques is easily influenced by climate changes owing to the
limitations of the feature extraction technique [18]. When the assumption of flat ground is
violated, conventional algorithms become inaccurate while recognizing lanes in the image
domain and projecting them into the 3D environment in both elevation and lane curvature.
Based on the recent success of CNNs in detecting lanes in 3D with the monocular depth
estimation, more models are aiming to produce a series of 3D curves in camera coordinates
from a single front-facing camera image, with each curve expressing either a lane delimiter
or a lane center line. Moreover, the aforementioned approaches need lane line detection
before calculating the lane offset for cars, the end-to-end lane offset estimation, which is not
conceivable in the existing approaches. In order to overcome the above-stated limitations,
the contributions are defined as follows:

1. The primary goal of this work is to propose a 3D road lane classification with improved
texture patterns and an optimized deep classifier that includes Phases I (road or non-
road classification) and II (lane or non-lane classification);

2. Initially, features such as the local texton XOR pattern (LTXOR), local Gabor binary
pattern histogram sequence (LGBPHS), and median ternary pattern (MTP) are deter-
mined. These features are further classified using the bidirectional gated recurrent
unit (BI-GRU), which determines whether there is a lane or not under various envi-
ronmental conditions;

3. To improve its performance with the targets of lowering the complexity and mini-
mizing the error, the weights in the BI-GRU are optimized by self-improved honey
badger optimization (SI-HBO). Thus, the lane line problem in multi-lane scenes is
efficiently recognized, and once the vehicles change lanes, the current lane scene is
easily identified.

The structure of this study is specified as follows: Section 2 describes the existing
research work. Section 3 explains the developed technique, and Section 4 describes the
proposed features. Section 5 elaborates on the concept of two-phase classification. Section 6
presents the results and discussion and a comparative analysis. Finally, Section 7 explains
the conclusion.

2. Literature Review

In 2021, Satish et al. [19] proposed a novel strategy to alert the driver when the car
crosses the road border lanes using machine learning methods to prevent road accidents
and ensure safe driving. The dataset’s performance was measured by the production of
experimental findings. The proposed technique outperformed the existing lane recognition
algorithms regarding precision and accuracy. In 2021, Malik et al. [20] presented a CNN
for lane offset estimation and lane line identification, which turned lane line detection
difficulties into instance segmentation problems in a complicated road environment. The
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network builds its example for every line in response to changes in the lane process mecha-
nism. The global scale perceptual optimization mechanism was intended to deal with the
problem, particularly as the lane path length narrows as it approaches the vanishing point.
In addition, an estimation network was employed to achieve multi-tasking processing and
boost performance.

In 2020, Tiago et al. [21] presented a novel road representation as well as a work-
flow of processes for combining two concurrent DL schemes, based on two ENet model
modifications. The findings revealed that the total solution copes with the many failures
in every approach, resulting in a more reliable road detection result than each technique
alone. In 2021, Ting et al. [22] used a two-level CNN to create an LCR model using visual
technologies. To compare with the LCR approach, a new CNN based on the AlexNet was
presented. For the two models, all samples were separated into a training dataset and
testing dataset. Two machine networks were compared in terms of performance. With
the LCR model, the average training accuracy was over 94.6 percent. The LCR model
surpassed the AlexNet model, which averaged just a 73.97 percent accuracy.

In 2020, Jau et al. [23] built a DL-based embedded road-border-detecting system. A
CAE with noise removal and reconstructing features was deployed to eliminate all items
in the photos excluding lane markings to generate an image with clear lane markings.
The lane line’s feature points were then retrieved, and a hyperbolic model was used to
fit the lane line. Finally, for lane tracking, a particle filter was applied. According to the
testing findings, the suggested lane-detecting method was 90.02 percent accurate for both
structured and unstructured roadways. In 2019, Wang et al. [24] provided a straight-curve
model-based curve identification technique, which has high application in most curved-
road circumstances. By assessing the basic properties of the road images, the approach split
the road image into the ROI and the road backdrop region. The ROI was further separated
into two sections: straight and curved. Simultaneously, the mathematical formalism of a
straight curve was constructed. Finally, the curve and straight detection and identification
were accomplished, and the road lane line was recreated.

