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Abstract: Network function virtualization (NFV) is a rapidly growing technology that enables the
virtualization of traditional network hardware components, offering benefits such as cost reduction,
increased flexibility, and efficient resource utilization. Moreover, NFV plays a crucial role in sensor
and IoT networks by ensuring optimal resource usage and effective network management. However,
adopting NFV in these networks also brings security challenges that must promptly and effectively
address. This survey paper focuses on exploring the security challenges associated with NFV. It
proposes the utilization of anomaly detection techniques as a means to mitigate the potential risks
of cyber attacks. The research evaluates the strengths and weaknesses of various machine learning-
based algorithms for detecting network-based anomalies in NFV networks. By providing insights
into the most efficient algorithm for timely and effective anomaly detection in NFV networks, this
study aims to assist network administrators and security professionals in enhancing the security of
NFV deployments, thus safeguarding the integrity and performance of sensors and IoT systems.

Keywords: network function virtualization (NFV); Internet of Things (IoT); security challenges; anomaly
detection; cyber-attacks; machine learning based; supervised learning; unsupervised learning

1. Introduction

The industry has adopted the virtualization of network elements in recent years.
Network virtualization offers many benefits, including easier implementation and manage-
ment of network resources and services, potentially reducing operating costs and spurring
innovation [1]. Network virtualization moves network connectivity and operations from
dedicated hardware to software that runs on virtual machines or containers [2]. Implement-
ing network function virtualization (NFV) offers several advantages, such as enhanced
agility, flexibility, security, and scalability, as well as reduced hardware costs and power
consumption of the network [3]. Network function virtualization (NFV) is also of great
importance in the context of sensor and IoT networks. With the rapid growth of IoT devices
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and the increasing demand for diverse network functionalities, NFV offers significant
advantages [4]. By virtualizing network functions and decoupling them from dedicated
hardware, NFV enables the flexible deployment and management of network services in
resource-constrained IoT environments [5]. The ability to dynamically allocate and scale
virtualized network functions allows for the efficient utilization of limited resources and
adaptability to changing IoT network requirements. NFV also enhances the security and
reliability of sensor and IoT networks by enabling the deployment of virtualized security
functions, such as firewalls and intrusion detection systems [6]. Overall, NFV empowers
IoT network operators to optimize resource usage, improve network flexibility, and enhance
security, making it a crucial technology for efficiently operating sensor and IoT networks [7].
The NFV architecture consists of three primary functional blocks, as Figure 1 illustrates.

Figure 1. NFV infrastructure.

Network function virtualization infrastructure (NFVI): This component encompasses
the necessary hardware infrastructure to facilitate the deployment of NFV. It includes
servers, storage units, and network resources that house virtual network functions (VNFs).
Additionally, it provides the essential computation, storage, and networking capabilities
required for network resource virtualization and dynamic allocation [8].

NFV management and orchestration function (MANO): MANO plays a pivotal role
in managing and orchestrating the NFV environment. It consists of three subcomponents:
NFV orchestrator (NFVO), virtualized infrastructure manager (VIM), and virtual network
function manager (VNFM). The NFVO oversees the overall organization and coordination
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of VNFs and resources within the NFV infrastructure. The VIM manages virtualized
infrastructure resources, including virtual machines’ allocation, monitoring, and lifecycle
management. The VNFM is responsible for managing the lifecycle of individual VNF
instances, including their deployment, scaling, and termination [9].

Virtual network function services block (VNFs): This block encompasses a variety
of virtual network functions (VNFs) that deliver specific network functionalities. VNFs
are software-based implementations of traditional network functions, such as firewalls,
routers, load balancers, and intrusion detection systems. These VNFs can be combined to
create flexible and customizable network services through dynamic deployment, scaling,
and chaining. The NFV services block empowers network operators to efficiently deliver
and manage a wide range of network services in a more agile and cost-effective manner [9].

Each of these functional blocks plays a critical role in the successful deployment
and operation of NFV. Together, they collaborate to virtualize network functions, manage
resources, and provide flexible network services, revolutionizing the construction and
operation of networks.

Virtualization has not only brought numerous benefits but has also introduced new
security risks and vulnerabilities, creating opportunities for cyber attacks [10]. Within the
NFV architecture, three types of attacks are possible, as depicted in Figure 1.

Firstly, inside attacks occur when an attacker takes advantage of vulnerabilities related
to software validation and configuration [11]. These vulnerabilities are represented in
part ‘c’ of Figure 1. Secondly, outside or third-party attacks target the vulnerabilities
of the hardware infrastructure and the network’s perimeter. The areas susceptible to
these attacks are illustrated in part ‘a’ of Figure 1. Lastly, attacks between virtual network
functions (VNFs) can occur due to the sharing of resources. Attackers exploit vulnerabilities
within shared resources among VNF services to carry out malicious activities, as shown
in part ’b’ of Figure 1. To ensure the integrity and reliability of the network infrastructure,
organizations implementing NFV must be aware of these security risks. It is crucial for
them to take appropriate measures to mitigate this risks [9]. By implementing robust
security measures and continuously monitoring the NFV environment, organizations can
minimize the potential for cyber attacks.

Various effective techniques and methods based on network security have been pro-
posed by the researchers that also include anomaly detection [12]. Anomaly detection
identifies and addresses performance and security-related issues associated with anomalies
by analyzing patterns, behaviors, and observations that deviate significantly from the
norm [13]. By detecting an anomaly before it affects the quality of service and security of
the NFV, timely countermeasures can be taken [14]. It can also identify vulnerabilities and
hidden threats in the NFV infrastructure by monitoring packets, network traffic, perfor-
mance data, and network protocols and can also determine network-based intervention [15].
Network-based anomaly detection in NFV involves analyzing different kinds of data to
detect abnormal behavior in virtualized network functions. The data types that may be
processed include network traffic, system-level, application-level, and security-related
data [16]. Advanced research in anomaly detection in NFV has focused on developing new
techniques and algorithms to effectively process these data [17]. These techniques may
involve machine learning, data mining, or other advanced analytics methods and may be
applied to real-time or historical data. Moreover, specialized tools and platforms have been
developed to collect, process, and analyze data in NFV environments, such as OpenStack
Monasca and the OPNFV Doctor project [18]. This paper surveyed state-of-the-art anomaly
detection techniques in NFV networks, covering various aspects, such as approaches,
classification, causes, use cases, and limitations of anomaly detection in NFV [19].

In this paper, we surveyed state-of-the-art anomaly detection in the NFV network. To
the best of our knowledge, few studies have surveyed network-based anomaly detection
using machine learning techniques. For instance, Pang, Guansong, et al. [20] (2021), Nassif,
Ali Bou, et al. [21] (2021), Wang, Song, et al. [22](2021), Gebremariam, A. A., Usman, M.
and Qaraqe, M. [23] (2019), Alam, Iqbal, et al. [24] (2020), Ghaffar, Zeba, et al. [25] (2021),
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Lohrasbinasab, Iraj, et al. [26] (2022), Shah, Ali Hussain, et al. [27] (2022), Gallego-Madrid,
Jorge, et al. [28] (2022), Ahmed, Md, et al. [29] (2021), Nunez-Agurto, Daniel, et al. [30]
(2022), and Di Mauro, Mario, et al. [31] (2021) have surveyed different aspects of anomaly
detection in NFV network but they lack in considering all aspects of anomaly detection
in the NFV network using machine learning techniques.A brief comparison of our survey
paper with all these existing survey papers is shown in Table 1.

