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Abstract: This article introduces a novel framework for diagnosing faults in rolling bearings. The
framework combines digital twin data, transfer learning theory, and an enhanced ConvNext deep
learning network model. Its purpose is to address the challenges posed by the limited actual fault
data density and inadequate result accuracy in existing research on the detection of rolling bearing
faults in rotating mechanical equipment. To begin with, the operational rolling bearing is represented
in the digital realm through the utilization of a digital twin model. The simulation data produced
by this twin model replace traditional experimental data, effectively creating a substantial volume
of well-balanced simulated datasets. Next, improvements are made to the ConvNext network by
incorporating an unparameterized attention module called the Similarity Attention Module (SimAM)
and an efficient channel attention feature referred to as the Efficient Channel Attention Network (ECA).
These enhancements serve to augment the network’s capability for extracting features. Subsequently,
the enhanced network model is trained using the source domain dataset. Simultaneously, the trained
model is transferred to the target domain bearing using transfer learning techniques. This transfer
learning process enables the accurate fault diagnosis of the main bearing to be achieved. Finally, the
proposed method’s feasibility is validated, and a comparative analysis is conducted in comparison
with similar approaches. The comparative study demonstrates that the proposed method effectively
addresses the issue of low mechanical equipment fault data density, leading to improved accuracy in
fault detection and classification, along with a certain level of robustness.

Keywords: rolling bearing; digital twin; transfer learning; ConvNext; fault detection

1. Introduction

With the continuous advancement of the manufacturing industry, China’s transition
from being a manufacturing power to becoming a manufacturing juggernaut has emerged
as a significant task for the nation’s economic progress in the modern era [1]. Within the
realm of industry, rolling bearings find extensive utilization across various apparatuses and
machinery. Whenever a malfunction arises, it typically gives rise to a sequence of intricate,
dynamic, and noise-obscured vibration signals, rendering the extraction of fault-related
information a challenging task [2].

With the proliferation of monitoring devices and the escalation in sampling frequency,
the domain of bearing fault monitoring has stepped into the realm of “big data”. Conse-
quently, the fusion of monitoring data with artificial intelligence for fault diagnosis has
become a focal point of research. Hu et al. [3] have developed an enhanced three-layer
Laplace wavelet convolutional neural network that not only elucidates its physical impli-
cations but also enhances the network’s interpretability. This network exhibits a notable
degree of accuracy and generalization across different types of bearing fault scenarios.
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However, in real-world industrial environments, the scarcity of high-quality training data
for intelligent diagnostic models poses a challenge due to the transient nature of fault
incidents during the prolonged normal operation of rotating mechanical equipment [4].
Furthermore, existing deep learning algorithms necessitate an extensive analysis of sample
data to yield a high-performance algorithmic model. To address these concerns, Xu et al. [5]
have proposed a ViT (Vision Transformer) model that leverages multi-information fusion,
enabling bearing fault diagnosis with limited data samples. Additionally, Chen et al. [6]
have introduced a conditional depth convolution countermeasure generation networks
(C-DCGAN) model capable of enhancing small-sample, multi-category data. The vibration
signals emanating from bearings in mechanical equipment exhibit characteristics of both
mechanical big data and low data density. Moreover, due to their prolonged operational
lifetimes in normal working conditions, the monitoring data collected often suffer from
high redundancy and low data value density. In this context, the advent of the digital twin
(DT) concept provides a viable solution to the aforementioned challenges [7].