In 2021, Luo et al. [25] presented a unique and resilient multiple-lane recognition
approach depending on road construction data that included five complementary specifica-
tions: length, parallel, distribution, pair, and uniform width. To choose lane candidates,
all five limitations were merged into a cohesive framework based on HT. Furthermore,
a dynamic programming technique to discover the most reasonable solutions from the
remaining choices was provided. This technique may successfully cope with multi-lane
detection’s combination of complexity and interferences. In 2022, Ye et al. [26] described a
scheme to extract lane characteristics from MLS point clouds on curving highways. There
were four phases in the suggested technique. A road edge recognition technology was used
to discern road curbs and retrieve road surfaces following data pre-processing. Then, sym-
bols, arrows, and phrases were discovered to alert drivers in critical situations. According
to the research, the proposed approaches achieved greater accuracy and resilience than
most current methods.

Table 1 reviews the work on road lane detection. Here, ref. [19] used a CNN that
offered high accuracy and high precision. However, a cost analysis should be made. The
CNN used in [20] undergoes less loss and reliable recall, but forward collision warning
is not a concern. The ENet used in [21] achieves higher reliability and less scalability, but
a special network is required for fusing purposes. The LCR used in [22] offers a high
detection rate and high accuracy. However, it requires the use of more datasets. Moreover,
ref. [24] used a particle filter, which provided less error with high accuracy. However, the
collision-avoiding model needs to be involved. In [24], an improved Hough transform was
used, in which a higher accuracy and minimal time utilization were established. However, a
cost analysis should be made. The Hough transform used in [25] provided higher accuracy
and fewer false alarms. However, it needs more consideration of the time usage. The
Gaussian distribution used in [26] offered high precision and a high F1-score. However,
the spiral curves of roads were not considered.
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Table 1. Review of road-lane-detecting models.

Author Adopted Methods Features Challenges

Satish et al. [19] CNN
The method is used to extract

the edge features
High precision

Needs consideration of the
stability and computational

time analysis.

Malik et al. [20] CNN Less loss
High recall

Needs consideration of
forward collision warning

policy.

Tiago et al. [21] ENet-based model High reliability
High scalability

A special network is required
for fusing purposes.

Ting et al. [22] LCR High detection rate
Higher accuracy

Requires the use of
more datasets.

Jau et al. [23] Particle filter Less error
High accuracy

A collision-avoiding model
needs to be involved.

Wang et al. [24] Improved Hough transform High accuracy
Minimal time utilization Cost analysis should be made.

Luo et al. [25] Hough transform Fewer false alarms
High accuracy

Needs more consideration of
time usage.

Ye et al. [26] Gaussian
distribution

High precision
High F1-score

Spiral curves of the road are
not considered.

The aforementioned technique, however, does give a general concept as to how deep
learning technology might be used to identify lane lines, but it is still unable to resolve
end-to-end lane line detection in challenging environments. In spite of the challenging
circumstances of lane line occlusion, high exposure, and unstructured roads, there are
not many academics working on lane line identification at the moment. Additionally, the
end-to-end lane offset estimation was not achieved in any of the aforementioned methods
because they all used lane line detection before calculating the lane offset for cars. To
overcome all these challenges, the proposed method can be used.

3. Description of Proposed Technique

This work developed Phase I (road or non-road classification) and Phase II (lane or
non-lane classification) technology with 3D images. Initially, a 3D image is converted to a
2D image. Then, the detection process proceeds:

• At first, the proposed LTXOR-, LGBPHS-, and MTP-based features are extracted;
• Then, road or non-road is classified using the BI-GRU model;
• Further, these extracted features are provided for the optimal BI-GRU for lane or

non-lane classification;
• For optimizing the weights in the BI-GRU, SI-HBO is deployed in this work.

The overall architecture of the proposed model on road lane classification is shown in
Figure 1.
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Figure 1. Overall architecture of the proposed model for road lane classification.

4. Extraction of Proposed Features

The proposed LTXOR-, LGBPHS-, MTP-based features are derived from the input
image (Iim).