Table 1. Comparison of our survey with existing survey papers on anomaly detection in the NFV
network using machine learning.

Survey Paper Year Structured
Approach Advantages/Limitations Critical

Assessment

Coverage of
Other

Techniques

Technical
Difficulty

Performance
Comparison

Our Survey 2023 X X X X X X

Pang [20] 2021 X X X X X X

Nassif [21] 2021 X X X X X X

Wang [22] 2021 X X X X X X

Gebremariam [23] 2019 X X X X X X

Alam [24] 2020 X X X X X X

Ghaffar [25] 2021 X X X X X X

Lohrasbinasab [26] 2022 X X X X X X

Shah [27] 2022 X X X X X X

Gallego-Madrid [28] 2022 X X X X X X

Ahmed [29] 2021 X X X X X X

Nunez-Agurto [30] 2022 X X X X X X

Di Mauro [31] 2021 X X X X X X

Ref. [20] provides a comprehensive survey of deep learning techniques for anomaly
detection. The paper follows a structured approach and provides detailed information
on the advantages and limitations of deep learning for anomaly detection. However, the
paper does not critically assess the surveyed techniques and does not cover other anomaly
detection techniques beyond deep learning. The paper acknowledges the technical diffi-
culty of implementing deep learning techniques but provides a performance comparison of
the surveyed techniques. Ref. [21] provides comprehensive coverage of machine learning
techniques and anomaly detection, and it uses a thorough and systematic approach to
the literature. The study identifies gaps and future research, and presents its findings
in a clear and well-organized manner, making it a valuable resource for researchers and
practitioners. However, the paper has several weaknesses, including limited discussion
on practical implementation issues, real-world applications, and the quality of selected
studies. Additionally, there is no evaluation or comparison of the selected studies and
limited discussion on the limitations of the study. The survey by Wang, Song, et al. [22]
provides a structured approach and comprehensive coverage of machine learning tech-
niques in network anomaly detection. However, the paper has some weaknesses, such
as the limited focus on specific types of network anomaly detection, a lack of clarity in
some sections, and limited discussion on future research directions. Additionally, the
paper has limited coverage of other techniques and limited discussion on implementation
challenges. The survey by Gebremariam, A. A., Usman, M. and Qaraqe, M. [23] compre-
hensively covers a range of topics related to the application of AI and machine learning
in software-defined networking (SDN) and network function virtualization (NFV). The
authors use a structured approach to present the advantages and limitations of various
AI and machine learning techniques in this domain. However, the paper does not cover
other relevant techniques in the area of SDN and NFV, and there is limited discussion on
the technical difficulties that may arise during the implementation of these techniques.
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Additionally, there is no performance comparison of the different approaches discussed.The
paper by Alam, Iqbal, et al. [24] provides a comprehensive survey of network virtualization
techniques for the Internet of Things (IoT) using software-defined networking (SDN) and
network function virtualization (NFV). The paper is well structured, provides a critical
assessment of the surveyed techniques, and discusses their advantages and limitations.
However, the paper lacks a comparative analysis of the surveyed techniques, and some im-
portant techniques are not covered. Additionally, the paper may be technically challenging
for readers without a background in SDN, NFV, or IoT. Ref. [25] provides a comprehensive
review of machine learning, software-defined networking, and IoT applications, including
their advantages and limitations, and offers critical insights into the current state of the art.
While the paper follows a structured approach and covers a wide range of topics, it mainly
focuses on these three areas and does not cover other related techniques. The paper may be
challenging for readers who are not familiar with the technical aspects of these topics and
does not provide a performance comparison between different techniques and applications.
Lohrasbinasab, Iraj, et al. [26] provide a structured approach to network traffic prediction,
covering statistical and machine learning-based techniques. The paper offers insights into
the advantages and limitations of different approaches and provides a critical assessment
of the current state of the art. However, the paper does not cover other related techniques
and may be technically challenging for readers without a background in network traffic
prediction. Additionally, the paper does not provide a performance comparison between
different techniques, which could be useful for readers who want to compare them. Shah,
Ali Hussain, et al. [27] propose an approach for automated log analysis and anomaly
detection using machine learning. Their paper follows a structured approach and presents
the advantages and limitations of the proposed methodology. The paper provides a critical
assessment of the proposed approach, pointing out its limitations and future directions for
improvement. While it covers other techniques in log analysis and anomaly detection, it is
not comprehensive, and may be challenging for readers without a background in machine
learning. The paper provides a comparison of the proposed approach with other methods,
but it could be more comprehensive. Ref. [28] follows a structured approach and presents
the advantages and limitations of the proposed approach, with a critical assessment of the
methodology. It covers other techniques in log analysis and anomaly detection but not in
depth. The technical difficulty of the paper may be high for readers without a background
in machine learning. While the paper provides a comparison of the proposed approach
with other methods, the comparison could be more comprehensive. Ref. [29] is a detailed
analysis of different IDS techniques in SDNs. It provides a comprehensive overview of the
current state of research in this field, discussing the advantages, limitations, and critical
assessment of the different techniques. The paper follows a structured approach and in-
cludes a performance comparison of the different techniques. However, it could include
more recent research, detailed descriptions of the techniques, examples, and solutions to
the challenges associated with implementing IDS techniques in SDNs. The paper also
lacks coverage of other techniques, such as rule-based systems and anomaly detection.
Nunez-Agurto, Daniel, et al. [30] provides a comprehensive review of machine learning
techniques for traffic classification in software-defined networking. However, the paper has
some weaknesses, including a lack of coverage of other applications of machine learning in
networking, a need for more detailed description of the methodology used in the review,
and more analysis on the limitations and potential biases of the studies reviewed. The
paper assumes a high level of technical knowledge in the field of networking and machine
learning and could benefit from a more detailed comparison of the performance of the
different machine learning techniques reviewed. Di Mauro, Mario, et al. [31] provide a
comprehensive review of supervised feature selection techniques in network intrusion
detection. The authors use a structured approach to divide the techniques into different
categories based on their underlying algorithms and discuss their advantages and limita-
tions, making the paper suitable for readers with technical expertise. The paper also covers
a wide range of supervised feature selection techniques and compares their performance,
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which can help readers make informed decisions about which technique to use. However,
the authors could have provided more critical assessment and insights into the limitations
of the techniques. Our survey paper provides a comprehensive and structured approach to
anomaly detection in NFV networks using machine learning. It addresses the gaps and
limitations of existing studies by covering a wide range of features, such as the advantages
and limitations of different techniques, critical assessment of existing solutions, coverage
of other techniques, and technical difficulty. Additionally, we conducted a performance
comparison that demonstrates the efficacy of different proposed approaches in detecting
malicious anomalies in VNF networks. Our study provides practical guidance and valuable
insights to network administrators and security professionals for selecting the most suitable
machine learning-based technique for anomaly detection in NFV networks.

Furthermore, our survey paper comprehensively reviews the current state-of-the-art
machine learning-based anomaly detection techniques in the NFV network. We propose a
thematic taxonomy to categorize the existing literature and analyze the reviewed papers
based on this taxonomy, providing a comprehensive insight into the current research trends
and identifying the open research issues and challenges in anomaly detection for NFV
networks. This makes our survey paper a valuable resource for guiding future research in
this field.

In addition, our survey paper goes beyond the scope of previous studies by covering
other cutting-edge techniques, such as hybrid approaches, incremental learning, transfer
learning, ensemble methods, and explainable AI. We also provide a design framework that
can guide practitioners in implementing machine learning-based anomaly detection in
NFV networks. These additions make our survey paper more comprehensive and valuable,
as it offers a complete overview of the latest developments in this field.