The DT represents a novel technological advancement rooted in computer modeling
and simulation techniques. It intricately intertwines physical systems with virtual realms,
leveraging digits and information to manifest the behaviors of both real and virtual envi-
ronments [8]. By employing data acquired from sensors and generated within the virtual
space, the DT technology captures the present state of a system, constructs precise digital
models, and conducts real-time simulations and optimizations through computers. The
rapid progress of information technology, particularly the emergence of next-generation
technologies such as industrial IoT, cloud computing, big data, and machine learning, has
propelled DT technology into the forefront of industrial research [9–12]. The inception of
the DT concept can be traced back to Professor Michael Grieves’ 2003 proposal at the Uni-
versity of Michigan in the United States [13]. Initially, DT technology found applications in
the military and aerospace sectors. The US Air Force Research Laboratory and the National
Aeronautics and Space Administration (NASA) employed DT technology to simulate and
assess extreme scenarios, testing the resilience of future aerospace flight vehicles against
higher loads and more demanding operational conditions [14]. Recognizing its signifi-
cance, Gartner, a leading global information technology consulting company, has listed
DT technology among the top ten strategic trends and emerging technologies for the next
5–10 years [15]. Scholars such as Guo et al. have harnessed DT technology to construct
comprehensive DT models spanning the entire lifespan of bearings. They utilized neural
networks to obtain dynamic response outcomes from the mechanical model of bearings,
thereby uncovering the evolutionary patterns of their life cycles [16]. Piltan et al. combined
DT technology with machine learning to detect abnormal bearings and recognize crack
sizes [17]. Zhao et al. employed DT technology to establish a model for wind turbine gear-
boxes, leveraging deep learning networks to accurately classify the operating conditions
of these gearboxes [18]. Jahangiri et al. developed a mechanical model of a wind turbine
transmission system using a DT approach, enabling the monitoring and identification of
changes in structural model parameters for making damage assessments [19]. Moreover,
DT technology has recently found application in various fields, including construction [20],
medical care [21], and communication [22]. Within the domain of rolling bearing fault
diagnosis, DT technology assumes a pivotal role. It facilitates the replication of rolling
bearings in the digital realm, generating sample datasets that exhibit the same characteristic
distribution. By simulating multidimensional and multi-field high-fidelity twin models,
it becomes feasible to emulate bearing conditions under diverse operating circumstances
and achieve fault diagnosis. Simultaneously, DT technology presents a new avenue for
addressing the challenge of limited sample sizes in rolling bearing fault diagnosis, thus
revolutionizing the research pertaining to the identification and diagnosis of bearings in
rotating mechanical equipment.

In light of the disparity observed between the feature distributions of training and
testing data, certain researchers have incorporated the principles of transfer learning into
the realm of bearing fault diagnosis. Transfer learning leverages knowledge acquired from
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relevant source domains to make predictions in target domains, thereby facilitating a more
profound comprehension of feature knowledge in the target domain and enhancing the
model’s generalization capabilities. Zhou et al. [23], at the helm of a team of researchers,
have introduced a Transfer Learning Residual Network model (TL-ResNet) that combines
residual networks and transfer learning techniques. This approach involves the conversion
of one-dimensional vibration data into time-frequency images, followed by the transfer of
training from the source domain dataset to the target domain bearings, ultimately enabling
fault diagnosis in rolling bearings within the target domain. Huang et al. [24] have put forth
a profound deep transfer learning model that commences by judiciously selecting a suitable
source domain dataset using the maximum mean discrepancy technique to support model
training. Domain features are subsequently extracted using specialized domain feature
extractors, and the alignment of classifier outputs is achieved via the Wasserstein distance.
This approach proves efficacious in diagnosing faults in bearings under diverse operating
conditions. Presently, the prevailing method in transfer learning entails constructing a
fault diagnosis model employing experimental bench running data as the source domain
dataset. However, the dissimilarities in the physical attributes of real working condition
main bearings on the experimental bench, coupled with the inherent limitations in simu-
lating operating conditions and environments, significantly impact the accuracy of fault
diagnosis outcomes.