4.1. Proposed LTXOR Features

The proposed LTXOR is the improved version of the existing LXTOR features by
mapping the texton shapes into a Gaussian plane. The Gaussian plane can provide a
reliable estimation of their own uncertainty. Hence, the proposed features can represent the
lane with more information to assist the road/non-road classifier. In the LTXOR pattern [27],
seven different texton shapes were deployed for producing texton images. Here, the image
(Iim) is divided into overlapping 2× 2 sub-blocks indicated by B1. The positions of grey
value are indicated by P, Q, R, S for analysis [27]. As per the texton shape, the sub-blocks
are implied as in Equation (1):

Tx(Y, Z) =



1, B1(P) = B1(R)&B1(Q) 6= B1(S)
2, B1(Q) = B1(P)&B1(S) 6= B1(R)
3, B1(R) = B1(P)&B1(S) 6= B1(Q)
4, B1(P) = B1(Q)&B1(R) 6= B1(S)
5, B1(P) = B1(Q)&B1(S) 6= B1(R)
6, B1(Q) = B1(P)&B1(R) 6= B1(S)
7, B1(P) = B1(R)&B1(Q) = B1(S)
0, B1(P) 6= B1(R)&B1(Q) 6= B1(S)

(1)

The center of every pixel and the nearby neighbors are collected on the texton picture,
following the computation of the text on the image. The XOR function (⊗) is executed
among the center text and neighbor. Conventionally, Equation (2) determines the LTXOR
patterns [27]. As per the proposed concept, the LTXOR is modeled and updated as in Equa-
tion (3), in which G(y, z) implies the Gaussian function for two dimensions, and σ implies
the standard deviation, the initial value of which is taken as 0.1. σ is used for calculating the
Gaussian values, those values only used to increase the LTXOR performance. In Tx (Y, Z),
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x represents texton shapes, which are considered for the texton image generation; Y and
Z imply the distances from the origin to the horizontal and vertical axes, respectively.
Tx(bl) and Tx(ba) imply the shape of the texton for the neighbor pixel (bl) and center
pixel (ba), and ⊗ implies the XOR operation among the variables. The standard deviation
is the distance between the horizontal and vertical:

LTXORG,L =
G

∑
l=1

2(l−1) × f̃3(Tx(bl)⊗ Tx(ba)) (2)

PLTXORG,L =
G

∑
l=1

2(l−1) × f̃3(Tx(bl)⊗ Tx(ba))

G(y, z)
(3)

G(y, z) =
1

2πσ2 e−
y2+z2

2σ2 (4)

f̃3(y⊗ z) =
{

1 y 6= z
0 else

(5)

f2(y, z) =
{

1 y = z
0 else

(6)

Furthermore, the specific texton image is transferred to LTXOR maps with values
ranging from 0 to 2p − 1, where p represents the number of neighbors. The value of m
is selected between 0 and 2p − 1. After computing the pattern for each pixel (j, k), the
histogram construction can be derived, as shown in Equation (7):

HisPLTXORP(m̃) =
T1

∑
j̃=1

T2

∑
k̃=1

f̃2(PLTXORP(j, k), m); m ∈ [0, (2p − 1)] (7)

where the size of the input image is T1 × T2.

4.2. MTP Features

The MTP [28] combines the measurement (Iim) of the image pixels with the integration
of the median. This strategy is more resistant to speckle variation (smooth or high-textured).
The arithmetic means that the intensity of nine pixels is computed after a 3 × 3 neighbor
is formed around each pixel. This is proven quantitatively in Equation (8), with MC, t, V
implying the local median, user-specified threshold, and neighbor grey level, respectively.

f MTP =


1 V > MC + t
0 MC− t ≤ V ≤ MC + t
−1 V < MC− t

(8)

Every MTP code is further split into its respective negative and positive parts, which
are regarded as two binary patterns known as posMTP and negMTP. This is precisely
exposed in Equations (9)–(12), where pix represents the pixel count:

posMTP =
7

∑
pix=0

fpos( fMTP(ipix)) ∗ 2

pix

(9)

fpos(V) =

{
1 V = 1
0 else

(10)
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negMTP =
7

∑
pix=0

fneg( fMTP(ipix)) ∗ 2

pix

(11)

fneg(V) =

{
1 V = −1
0 else

(12)

4.3. LGBPHS Features

The following approach [29] uses the local histogram feature to summarize the area
attribute of the LGBP patterns. To begin, each LGBP map is separated into many non-
overlapping sections. After that, each region’s histogram is retrieved. Lastly, to represent
the provided image (Iim), all the histograms predicted from the areas of all the LGBP
maps are combined into a unified histogram series. The following is a description of the
aforementioned procedure: The histogram (H) for the image f (p, q) with a grey level
between [0, Z− 1] is shown in Equation (13), wherein i implies the ith grey level, and hi
implies the pixel count in the image with a grey level (i) [29]:

hi = ∑
p,q

χ{ f (p, q) = i}, i = 0, 1 . . . Z− 1 (13)

χ( f (p, q)) =
{

1, f (p, q) = i
0, f (p, q) 6= i

(14)