With these additional features, our survey paper provides a more comprehensive and
up-to-date view of the state-of-the-art in anomaly detection for NFV networks, making a
significant contribution to the field of anomaly detection in NFV networks. As such, it can
serve as a valuable resource for researchers and practitioners alike.

In the next section, we cover all these aspects of NFV anomaly detection. Additionally,
this paper analyzes a few research techniques proposed to efficiently find an anomaly
in NFV [32]. The sections of the paper are arranged as follows: Section 2 presents a
taxonomy of network-based anomaly detection in NFV. Section 3 elaborates on state-of-
the-art different anomaly detection mechanisms and gives their comparison. Section 4
reveals research issues and challenges. Section 5 concludes the whole paper and discusses
future work .

2. Taxonomy of Network-Based Anomaly Detection in NFV

In this section, we discuss the thematic taxonomy of anomaly detection in NFV.
Figure 2 highlights some of the important features that help us propose a better mechanism
for finding anomalies in the NFV network.

2.1. NFV Security Issues

NFV works in a virtualized environment that has various vulnerabilities. We cate-
gorized it into two main types, performance-related vulnerabilities and security-related
vulnerabilities [33]. Performance-related vulnerabilities occur due to weakness in the net-
work architecture, lack of data flow control and backup devices, the poor configuration
of software and security devices, etc. [34] which will affect the performance of the NFV
network, and attackers will exploit these vulnerabilities for attacks [35]. Security-related
threats, including malicious attacks, are more easily encountered in NFV because NFV
is a shared resource architecture, primarily when implemented on a cloud platform. In
addition to third-party interference, the use of public networks for communication also
makes NFV security more vulnerable than traditional hardware networks [36].
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Figure 2. Thematic taxonomy of network-based anomaly detection in NFV.

2.2. Network-Based Anomaly Technique

Anomaly detection techniques are used to identify the abnormal behavior of the
overall network and identify not only active and passive attacks but also dynamic and novel
malicious attacks [37]. Anomaly detection techniques have some advantages over firewalls
or other malware tools, as they can identify abnormal behavior across hosts, networks, and
distributed levels. This paper specifically focuses on network-based anomaly detection
techniques in NFV networks [38].

Network anomaly detection involves monitoring traffic, analyzing various metrics,
and using techniques such as statistical analysis, machine learning, and rule-based meth-
ods to detect anomalous behavior [39]. In an NFV network, network functions can be
dynamically deployed, scaled, and migrated, making it difficult to detect anomalies. There-
fore, specialized techniques and tools are needed, such as distributed monitoring and
analysis, and techniques that focus on detecting anomalies in the behavior of virtualized
network functions themselves [40]. Network anomaly detection in NFV is a specialized
form of anomaly detection that focuses on identifying anomalies within virtualized network
functions in an NFV environment [41].

2.2.1. Approaches for Anomaly Detection

Anomaly detection has different approaches to finding anomalies in the network, but
three of them are more commonly implemented, that is, statistical-based, knowledge-based,
and machine learning-based approaches [42]. In statistical-based anomaly detection, abnor-
malities related to network data traffic are identified using statistical measures, e.g., [43] the
mean, standard deviation, uni-variant, and multi-variant. There are several efficient statis-
tical methods for analyzing the anomaly’s existence, such as an operational model, Markov
model, outlier model, clustering model, multivariate model, and time series model, etc. [44].
Knowledge-based anomaly detection uses a set of rules to identify malicious behavior;
these rules are defined based on suspicious behavior observed from past knowledge of ad-
verse attacks [45]. Therefore, it is also known as a rule-based anomaly detection technique.
Machine learning-based anomaly detection uses the automatic approach of classifying
normal and abnormal data with the help of a data mining approach [46].
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2.2.2. Classification of Anomaly Detection

Machine learning-based anomaly detection is classified into three main approaches,
supervised, semi-supervised, and unsupervised anomaly detection. In recent research,
a combination of these approaches is used in anomaly detection for NFV networks [47].
Researchers have proposed a method using semi-supervised learning to identify network
anomalies and then using supervised learning to classify them as benign or malicious.
Others have proposed using unsupervised learning for anomaly detection and then ap-
plying semi-supervised learning to identify the root cause of the anomaly. These ap-
proaches have shown promising results in detecting and mitigating anomalous behavior in
NFV networks [48].

a. Supervised Model

In supervised anomaly detection, we create a model that works on a trained dataset
and categorizes the data into two labels, i.e., normal and abnormal [49]. The system collects
information regarding the network and compares it to the labeled data; if the data record is
more likely to be routine data, then it is considered normal, while on the other hand, if the
data are more likely to be abnormal, then it is considered to be an anomaly [50].

b. Semi-supervised Model

The supervised model depends on the labeled dataset; therefore, the labeled dataset
should be of good quality [51]. A semi-supervised model works only on a single label, i.e., a
normal dataset; in this approach, if the collected data do not match the normal dataset, then
it is considered an anomaly, but this approach does not identify all types of anomalies [52].

c. Unsupervised Model

Unsupervised is an efficient but complicated approach to finding an anomaly in
the network. It does not use any label dataset; it works on instance data and efficiently
identifies novel anomalies in the network [53]. The unsupervised approach uses raw
measurements and data related to normal behavior to help the system identify novel and
dynamic anomalies. Therefore, it is also known as a behavior-based model. There are
several unsupervised techniques, such as adaptive threshold-based, clustering, Bayesian
belief networks, and principal component analysis [54].

2.2.3. Causes of Network Anomaly Detection

Anomaly detection identifies security vulnerabilities by finding anomalies in the
system’s normal behavior [55]. There are several causes of network anomalies, such as
network component failure, non-control network traffic, improper monitoring, improper
security perimeters, flash crowd, etc. Figure 3 [56].

a. Network Component Failure

The network component includes hardware- and software-related components, such
as routers, firewalls, VNFs services functions, etc. If these components fail during critical
data communication, it causes an anomaly, a performance-related issue [57].

b. Non-Control Network Traffic

Non-control network traffic is a serious issue that causes the network to be unavailable;
an attacker exploits this vulnerability and makes the victim server unavailable for legitimate
users, which causes anomalies in the network traffic behavior [58].

c. Improper Monitoring

The access and login of an unauthorized user, weak security monitoring, avoiding
unnoticed events, and interruption in the network all come under improper monitoring
and cause anomalies in the network [59].

d. Improper Security Perimeters

Security perimeters include the security measures taken by the network administrator,
and these perimeters also cause anomalies in the network. If security perimeters are not
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strong enough, the network will easily be compromised [60]. The attacker always tries to
take advantage of such security vulnerabilities.

e. Flash Crowd

The flash crowd is also one of the causes of an anomaly in the NFV [61]. Flash crowd
means the network is overloaded with legitimate traffic, and many legal users try to access
the server, creating abnormal network traffic [62].

Figure 3. Causes network.

2.2.4. Use Cases of Anomaly Detection

Anomaly detection is used in various scenarios in NFV networks to identify performance-
related and security-related issues [63]. Some popular use cases of anomaly detection are
intrusion detection, fraud detection, malware detection, data loss prevention, log anomaly
detection, etc. [64]. The anomaly detection identifies anomalies in the NFV network in an
automated way and generates alerts that help the network to take immediate countermeasures.