At last, every histogram piece calculated from every 40 LGBP maps was combined
into a histogram series, where < refers to the final representation of the image, which
is mentioned as < = (G0,0,0, . . . G0,0,m−1, . . . G0,1,0, . . . G0,1,m−1, . . . G7,4,m−1) [29]. The de-
rived feature sets, including the PLTXOR, MTP, and LGBPHS, are together appended and
determined as the final feature set ( f e), as in Equation (15):

f e =
[
< f MTP HisPLTXORP(m̃)

]
(15)

5. Two-Phase Classification Using BI-GRU + SI-HBO
5.1. Two-Phase Classification

• In Phase I, the features ( f e) are subjected to BI-GRU for classification as road or
non-road;

• In Phase II, the same features are then subjected to the optimized BI-GRU, which trains
with the SI-HBO to determine whether they are lane or non-lane.

5.2. BI-GRU

The BI-GRU [30] includes unique gates called reset (rt) and update (ut) gates that
diminish the gradient dispersal with fewer losses. The (ut) substitutes the forget and input
gate of LSTM and portrays the conservation degree of former data, as in Equation (16):

ut = µ(Wu·[Rt−1, f et] + fu) (16)

In Equation (16), µ points out the sigmoid activation function between 0 and 1; f et
stands for the input matrix at the time step (t); Rt−1 stands for the hidden state at the prior
time step (t− 1); Wu stands for the weight matrix of ut; and fu stands for the bias matrix of
ut. The (rt) regulates how much chronological data have to be ignored, which is revealed
in Equation (17), wherein Wr characterizes the weight matrix of rt, and fr symbolizes the
bias matrix of rt:

rt = µ(Wr·[Rt−1, f et] + fr) (17)

The hidden state of the candidate is exposed in Equation (18), wherein tanh stands for
the tanh activation function, fR and WR stand for the bias matrix and weight matrix of the
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new cell state, respectively, and ∗ stands for the dot multiplication function. The output
(Rt) shows linear intermission amid

(
R̃t

)
and Rt−1:

R̃t = tanh(WR·[Rt−1 ∗ rg, f et] + fR) (18)

Rt = (1− ut) ∗ Rt−1 + ut ∗ R̃t (19)

The backward and forward BI-GRUs hold the prior and forthcoming details of the

input data, respectively. The BI-GRU is modeled as in Equation (20). Here,
←
Rt and

→
Rt corre-

spond to the hidden states of the backward and forward BI-GRUs, respectively; Ct refers to
the combination of the outputs in two directions (for example, the multiplication function,
average function, and summation function), where Yt is referred to as the output data:

Yt = Ct
(→

Rt,
←
Rt

)
(20)

5.3. SI-HBO Model for Tuning Bi-GRU

The tuning of weights will be under the fixation of the objective, defined as in Equation
(23), and the diagrammatic representation is shown in Figure 2. The explanation of SI-HBO
is given below:
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The SI-HBO approach is improved from the HBO [31] model depending on the forag-
ing behavior of honey badgers. Self-development is better in varied optimization schemes
to minimize the root mean square error, for which the improved team optimizer is used [32].
In different fields, swarm intelligence has attracted researchers [33]. The group search
algorithm is nature-inspired [34]. To combine the high-level and low-level features, the
semantic embedding branch is used [35]. To solve multi-objective problems, the differential
evolutionary algorithm is used [36]. The coyote optimization algorithm is used for its
good tracking characteristics [37]. The ring toss game-based optimization algorithm is a
population-based optimization algorithm [38]. The supply–demand optimization algo-
rithm is competitive compared to other algorithms [39]. The grasshopper optimization
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algorithm (GOA) is swarm-based [40]. The developed SI-HBO includes two chief phases:
the digging phase and the honey phase.

Initialization: The populations (P) are initialized, where N implies the population size
and D implies the dimension. This is exposed in Equations (21) and (22):

P =


p11 p12 . . . p1D
p21 p22 . . . p2D

. . . . . . . . . . . . . . . . . . . . . . . . . . .
pN1 pN2 pN3 pND

 (21)

pi = LBi + r1 ∗ (UBi − LBi) (22)

The lower and upper limits are implied by UBi and LBi, respectively. Moreover, a ran-
dom number (r1) lies between 0 and 1. itr implies the current iteration, and maxitr implies
the maximal iteration. Using Equation (23), the searching agent’s fitness is determined.

As mentioned in Figure 2 (Phase II), the lane or non-lane classification is performed by
the optimized Bi-GRU. Initially, the weight values are assigned as random values, where
the weights (W) that consider {Wu, Wr, and WR} are given in Equations (16)–(18). All these
weight values are given as input to the Bi-GRU. The results (output) from the Bi-GRU are
considered as error values, and these values are tuned optimally by the SI-HBO algorithm.

The major aim is to reduce the error (err) between the actual and predicted value from
the Bi-GRU, which is defined in Equation (23):

obj = min(err) (23)

If the error is high, then the same steps as mentioned above need to be processed; in
the case of vice versa, if the error is less, then these values are tuned optimally by SI-HBO.
Figure 3 shows the fitness (error values) vs. iteration for the proposed SI-HBO algorithm
and other existing algorithms (DOA, DA, AOA, HBO, BWO, and HBO).
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The fitness prey is referred to as f itprey, and the best position is implied by pprey.
Ensure the termination principle: itr ≤maxitr. Use Equation (24) to update the decreasing
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factor (α) that minimizes by iterations to decrease randomization with time. Here, C refers
to a constant, which is taken as C = 2:

α = C ∗ exp
(
−itr

maxitr

)
(24)

For i = 1 to N, compute the solution’s intensity (Ii), as in Equations (25)–(27), in
which Ii implies the prey’s scent power, and rand2 implies a random number between
0 and 1. The distance between the prey and the ith search agent is implied as Di, whereas
the source strength is implied as S:

Ii = rand2 ∗
(

S
4πD2

i

)
(25)

S = (pitr − pitr+1)
2 (26)

Di = pprey − pi (27)

Create an arbitrary integer (r) from 0 to 1. Digging phase: If r < 0.5, then update pnew
as per Equation (28), in which Sp implies the speed and time = 2, and rand3, rand4, and
rand5 imply random integers between 0 and 1.

pnew = pprey + f lag ∗ β ∗ I ∗ pprey + f lag ∗ rand3 ∗ α ∗ Di ∗ Cos(2πrand4) ∗ [1− cos(2πrand5)] (28)

In the honey phase,

pnew =
pprey + f lag ∗ β ∗ I ∗ pprey + f lag ∗ rand3 ∗ α ∗ Di ∗ Cos(2πrand4) ∗ [1− cos(2πrand5)]

Sp
(29)

Sp =
dis tan ce

time
(30)

Here, pprey implies the best prey’s position and f lag changes the searching direction.
If 1 r ≥ 0.5, then update the position as in Equation (31). Then, update the solution, as
shown in Equation (32), in which da implies the diameter of the prey and honey badger
side to side, rad implies the radius, and α implies the time-varying search influence form:

pnew = pprey + f lag ∗ rand7 ∗ α ∗ Di (31)

From Equation (31), it is detected that a honey badger executes the search near to the
prey location (pprey) depending on the distance (Di). Now, the search behavior is inspired
and varied in terms of time (α). Furthermore, a honey badger realizes some disturbance,
which is eliminated by using updated Equation (32):

pnewupdate = pprey +
f lag ∗ rand7 ∗ α ∗ Di

da
(32)

da = 2rad (33)

Here, rand7 lies between 0 and 1.
Calculate a novel position and allocate it to pnewupdate. If fnew ≤ fi, then set pi = pnew

and fi = fnew, and if fnew ≤ fprey, then set pprey = pnew and fprey = fnew, and execute an
arithmetic crossover.

The pseudocode of the proposed algorithm is shown in Algorithm 1.
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Algorithm 1: Pseudocode of SI-HBO algorithm

Initialize the population with a random position
Fitness evaluation
Save best position pprey
While t ≤ tmax do

Update the decreasing factor α using Equation (24)
For i = 1 to N do

compute the solution’s intensity Ii using Equation (25)
If1 r < 0.5 then

update pnew as per Equation (26),
else

update the solution as shown in Equation (32),
End if
Calculate novel position and allocate it to pnewupdate.
If fnew ≤ fi, & if fnew ≤ fprey, & fprey = fnew,