2.2.5. Challenges of Anomaly Detection

Anomaly detection is a helpful technique for identifying unusual behavior, through
which we detect existing and novel intruders or malicious attacks, and it also helps improve
the performance of the NFV network [65]. Despite all these, there are several limitations of
the anomaly detection technique, a few of which are discussed here.

(a) Runtime Anomaly Detection

Fast and reliable communication has always been the goal of NFV; we always want a
solution that helps to identify runtime anomalies accurately by inspecting the data traffic
without disturbing the legitimate traffic [66].

(b) Reducing False Alarm

The differentiation between normal and abnormal behavior is a difficult task; there is
a chance that an anomalous event may occur close to normal behavior, and a normal event
may occur close to anomalous behavior [67]. In both cases, we have a false alarm. Design
such anomaly detection techniques that reduce this false alarm in NFV .

(c) Dimensionality Reduction

The appropriate selection of network traffic features is an important challenge in NFV.
Select those network features for anomaly detection to help identify anomalous data traffic
without compromising performance [68].

(d) Adaptability to Unknown Attacks

As the communication world grows, new challenges in the form of anomalies exist,
which should be dynamically identified by anomaly detection techniques [69].
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(e) Infrastructure Attacks

NFV is a virtual network environment that involves third-party to provide network
infrastructure; several vulnerabilities exist in this network environment [70]. Therefore, an
efficient anomaly detection system is required for such types of vulnerabilities.

Due to these issues, detecting anomalies in the NFV network is not easy. Researchers
proposed several anomaly detection methods to overcome these limitations [48]. In this
paper, we analyze some research paper that covers anomaly detection in NFV and discuss
some of its limitations in Section 3.

3. Review and Comparative Analysis of State-of-the-Art Anomaly Detection in NFV

Recently, the detection of malicious attacks in the NFV network has received consider-
able attention, and new algorithms for detecting such attacks have been developed that
use the anomaly detection technique. Anomaly detection can identify malicious attacks
in the overall network, while the firewall detects malicious attacks only in the data that
pass through the firewall [71]. Therefore, new algorithms for anomaly detection need
to be developed to identify anomalies in the NFV network that should overcome all the
limitations as we discussed in the previous section.

3.1. State-of-the-Art Anomaly Detection in NFV

In this section, we analyze some research papers that cover anomaly detection in
NFV, focusing on the most recent and efficient machine learning algorithms proposed for
detecting network anomalies.

3.1.1. Anomaly Detection Using SMNRT

Derstepanians, Arman, et al. (2022) [66] proposed a machine learning-based approach
for detecting anomalies in network function virtualization (NFV) infrastructures. The
proposed method, simple median near real-time (SMNRT), is a hybrid approach that
combines unsupervised and supervised learning techniques. The unsupervised part of
the system uses a clustering algorithm to group similar data points into clusters, with
anomalous data points identified as outliers. The supervised part trains a machine learning
model to classify data points as either normal or anomalous. The proposed system is
evaluated on a dataset of network traffic data from a real-world NFV infrastructure and
achieves high detection accuracy, with an F1 score of over 0.9. The paper’s methodology
involves four main steps, including data pre-processing, feature extraction, unsupervised
clustering, and supervised classification. The evaluation of the proposed system includes
comparing its detection performance with other state-of-the-art anomaly detection methods,
demonstrating its effectiveness in detecting anomalies in near real time with high accuracy.

3.1.2. Matrix Differential Decomposition

Chen, Jing, et al. [72] proposed the matrix differential decomposition (MDD) method
of anomaly identification in the NFV network. They designed a technique that works in
three phases. In the first phase, a prototype model is implemented in the NFV network that
collects and monitors the NFV network traffic, and its behavior is analyzed. The second
phase implements the matrix differential decomposition model (MDD) that identifies
the anomaly in the NFV network. In the last step, the proposed algorithm is tested
experimentally, evaluated on three NFV networks individually, and its outcomes are
studied. The MDD algorithm for anomaly detection and localization not only gives good
results in identifying multiple anomalies at a single time but also prevents anomalies due
to the localization of network devices.

3.1.3. Machine Learning-Base Early Anomaly Detection

Elmajed, Arij, Armen Aghasaryan, and Eric Fabre et al. [73] presented a machine
learning-based anomaly detection algorithm focusing on two main challenges to identi-
fying the anomaly in the NFV network: first, to detect faults before they severely affect
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the network, and secondly, to take countermeasures before the unavailability of NFV
services. For this purpose, an experimental cloud-based NFV application was created
that is isolated from all other applications, and this environment contains few virtualized
network functions. The authors injected a series of resource perturbations and collected
multiple metrics of the system behavior. In the next step, using different machine language
approaches, they identified the anomaly in the system. They studied four machine learning
(ML) approaches and compared their metrics results; the random forest (RF), XGBOOST,
and KNN algorithms gave accuracy above 90%, while the max-likelihood classifier had
84% accuracy. After analyzing the fault localization and identification performance, RF
and XGBOOST gave the best results in classifying the different types of anomalies. Despite
these results, the proposed model further needs to improve the method of anomalies in the
NFV network in a more generalized way.

3.1.4. Tree-Based Anomaly Detection

Girish, L., et al. [74] discussed the isolation forest algorithm for anomaly detection in
NFV networks, which is an unsupervised anomaly detection approach. In this method, each
occurring event of the data can be efficiently separated and works as a decision tree. The
highly sensitive nature of the isolation forest helps to isolate abnormal data points toward
the end nodes of the decision tree and normal data points toward the root. The feature that
kept anomalies isolated from normal points originally helps to detect abnormalities in the
NFV network. The isolation forest algorithm is tested by injecting the anomalies in the
NFV network and collecting 12 different metrics’ data. Results show that the isolation tree
algorithm efficiently detects anomalies dynamically in the NFV network.

3.1.5. SLA-Aware Anomaly Detection

Hong, Jibum, et al. [75] proposed a machine learning algorithm for anomaly identi-
fication in NFV networks using service level agreement (SLA) violation and some of the
VNF performance features. The SLA-Aware algorithm work in three steps. The first step
is virtual network orchestration, in which a monitoring function operates on NFVI (NFV
infrastructure) and collects data on different VNFs in the network in terms of metrics. The
second preprocessing step converts the collected information into valid training models and
analyzes the data regarding anomaly detection. They divided the data into two categories;
normal and abnormal data. The anomalous data are further categorized based on VNF
performance and SLA violations. VNF performance includes data that identify packet
drops due to the unavailability of VNF resources. SLA violations contain data representing
the time that the service does not respond to the request. The last step is training models;
in this step, among several machine learning-supervised anomaly detection algorithms,
they selected the four best models based on testing. The chosen algorithms are distributed
Ran.F (random forest), Gradient Bo.M (boosting machine), Extreme G_B (X gradient boost),
and Feed_forward NN (F neural network). The Gradient Bo.M algorithm performs best
among these four top algorithms. The results show that the implemented architecture of
95% accurately identified anomalies in the NFV network.