execute arithmetic cross over
End if

6. Results and Discussion
6.1. Simulation Setup

The offered road-lane-detecting scheme using (BIGRU + SI-HBO) was performed in
“MATLAB 2020a” on an 11th Gen Intel(R) Core (TM) i3-1115G4 @ 3.00 GHz, 3.00 GHz,
64-bit operating system, ×64-based processor, and 8.00 GB RAM. The performance of
the BI-GRU + SI-HBO method was calculated over the DOA, DA, AOA, BWO, HBO,
ENet [21], LSTM, CNN [20], RNN, DBN, SVM, CNN-LD [19], RF, proposed image, and
conventional image. Here, the examination was made with the database denoted as db,
mentioned in [41], and named as the third lane dataset. The dataset was downloaded
from https://drive.google.com/file/d/1Kisxoj7mYl1YyA_4xBKTE8GGWiNZVain/view
(accessed on 6 November 2022). We can randomly generate every single modeled com-
ponent, from the scene’s 3D geometry to the different object classes, according to the
programmable methodology. The main road’s lane configuration is chosen. Next, we
decide whether a secondary road will exist and how many lanes it will have. The secondary
road junction is seen as either a merging or a split, depending on the later orientation of the
camera in the image.

The sample representation of the extracted lane images is shown in Figure 4.
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6.2. Performance Analysis

The analysis of the suggested BI-GRU + SI-HBO was calculated over traditional
schemes on disparate metrics. The assessment of the BI-GRU + SI-HBO was performed
over traditional models, such as the DOA, DA, AOA, BWO, HBO, E-Net [21], LSTM,
CNN [20], CNN-LD [19], RNN, DBN, and SVM, and the RF models are presented in
Figures 5–7 for LRs from 60, 70, 80, and 90. Here, Figures 5–7 explain the evaluation of
the BI-GRU + SI-HBO over the traditional BI-GRU + DOA, BI-GRU + DA, BI-GRU + AOA,
BI-GRU + BWO, and BI-GRU + HBO for db 1 to determine whether it is lane or non-lane.

https://drive.google.com/file/d/1Kisxoj7mYl1YyA_4xBKTE8GGWiNZVain/view
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Table 2 explains the estimation of the BI-GRU + SI-HBO over the traditional ENet [21],
LSTM, CNN [20], RNN, DBN, SVM, and RF for db 1 and db 2 to determine whether it
is road or non-road. Here, the offered BI-GRU + SI-HBO offered superior outputs to the
BI-GRU + DOA, BI-GRU + DA, BI-GRU + AOA, BI-GRU + BWO, BI-GRU + HBO, ENet [21],
LSTM, CNN [20], RNN, DBN, SVM, and RF. In Figure 5b, the accuracy for the BI-GRU +
SI-HBO is higher at the 90th LR than at the 60th, 70th, and 80th LRs. At the 60th LR, the
BI-GRU + SI-HBO has a lesser accuracy than at the 70th, 80th, and 90th LRs. Likewise, from
Table 2, the BI-GRU + SI-HBO had the best outcome for precision at 0.946 for db 1. Here,
the accuracies for the SVM and RF are much lower, whilst the RNN has a high accuracy
next to the BI-GRU + SI-HBO. This is a novel method for recognizing 3D road lanes that
extracts many features, including the suggested LTXOR, LGBPHS, and MTP. Then, using an
efficient BI-GRU classification procedure, it can be determined whether the object is a road
or not. Then, with the aid of the SI-HBO algorithm, the optimal weights for the BI-GRU are
determined. By optimally tuning the weights, precise and accurate detection is achieved.
Thus, the advantage of BI-GRU + SI-HBO is established over BI-GRU + DOA, BI-GRU +
DA, BI-GRU + AOA, BI-GRU + BWO, BI-GRU + HBO, E-Net [21], LSTM, CNN [20], RNN,
DBN, SVM, and RF.
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Table 2. Analysis via BI-GRU over other classifier schemes using db 1 and db 2.

BI-GRU + SI-HBO ENet [21] CNN-LD [19] LSTM CNN [20] RNN DBN SVM RF

Sensitivity 0.910 0.264 0.275 0.037 0.226 0.245 0.075 0.528 0.094
Accuracy 0.928 0.631 0.658 0.552 0.596 0.640 0.56 0.552 0.552

NPV 0.945 0.928 0.754 0.905 0.918 0.913 0.933 0.573 0.908
Specificity 0.945 0.930 0.983 0.725 0.918 0.903 0.903 0.573 0.910
F1-Score 0.928 0.465 0.492 0.072 0.342 0.388 0.137 0.437 0.138

FNR 0.089 0.735 0.739 0.962 0.773 0.754 0.924 0.471 0.905
Precision 0.946 0.823 0.723 0.915 0.705 0.928 0.887 0.518 0.625

FPR 0.054 0.079 0.945 0.275 0.081 0.163 0.163 0.426 0.091
MCC 0.855 0.301 0.678 0.143 0.202 0.347 0.143 0.101 0.088
FDR 0.053 0.176 0.156 0.092 0.294 0.071 0.286 0.481 0.375

6.3. Statistical Analysis on Accuracy

Table 3 highlights the statistical study conducted via the employed BI-GRU + SI-HBO
over conventional models (BI-GRU + DOA; BI-GRU + DA; BI-GRU + AOA; BI-GRU +
BWO; and BI-GRU + HBO) on accuracy. The metaheuristic schemes are stochastic, and
to substantiate their fair evaluation, each model was analyzed quite a lot of times to
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accomplish high accuracy. An accuracy of 0.928 was gained with the BI-GRU + SI-HBO for
the best case, whilst the BI-GRU + DOA, BI-GRU + DA, BI-GRU + AOA, BI-GRU + BWO,
and BI-GRU + HBO achieved lesser accuracies for the best case. Similarly, superior outputs
were obtained for the BI-GRU + SI-HBO for the mean case. These enhancements are owing
to the incorporated, enhanced LT-XOR and optimized BI-GRU concepts.

Table 3. Statistical study on accuracy.

Metrics Standard Deviation Worst Variance Mean Best

BI-GRU + DOA 0.108 0.580 0.011 0.655 0.816
BI-GRU + DA 0.108 0.580 0.011 0.655 0.815

BI-GRU + AOA 0.173 0.407 0.030 0.622 0.833
BI-GRU + BWO 0.088 0.647 0.007 0.767 0.855
BI-GRU + HBO 0.047 0.722 0.002 0.775 0.829

BI-GRU + SI-HBO 0.051 0.815 0.002 0.868 0.928

6.4. Comparative Analysis

An improved specificity of 0.93 is noted for the BI-GRU + SI-HBO, which is better
than the BI-GRU+ SI-HBO + conventional LT-XOR, the BI-GRU+ SI-HBO without feature
extraction, and the suggested method without optimization. Next to the BI-GRU + SI-HBO,
the developed model without feature extraction revealed better values than the BI-GRU+
SI-HBO + conventional LT-XOR and the suggested method without optimization. This
development is owing to the enhanced LT-XOR and SI-HBO concepts. The image results
of the proposed and conventional methods are shown in Figure 8. From the results, it is
proven that the proposed algorithm is more efficient at detecting the road and lane when
compared to other methods, such as ENet [21], CNN [20], and CNN-LD [19].
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The developed BI-GRU + SI-HBO technique was analyzed with the recommended
scheme with conservative LT-XOR, the suggested method without feature extraction in
Table 4, using db 1 and db 2. Likewise, the developed BI-GRU + SI-HBO technique is
analyzed with the BI-GRU+ SI-HBO + conventional LT-XOR, the BI-GRU+ SI-HBO without
feature extraction, and the suggested method without optimization in Table 5 using db 1.

Table 4. Comparison of proposed model with conventional ones using db 1 and db 2.

Metrics Proposed Model Proposed Model with
Conventional LTXOR

Proposed Model without
Feature Extraction

Sensitivity 0.730 0.823 0.678
Accuracy 0.912 0.763 0.843

FPR 0.067 0.476 0.225
Specificity 0.932 0.523 0.733
Precision 0.919 0.679 0.755
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Table 4. Cont.

Metrics Proposed Model Proposed Model with
Conventional LTXOR

Proposed Model without
Feature Extraction

FNR 0.269 0.172 0.321
F1-Score 0.814 0.809 0.808

FDR 0.081 0.320 0.121
MCC 0.674 0.597 0.721
NPV 0.902 0.523 0.245

Table 5. Comparison of the proposed model with conventional ones using db 1.