3.1.6. Markov Chain and K-Means Method

Blaise, Agathe, Stan Wong, and A. Hamid Aghvami, et al. [76] proposed a decision-
based machine learning algorithm to identify the anomaly in the NFV network. They
analyzed the VNFs service in a forward and backward sequence and found the normal and
abnormal patterns of network functions. On detecting any anomaly, an alert is generated
and a message is sent to the administrator to isolate the NFV network. The whole method
is divided into two parts. The first part analyzes the virtual network function services
using the Markov chain algorithm. In contrast, in the second part, the K-mean pattern
detection technique is used to distinguish the normal behavior or abnormal behavior of
the NFV services. The property of the system’s future state depends on the current state
because Markov does not store any information; therefore, it is free from history. We apply
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the properties of the Markov chain function both forward and backward. Every VNF
represents the state in terms of two transition metrics that also show their connection. The
K-mean creates data clusters and uses them to analyze the network behavior. Since K-Mean
works on clustered data, it identifies anomalies more accurately than other algorithms and
can produce more accurate results as the cluster size increases.

3.1.7. Distance-Based Anomaly Detection in NFV

In Ref. [77], the proposed framework designs a legitimate behavior model at run-
time to monitor the network traffic in an NFV network. When an anomaly is detected,
the administrator initiates a mitigation process using the root cause analysis technique.
This method uses distance-based clustering techniques to develop a legitimate model for
anomaly detection. The proposed method efficiently identifies anomalies with low latency
rates and reduces the false alarm rate.

3.1.8. Intelligent Orchestration of NFV for Anomaly

Silva, Fernando, and Alberto Schaeffer-Filho, et al. [78] proposed a method for anomaly
detection in NFV using a supervised learning technique. The method was implemented in
NFV orchestration and management block to monitor the data traffic. The main objective
of this technique is to monitor all the incoming traffic; if any anomaly or malicious traffic
is found, the proposed module automatically instantiates the network function, which
helps with anomaly mitigation. The proposed method is efficient because it is integrated
with the NVF orchestration and management module and minimizes resource usage. The
experimental evaluation shows that the proposed method identifies anomalies with more
than 90% accuracy in the NFV network.

3.1.9. IFTM-Based Anomaly Detection in NFV

Schmidt, Florian, et al. [79] proposed a model that implemented an unsupervised
learning approach for anomaly detection in the NFV network. This method consists of
an automatic function for identification and a threshold-based technique for classifying
data traffic into normal and abnormal behavior. Due to two main tasks, i.e., identity
and threshold values, the proposed method is called IFTM. IFTM identifies anomalies
dynamically. The first function monitors the network traffic and identifies its behavior; if
the traffic data are found to be abnormal, they are sent to the threshold function, where we
classify their behavior as malicious or normal. This method gives 98% accurate results and
also reduces the false alarm rate. However, this method has some limitations; the IFTM
method is an expert system and needs some administrative control to handle it. Therefore,
a method should be designed with an automatic system for anomaly detection without the
intervention of any administration.

3.1.10. LSTM-Based Anomaly Detection in NFV

Alessio Diamanti, Jose Manuel. S.V., et al. [80] proposed an event-driven unsupervised
machine-learning method to detect anomalies in the NFV network. This method provides
a fully automated anomaly detection solution and identifies anomalies at runtime. The
proposed method works in two steps; in the first step, they designed different software mod-
ules for other network functions. They used long short-term memory (LSTM) autoencoders
and identified whether the data were nominal or anomalous. In the second phase, if any
anomaly was found, it was sent to the root cause analysis module, where the anomaly’s mit-
igation occurs. The LSTM autoencoder works on the radiography visualization approach.
This method identifies anomalies dynamically in a heterogeneous environment. This
method gave 90% accurate results, but this method works on the virtual layer. Therefore,
the proposed design should be extended to physical and cross-layer anomalies.
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3.1.11. Unsupervised Neural Network SOM

Lanciano, Giacomo, et al. [81] presented an approach for detecting anomalies in virtual
networks using unsupervised machine learning techniques. The proposed method involves
the use of a self-organizing map (SOM), which is an unsupervised neural network that
can cluster similar data points together. The SOM is trained on network traffic data to
create a map of the normal network behavior. During the detection phase, new traffic data
are input into the SOM, and if the data deviate significantly from the normal behavior, an
anomaly is detected. The authors evaluated their approach on a simulated virtual network
environment and found that it was able to detect various types of anomalies, including
denial-of-service (DoS) attacks and port scans, with a high degree of accuracy. Overall, the
paper demonstrates that unsupervised machine learning techniques can be effective for
detecting anomalies in virtual networks, and the proposed SOM-based approach shows
promise for this task.

3.2. Comparative Analysis of State-of-the-Art Anomaly Detection in NFV

All the above-proposed methods for anomaly detection in the NFV have some strengths
and weaknesses. The method proposed by Derstepanians, Arman, et al. [66] was useful
for telecommunication and infrastructure services. Telecommunication providers are al-
ways ready to deploy easily configurable and cost-effective solutions. Derstepanians,
Arman, et al. [66] therefore designed a model that is easily implemented within the VNF
services module and uses both supervised and unsupervised methods for anomaly detec-
tion. Their approach used VM data for anomaly detection. The method proposed by Jing
Chen [72] is a matrix decomposition method, in which they use a three-step procedure to
detect the anomaly and solve the device localization problem that generates the anomaly.
This method not only gives good results but also reduces the presence of anomalies in the
NFV network through the localization of devices.

Arij Elmajed [73] proposed a runtime solution for anomaly detection and focused on
two main tasks: detecting anomalies before they affect system performance and taking
timely countermeasures. Arij Elmajed [73] implemented his method using four different
machine learning algorithms and studied their behavior in terms of accuracy. Girish and
Dr. Sridhar [74] used the isolation forest algorithm technique to identify anomalies in the
NFV network and create a decision tree for data. This decision tree dynamically separates
the anomalous data from the norm data and shows good results. Jibum Hong, Suhyun,
and Jae Hyoung [75] used service level agreement (SLA) and performance characteristics
of VNF. This approach works in three steps: monitoring data traffic, analyzing data, and
taking countermeasures to mitigate anomalies. The analyzed phase plays a major role in
detecting anomalies. It separate the data into two main categories: anomalies due to VNF
performance or SLA violations.

Agathe Blaise [76] proposed a decision-based machine algorithm that detects anoma-
lies in forward and backward sequences and generates an alert message. The method
works in two steps. The first uses the Markov chain algorithm to detect anomalies, and the
second uses the K-means algorithm to generate an alert message if any anomaly occurs.

Anton Gulenko, Florian Schmidt [79] used a distance-based clustering model to iden-
tify anomalies in a NFV network and implement a mitigation process using root cause
analysis. This method relies on human interaction to deal with anomalies but has low
latency and reduces the false alarm rate. Fernando Silva and Alberto, Schaeffer-Filho [78]
proposed a method implemented in the NFV orchestration and management block to
identify anomalies in the network without any human interaction automatically. The pro-
posed method is efficient and reduces resource consumption. Florian Schmidt and Anton
Gulenko [77] proposed a method that automatically identifies anomalies in the network’s
data traffic and, after finding any anomalous data, checks whether the data are malicious or
not. For this check, it uses a threshold value. Alessio Diamanti, Jose Manuel [80] proposed a
method that identifies anomalies in a heterogeneous environment and provides zero-touch
network orchestration in the NFV. This method dynamically and automatically detects
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anomalies but operates at the virtual layer of the NFV network [82]. Here, we compare
these methods and analyze their efficiency and effectiveness in identifying anomalies in
NFV. Table 2 presents the overall analysis of the review papers. From the above-proposed
methods, we conclude some important facts regarding the anomaly detection technique in
the NFV:

• Supervised methods identify anomalies in the NFV network more quickly and accu-
rately as compared to unsupervised methods.

• Supervised methods are either implemented in NFV orchestration and manage-
ment block or VNFs services function block; this technique reduces the cost and
resource utilization.

• Unsupervised methods are complex compared to supervised methods but detect novel
anomalies in the NFV network.

• Unsupervised methods provide a runtime anomaly detection mechanism and are
implemented as separate modules or service functions.

• Unsupervised methods have more false alarm rates than supervised methods [83].
• Unsupervised methods provide a more generalized solution for anomaly detection

than supervised methods.
• Supervised methods also provide a mitigation process using root cause analysis and

reduce costs by integrating with the NFV infrastructure.
• Unsupervised methods provide a zero-touch network [80] monitoring environment

and automatic anomaly detection approach in the NFV, whereas supervised methods
need human interaction to handle anomalies.

• Unsupervised methods also work in heterogeneous data environments in runtime
scenarios [79].

We also study other surveyed papers on state-of-the-art anomaly detection in the NFV
network. For instance, Wang, Song, et al. [22] (2021) discuss anomaly detection in network
security, including various machine-learning techniques that can be used for anomaly
detection. However, they do not specifically focus on anomaly detection in NFV-based
networks. Nonetheless, the paper provides a good overview of the techniques that can be
used for network anomaly detection, which could be useful in the context of NFV-based
networks as well [84]. A summary of the surveyed papers and their methodologies is
provided in Table 2. The table presents an overview of the different papers, highlighting
their key contributions and the methodologies they employed for anomaly detection in
NFV networks. This summary will help in comparing and understanding the approaches
taken by each paper and their relevance to our own survey.

Table 2. Comparison of different anomaly detection methods.

Proposed
Methods

Year of
Publication
Strengths

Anomaly
Detection
Approach

ML-Based
Algorithm Strengths Limitations Accuracy Future Work

SMNRT [66] 2022 supervised HYBRID
MODEL

Suitable for
time-sensitive

applications, high
detection accuracy.
Hybrid techniques

detect anomalies in a
complex and dynamic

network.

Relies on labeled data
for supervised learning.
System’s performance
may be affected by the

quality. The system may
require significant

computational
resources and expertise

in machine learning.

98%

More ML algorithms
and neural network
models. Address the

issue of false positives.
Improve real-time

performance. Evaluate
the proposed system in

a real-world setting.

3 MDD [72] 2019 unsupervised PCA
Multiple anomaly
detection, handle

localization, reduces
computation and

deployment difficulties.

Dynamic anomaly
detection is not

possible.
97.24%

Develop an
online-based anomaly

detection system.

MLBEAD [73] 2020 supervised Ran.F
Early detection of

anomalies, anomaly
handling mechanism,

online detection.

A limited no. of
anomalies are

identifiable and need
generalization, multiple

algorithms are used.

93%
Develop a more

generalized mechanism
for anomaly detection

and also implement it in
the Docker platform.
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Table 2. Cont.

Proposed
Methods

Year of
Publication
Strengths

Anomaly
Detection
Approach

ML-Based
Algorithm Strengths Limitations Accuracy Future Work

TBAD [74] 2019 unsupervised Dec.T
Efficient anomaly
detection, strong

defense mechanism,
timely detection of

anomaly.

A small-level, real-time
implementation

required.
90%

Develop a real-time
online anomaly

detection mechanism
and use the same
method with deep

learning techniques.

SAAD [75] 2020 supervised G.Bo.M
Strong identification for

anomalies, good for
web hosting scenarios.

Work only for web
hosting, required

generalization.
95%

Extend the proposed
method for large VNF

scenarios.

MCKM [76] 2018 unsupervised MC

Easily and more
accurately identifies the
anomaly in NFV, good

defense mechanism,
suitable for a large
network, scalable.

Computational and
resource utilization

overhead.
85%

Develop the same
model using a
deep-learning

algorithm.

DBCAD [77] 2018 Unsupervised DBCA

Strong defense
mechanism against
anomalies. Runtime
legitimate behavior
model for anomaly

detection, low latency
rate.

Detection of particular
types of anomalies,

more resource
utilization. Human

interaction required for
mitigation.

98.9%

Develop a more
generalized model that

covers all types of
anomalies and

automatically handles
all processes from

detection to mitigation.

IOCNF [78] 2022 Supervised Fuzzy Logic

Minimize resource
usage. Automatically
mitigate anomalies in
NFV. Work together

with network
orchestration and

management module.

Work only limited
datasets. Fewer features

are considered for
anomaly detection.

90%
The method should be
generalized. Consider

large data traffic
features.

IFTM [79] 2018 Unsupervised LSTM
Reduces false alarm
rate. Use the expert
system to identify

anomalies.

Depend upon
administrative control.

The method covers
some specific data

traffic.

98%
Design should extend

to the automatic
detection of anomalies

in NFV. The method
should be generalized.

SYRROCA [80] 2020 Unsupervised LSTM

Detect anomalies in a
heterogeneous

environment. Identifies
anomaly dynamically

and automatically.
Provides zero-touch

network orchestration
in NFV.

Work only at the virtual
layer. Use large metrics
for anomaly detection.

98%

Design should extend
to physical and cross

layers. Design for other
types of data streams,
such as VoIP, 4G, 5G,

etc.

SOM [81] 2021 Unsupervised Clustering

more accurate and
efficient results . Joint

analysis of system-level
and application-level
metrics. Effective in
identifying similar

input patterns.

Number of
hyper-parameters that

have to be decided.
Non-negligible

processing time. Not
suitable for excessively

large networks.

99%

Hyperparameters to
improve its accuracy

and reduce false
positives. Exploration
of other unsupervised

machine learning
techniques, such as

clustering.

3.3. Quantitative Comparison of State-of-the-Art Anomaly Detection in NFV Network

In the context of this survey on anomaly detection in NFV using machine learning,
this subsection undertakes a detailed analysis of anomaly detection by evaluating the
parameters extracted from Section 2 of the literature. A comparison of cutting-edge anomaly
detection solutions is provided in Table 3, offering an overview of their key features
and a quantitative comparison of different proposed methods for anomaly detection in
NFV networks using supervised and unsupervised learning. The performance of each
method is evaluated based on four metrics: accuracy, precision, recall, and F1-score. These
metrics help to determine which solution offers the most accurate and effective detection of
anomalous events in the network.

Accuracy measures how often a model correctly predicts the outcome. Precision
measures how often the model is correct when it predicts a positive outcome. It is like
asking “How many of the positive predictions were correct?” Precision is important when
we want to avoid false alarms. Recall measures how often the model correctly predicts a
positive outcome out of all the true positive outcomes. Recall is important when we want
to ensure that we do not miss any positive outcomes. The F-measure is a harmonic mean
of precision and recall. The F-measure is useful when we want to balance the trade-off
between precision and recall.
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Table 3. Quantitative comparison of different anomaly detection methods.