Metrics BI-GRU + SI-HBO BI-GRU + SI-HBO with
Conventional LTXOR

BI-GRU + SI-HBO
without Feature

Extraction

Proposed Model
without

Optimization

Sensitivity 0.910 0.893 0.853 0.793
Accuracy 0.928 0.771 0.815 0.719

FPR 0.0540 0.464 0.344 0.516
Specificity 0.945 0.535 0.655 0.483
Precision 0.946 0.690 0.716 0.619

FNR 0.089 0.124 0.142 0.216
F1-Score 0.928 0.816 0.834 0.764

MCC 0.855 0.608 0.685 0.54
FDR 0.053 0.309 0.283 0.381
NPV 0.945 0.535 0.655 0.484

6.5. Discussion

Currently, achieving reliability in changes in lighting and background clutter is one
of the main challenges confronting researchers working on road lane detection. A num-
ber of automatic road lane detection techniques have emerged in recent years as a result
of improvements in image processing techniques and the availability of low-cost visual
sensing devices. The fact that lane textures can be easily distinguished from the pavement
surface backdrop contributes to the viability of the automatic road lane detection method.
Applying learning techniques and image processing techniques has increased the accuracy
and productivity in recent years. Although these methods concentrate on identifying the
lane from a single frame, they typically offer performances that are potentially unsatisfac-
tory when dealing with some extreme circumstances, such as lane line degradation, large
shadows, significant vehicle occlusion, noisy image inputs, etc. Practically, lanes should be
continuous line formations on the road. As a result, information from earlier frames can be
used to extrapolate the location of a lane that cannot be exactly detected in the live frame.

From the overall analysis, research on 3D lane identification, which provides an
accurate estimate of the 3D position of the drivable lanes, is becoming popular. The
primary goal of this work is to propose a novel method using 3D and Phases I (road or
non-road classification) and II (lane or non-lane classification). Particularly, the BI-GRU + SI-
HBO obtained the greatest result for db 1 with 0.946 precision. The SVM and RF accuracies
in this situation were significantly reduced; however, the RNN’s accuracy increased when
compared to the BI-GRU + SI-HBO. The best-case accuracy for the BI-GRU + SI-HBO
is 0.928, while the best-case accuracies for the DOA, DA, AOA, BWO, and HBO were
less. Further, the analysis of the BI-GRU for the classification of road or non-road using
db 1 and db 2 was performed for varied LRs. The positive metrics attained improved
outcomes, while the negative metrics attained worse outcomes. From this analysis, the
BI-GRU exposed a high specificity of 0.93 at the 90th LR, while at the 60th LR, the BI-GRU
exposed a comparatively lesser specificity of 0.6279. Thus, better outcomes were attained
at the 90th LR. Finally, the convergence of the SI-HBO scheme over the DOA, DA, AOA,
BWO, and HBO for diverse iterations was analyzed in this study. From the convergence
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analysis, the SI-HBO gained less cost from the 10th to 50th iterations. A lesser convergence
of 1.076 was accomplished using SI-HBO rather than the DOA, DA, AOA, BWO, and HBO.
Thus, improved results are achieved with the SI-HBO method.

7. Conclusions

This work suggests a novel technique with Phase I (road or non-road classification)
and Phase II (lane or non-lane classification). Initially, the features, such as the proposed
LTXOR, LGBPHS, and MTP, were derived, which were then categorized via the BI-GRU,
which detected whether the object was road or non-road. The similar features in a phase
were then categorized via the optimal BI-GRU, wherein the weights were chosen via SI-
HBO. Thus, it could be determined whether the object was lane or non-lane. The BI-GRU +
SI-HBO, especially, gained the best precision at 0.946 for db 1. Here, the accuracies for the
SVM and RF were much lower, whilst the RNN gained a high accuracy next to the BI-GRU
+ SI-HBO. An accuracy of 0.928 was gained with the BI-GRU + SI-HBO for the best case,
whilst the DOA, DA, AOA, BWO, and HBO achieved lesser accuracies for the best case.
In the future, effective perception via advanced methods will be proposed to study the
efficient integration of sensors to minimize the computation time and cost.
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Nomenclature

Abbreviation Description
AOA Arithmetic Optimization Algorithm
BWO Black Widow Optimization
BI-GRU Bidirectional Gated Recurrent Unit
CNN Convolutional Neural Network
CAE Convolution Auto-Encoder
DL Deep Learning
DOA Dingo Optimization
DA Dragonfly Algorithm
DBN Deep Belief Network
HBO Honey Badger Optimization
HT Hough Transform
LCR Lane-Changing Recognition
LSTM Long Short-Term Memory
LGBPHS Local Gabor Binary Pattern Histogram Sequence
LTXOR Local Texton Xor Pattern
LR Learning Rate
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MTP Median Ternary Pattern
MLS Mobile Laser Scanning
MCC Matthews Correlation Coefficient
NPV Negative Predictive Value
ROI Region Of Interest
RNN Recurrent Neural Network
RF Random Forest
SVM Support Vector Machine
SI Self-Improved
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