Proposed Accuracy Precision Recall F1-Score

SMNRT [66] 0.98 0.83 0.98 0.90

MDD [72] 0.9724 0.89 0.91 0.90

MLBEAD [73] 0.93 0.92 0.89 0.91

TBAD [74] 0.90 0.92 0.91 0.92

SAAD [75] 0.95 0.94 0.89 0.91

MCKM [76] 0.85 0.95 0.95 0.95

DBCAD [77] 0.989 NSp NSp NSp

IOCNF [78] 0.90 0.91 0.92 0.91

IFTM [79] 0.98 NSp NSp NSp

SYRROCA [80] 0.98 0.94 0.93 0.94

SOM [81] 0.9959 0.9803 0.9992 0.9896

Through the comparison of accuracy, recall, precision, and F1-score across different
anomaly detection methods, researchers can determine which method is the most effective
in detecting anomalies in the NFV network. It is essential to focus on these quantitative
features to ensure that the selected method can accurately and effectively identify anoma-
lies while minimizing false positives. The metrics are presented in a tabular form for
each proposed method, except for DBCAD and IFTM, which are marked as “NSP” (not
specified) due to the lack of reported results in the corresponding paper. The table aims to
provide a quick comparison of the performance of different proposed methods in terms
of anomaly detection accuracy. The accuracy metric indicates the percentage of correctly
classified instances among all instances. According to this metric, SOM [81] shows the best
performance among all methods, achieving an accuracy of 0.9959, followed by SMNRT [66]
and SYRROCA [80] with accuracies of 0.981 and 0.974, respectively.

Precision indicates the proportion of true positives to the total number of positive
predictions. Among all methods, SOM [81] shows the best precision with a score of 0.9803,
followed by MCKM [76] with a precision score of 0.95.

Recall indicates the proportion of true positives to the total number of actual positive
instances. Among all methods, SOM [81] shows the highest recall score with a value of
0.9992, indicating that it can identify almost all positive instances as anomalies.

Among all methods, SOM [81] also shows the highest F1-score with a value of 0.9896,
followed by SMNRT [66] and SYRROCA [80] with F1-scores of 0.976 and 0.94, respectively.

Overall, the results suggest that SOM is the most effective method for anomaly de-
tection in NFV networks based on the considered performance metrics. However, it is
important to consider other factors, such as complexity, scalability, and robustness, when
choosing an appropriate anomaly detection method for a specific NFV environment.

The following graph, as shown in Figure 4, provides a graphical representation of
the quantitative comparison between different anomaly detection methods, which better
represents the variations in accuracy, precision, recall, and F1 scores.
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Quantitative Comparison

Figure 4. Graphical representation of the quantitative comparison between different anomaly
detection methods.

4. Open Research Issues and Challenges

The field of network-based anomaly detection in NFV networks using supervised and
unsupervised approaches of machine learning is still evolving, and several areas of research
remain open. One such area is developing methods that can automatically and accurately
detect anomalies in the NFV network. These methods should be capable of identifying
the source of the attack without compromising NFV functionality and quality of service.
Additionally, these methods should be able to take timely and effective countermeasures
and identify new anomalies while reducing false alarms.

Another area that requires further research is the development of an effective anomaly
detection mechanism that can overcome the vulnerabilities of the shared environment
in NFV networks. The mechanism should be designed to ensure that the anomalies are
detected in real time and that they do not impact the performance of the network [85].

Moreover, there is a need to explore the identification of new and advanced machine-
learning techniques that can be used for anomaly detection in NFV networks. This could
involve combining different techniques and developing hybrid models to improve the
accuracy and efficiency of anomaly detection.

Finally, there is a need to identify new security issues and challenges in each envi-
ronment and develop new techniques and strategies to address them effectively. This
would require constant research and development to keep up with the rapidly evolving
threats in the NFV network. However, the area of network-based anomaly detection in
NFV networks using supervised and unsupervised approaches of machine learning is an
active research area, and many opportunities for research and innovation still exist, a few
of which are illustrated in Figure 5 discussed below.
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Figure 5. Open research challenges of anomaly detection in NFV.

4.1. Hybrid Approaches

Hybrid approaches that combine supervised and unsupervised machine learning
techniques offer a promising direction for research in anomaly detection in NFV networks.
By leveraging the strengths of multiple techniques, these approaches have the capability
to surmount the constraints of individual methods and offer enhanced accuracy and effi-
ciency in detecting anomalies in the complex NFV environment [86]. Supervised learning
approaches rely on labeled data to train a model to identify anomalies. However, labeled
data are often scarce in NFV environments, which limits the effectiveness of supervised ap-
proaches. Unsupervised approaches, while not relying on labeled data, may have difficulty
detecting unprecedented or advanced attacks.

By combining the advantages of supervised and unsupervised approaches, hybrid
methods can offer more efficient anomaly detection [87]. One such hybrid approach is
to use unsupervised techniques for detecting potential anomalies, and then supervised
techniques for classifying them as normal or malicious. Another approach could entail
using unsupervised techniques to establish normal patterns and then utilizing supervised
methods to identify any deviations from those patterns [88].

Research in hybrid approaches could also explore the use of deep learning techniques,
such as deep autoencoders, which can learn representations of data without the need for
explicit feature engineering [89]. Deep learning techniques have shown promise in other
domains and could be adapted for use in anomaly detection in NFV networks.

Overall, research in hybrid approaches offers an exciting direction for advancing the
field of anomaly detection in NFV networks. By combining the strengths of different
techniques, hybrid approaches could provide more accurate and efficient detection of
anomalies, while reducing false positives and false negatives.

4.2. Incremental Learning

Incremental learning is a machine learning approach that enables an anomaly detection
system to continuously learn and improve its detection capabilities over time. This is
particularly important in NFV networks, which are dynamic and constantly evolving, and
where new types of attacks and anomalies may arise [90].

By using incremental learning techniques, an anomaly detection system can adapt
to changes in the NFV network and learn from new data in real time. This allows the
system to detect and identify previously unknown anomalies and attacks, and to improve
its overall accuracy and effectiveness [91].

There are several challenges involved in implementing incremental learning in anomaly
detection systems for NFV networks. One of the key challenges is the need to handle large
volumes of data, as well as the need to process data in real time. To address these chal-
lenges, researchers have developed specialized algorithms and techniques, such as online
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learning and stream mining, that can process data in real time and adapt to changes
in the network [92].

Another challenge is the need to balance accuracy and efficiency. Incremental learning
algorithms may require significant computational resources and may be computationally ex-
pensive. Therefore, it is important to develop efficient algorithms that can detect anomalies
accurately while minimizing false positives and reducing the risk of false alarms [93].

Despite these challenges, incremental learning represents a promising area of research
for improving anomaly detection in NFV networks. By continuously learning and adapting
to changes in the network, anomaly detection systems can improve their effectiveness and
better protect the network against new and emerging threats.

4.3. Transfer Learning

Transfer learning is a powerful machine learning approach that involves transferring
knowledge from a sender domain to a destination domain. In the realm of anomaly
detection in NFV networks, transfer learning can be applied to exploit knowledge acquired
from one network and apply it to another network with similar characteristics, thereby
enhancing the performance of the anomaly detection system [94].

In NFV networks, transfer learning can be useful in situations where there are multiple
networks that have similar characteristics but with different traffic patterns and behavior.
By transferring knowledge from one network to another, the anomaly detection system
can learn to identify anomalies in the new network more effectively and efficiently [95].
For example, if an anomaly detection system is trained on a network with similar traffic
patterns and characteristics as the target network, it may be able to identify new and
emerging anomalies in the target network more quickly and accurately.

Transfer learning can reduce the amount of labeled data needed for training an
anomaly detection system in the target domain and can mitigate the problem of dataset
shift. In NFV networks, transfer learning can be applied through inductive, transductive,
and multi-task learning approaches. Inductive transfer learning is useful when labeled
data are limited, while transductive transfer learning is suitable when there is a significant
amount of unlabeled data available. Multi-task learning can be effective for detecting
anomalies in multiple networks with similar characteristics [96].

Overall, transfer learning is a promising research area for improving the performance
of anomaly detection systems in NFV networks. By leveraging knowledge from one
network to another, transfer learning can help to address the challenges of limited labeled
data and dataset shift, and improve the accuracy and efficiency of anomaly detection in
NFV networks [97].

4.4. Ensemble Methods

Ensemble techniques refer to the combination of multiple anomaly detection algo-
rithms to enhance the overall performance of the system. The idea behind ensemble
methods is that by combining the outputs of several individual models, the overall accu-
racy and robustness of the system can be improved. This approach can be particularly
effective when the individual models have different strengths and weaknesses, as the
weaknesses of one model can be offset by the strengths of another [98].

In the context of anomaly detection in NFV networks, ensemble methods can be
used to reduce false positive rates and improve the accuracy of the detection system. By
combining multiple algorithms, the system can more accurately detect anomalies and
reduce the likelihood of detecting false positives [99].

Ensemble methods, such as bagging, boosting, and stacking, can be used for anomaly
detection. Bagging involves training multiple models on different subsets of data, while
boosting trains models sequentially to focus on misclassified samples. Stacking combines
the outputs of multiple models to create a final prediction. These methods are useful
when individual models have high variance and bias, or complementary strengths and
weaknesses [100]. In the context of anomaly detection in NFV networks, there is potential
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for ensemble methods to improve the accuracy and robustness of existing systems. Addi-
tional research is required to investigate the efficiency of diverse ensemble methods and to
create novel techniques that are customized to the particular traits of NFV networks.

4.5. Explainable AI

Explainable AI (XAI) is a research area that aims to develop machine learning models
that can provide understandable explanations for their decisions or predictions. In the
context of anomaly detection in NFV networks, XAI can be used to make the detection
process more transparent and interpretable for network administrators [101]. This can
help network administrators to better understand the detection results and make informed
decisions about security measures.

One of the challenges of anomaly detection in NFV networks is the high volume and
complexity of data generated by the network. Machine learning models are often used to
process these data and detect anomalies. However, these models can be difficult to interpret,
especially when they use complex algorithms, such as deep neural networks [34]. This
can make it difficult for network administrators to understand how the models arrived at
their decisions, which can lead to mistrust of the detection system and difficulty in making
informed decisions [102].

XAI techniques can be used to address this challenge by providing interpretable
explanations for the decisions made by the machine learning models [103]. For example,
decision trees can be used to create rules that explain how a model arrived at a decision.
Alternatively, visualization techniques can be used to create graphs or heat maps that show
which features were most important in the decision-making process [104].

XAI can also be used to provide context for the anomalies detected in the network. For
example, if a model detects an anomaly in a particular network function, XAI techniques
can be used to explain why that function is critical to the overall performance of the network
and what the potential consequences of a failure in that function might be [105]. This can
help network administrators prioritize their responses to anomalies and take appropriate
actions to mitigate the risk.

Overall, XAI is an important research area in anomaly detection in NFV networks, as
it can help to improve the transparency and interpretability of machine learning models,
which can in turn improve the trust and effectiveness of the detection system.

4.6. Design Framework

The development of a design framework is an essential area of research for improving
anomaly detection in NFV networks. The NFV architecture includes multiple layers of
hardware and software, and each layer has its functionalities and requirements [17]. A
design framework can help in the development of an effective and efficient anomaly
detection system that can operate in all layers of the NFV network.

The framework should take into account the characteristics of each layer and develop
a methodology to detect anomalies in each of them. For example, the hardware layer may
have its own set of vulnerabilities that can be exploited by attackers. The framework should
provide a set of techniques and tools to detect such anomalies [106].

Similarly, the virtual functional layer may have a different set of vulnerabilities that
require a different set of tools and techniques for anomaly detection. The framework should
take into account these differences and develop a set of strategies that can be used to detect
anomalies in the virtual functional layer [107].

Finally, the hardware–virtual functional layer is a combination of both the hardware
and virtual functional layers. The framework should be capable of detecting anomalies
in this layer by combining the techniques and strategies developed for the hardware and
virtual functional layers [75].

The design framework can help to develop a comprehensive approach to detect anoma-
lies in the NFV network. It can provide a systematic way to integrate various anomaly
detection techniques and strategies to detect anomalies effectively and efficiently [108].
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The framework can help to reduce false positives and false negatives, which are major
challenges in anomaly detection. It can also help network administrators quickly identify
the source of the anomalies and take timely and effective countermeasures to protect the
NFV network from attacks.

5. Conclusions and Future Work

Network function virtualization (NFV) is a modern concept prevalent in cloud environ-
ments. NFV simplifies deployment and management while offering greater flexibility, scala-
bility, and lower network infrastructure costs. It is transforming traditional hardware-based
networks into software-driven networks. Despite these benefits, a significant drawback
cannot be ignored: security vulnerabilities and cyber attacks. As NFV is a shared-based
software system, it relies on a third-party infrastructure, making it an attractive target for
attackers. Anomaly detection is an effective technique for the identification and prevention
of cyber attacks. It is a broad field that helps identify different types of network traffic-
based security attacks. This paper focuses on network traffic-related security issues and
analyzes different anomaly detection methods in the NFV network. Our research shows
that several effective machine learning algorithms exist, which we divide into supervised
and unsupervised categories. We draw a few conclusions from the analyzed algorithms for
anomaly detection in NFV:

• The unsupervised algorithm works efficiently on cluster data, while the supervised
algorithm first trains the system and then implements the output results.

• Anomaly detection methods that work on the principle of unsupervised algorithms
give less accurate results than supervised algorithms.

• Anomaly detection methods that use supervised algorithms could be generalized,
which is not easier in unsupervised algorithms.

• Supervised algorithms are accurate and faster to implement than unsupervised algorithms.
• A separate module design is a better solution for anomaly detection in NFV networks.

This survey paper provides an updated and comprehensive review of the recent
research on network-based anomaly detection in NFV networks using supervised and
unsupervised machine learning approaches. Unlike previous surveys, this paper discusses
the latest developments in anomaly detection mechanisms, hybrid models, and advanced
machine learning techniques, and provides practical insights for improving the detection
performance of NFV networks [109].

Moreover, this paper identifies the future research areas that require further investi-
gation, including the development of effective anomaly detection mechanisms that can
overcome the vulnerabilities of the shared environment in NFV networks, and the iden-
tification of new security issues and challenges. Additionally, this paper proposes some
potential solutions, such as ensemble methods, incremental learning techniques, transfer
learning, and explainable AI, to address these challenges.

Overall, this survey paper provides a more comprehensive and updated analysis of
the state-of-the-art research on network-based anomaly detection in NFV networks, and it
can serve as a valuable resource for researchers, practitioners, and network administrators
working in this field.
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Abbreviations

The following abbreviations are used in this manuscript:
SMNRT Simple Median Near Real-Time
MDD Matrix Differential Decomposition
MLBEAD Machine Learning-Based Early Anomaly Detection
TBAD Tree-Based Anomaly Detection
SAAD SLA-Aware Anomaly Detection
MCKM Markov Chain and K-means Method
DBCAD Distance-based Clustering Anomaly Detection
BBA Black Box Approach
Ran.F Random Forest
G.Bo.M Gradient Boosting Machine
Dec.T Decision Tree
MC Markov Chain
DBCA Distance-based Clustering Algorithm
PCA Principle Component Analysis
SYRROCA System Radiography and Root Cause Analysis
IFTM Identity Function and Threshold Model
IOCNF Intelligent Orchestration of Containerized Network Function
SOM Self-Organizing Map
NSp Not Specified
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