The aim of DT technology is to diminish the dependence on experimental data sets as
the source domain by creating high-fidelity twin models and acquiring a comprehensive
and balanced sample data set. It also strives to reduce the disparity in data distribution
between the source and target domains by incorporating transfer learning into the diag-
nostic model framework. This integration helps to alleviate errors caused by imbalanced
data distribution during the transfer of features and hyperparameters. In the research
framework of rolling bearing fault diagnosis based on DT data, the selection of the net-
work for feature extraction holds paramount importance. Wang et al. [25] introduced a
multi-scale attention mechanism residual network model (MSA-ResNet) that augments
feature sensitivity by integrating attention mechanisms into each residual module. This
model employs multi-scale convolution kernels to extract features from non-linear vibra-
tion signals and exhibits notable advantages in the accuracy of bearing fault classification.
Huang et al. [26] proposed a Channel Attention Mechanism Multi-Scale Convolutional
Neural Network (CA-MCNN) model, which enhances the feature learning capabilities of
the convolutional layers through the introduction of attention mechanisms. It effectively
captures multi-scale information via a one-dimensional convolutional network. Experimen-
tal results validate the exceptional fault diagnosis performance of the model across various
operating conditions. Zhang et al. proposed a bearing fault detection method based on
an improved denoising autoencoder (DAE) and the bottleneck layer self-attention mecha-
nism (MDAE-SAMB) [27]. They achieved high-accuracy online bearing fault classification
using only a limited number of fault samples for offline training. Hou et al. presented
a bearing fault diagnosis method that combines the Transformer and Residual Neural
Network (ResNet) for joint feature extraction [28]. They employed a transfer learning
strategy with fine-tuning to alleviate the training challenges of the proposed method in
new tasks. The results exhibited superior prediction accuracy in high-noise environments
compared to traditional deep learning networks. Zhao et al. proposed a dynamic capsule
network with adaptive shared weights (DCCN) and adaptively adjusted convolutional
weights using attention mechanisms [29]. The effectiveness of the proposed method was
validated through experiments on noisy and variable load-bearing faults, demonstrating a
certain degree of generalizability. Wang et al. introduced a dual-stream hybrid generative
data-based dual-attention feature fusion network (DAFFN) [30]. They designed a feature
fusion network with dual attention mechanisms to learn channel-level and layer-level
weights for features. The results demonstrated that the proposed method maintained a
certain diagnostic performance even with imbalanced datasets. The research indicates that
deep learning networks are extensively employed in the field of bearing fault diagnosis.
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However, their deep-layered structure may give rise to gradient disappearance or explosion
issues, resulting in an inefficient or slow convergence of the network, subsequently reduc-
ing the accuracy of bearing fault diagnosis. To tackle this challenge, this article proposes
an enhanced ConvNext approach for bearing fault classification. As a next-generation
convolutional neural network, ConvNext incorporates exemplary designs from ResNet and
Swin Transformer, which have achieved remarkable success in the field of computer vision.
Furthermore, the novel architectural design of ConvNext facilitates smoother network
gradients, enabling faster convergence. To further enhance the performance of the basic
network model, this article enhances the Block module of the ConvNext network by intro-
ducing a SimAM attention module after depthwise convolution. This module computes
the similarity between two input sequences and fuses their features without introducing
additional parameters, thereby improving the overall performance of the basic network.
Simultaneously, an ECA attention module is inserted before the Layer Scale to allocate
greater attention to fault features and reinforce the directionality of fault feature extraction,
thus maximizing the utilization of fault features. Consequently, this paper employs the
enhanced ConvNext network to construct a fault recognition model for rolling bearings.

Lastly, this article presents a fault diagnosis model framework for rolling bearings,
incorporating DT data, transfer learning, and an enhanced ConvNext network. More
specifically, the DT system for the rolling bearing is established by constructing a coupled
reduced-order model (ROM) that encompasses the multi-physics field of the main bearing.
This model is utilized to enrich the sample dataset of the source domain by introducing
different faults and altering various environmental parameters within a specific range.
Subsequently, an upgraded version of the ConvNext network model is initially formulated
and trained using the source domain dataset. The parameters and model of this improved
ConvNext network are then transferred to the rolling bearing through weight and feature
transfer. Ultimately, precise and accurate fault recognition of the defective bearing is
accomplished through the utilization of the enhanced ConvNext deep learning network.
The specific contributions are delineated as follows:

(1) A digital twin system has been devised for rolling bearings, incorporating the integra-
tion of multiple physics domains and employing model order reduction techniques.
This system facilitates the creation of a substantial and well-balanced dataset, effec-
tively mitigating the challenge posed by limited samples in fault diagnosis. Such an
approach not only ensures cost-effectiveness but also enhances convenience.

(2) The ECA-SimAM-ConvNext network model is introduced as an innovative classifica-
tion framework for detecting rolling bearing faults. This model utilizes the ConvNext
convolutional neural network as its foundation and integrates a parameter-free at-
tention module (SimAM) and an efficient channel attention feature module (ECA) at
strategic positions. These augmentations significantly enhance the network’s ability
to extract fault features, resulting in improved performance.

(3) An innovative methodology is presented for the identification of rolling bearing
faults, integrating digital twin data, transfer learning principles, and deep learn-
ing algorithms. The efficacy, precision, and superiority of this approach have been
substantiated through experimental validation.

The paper is structured into multiple sections, each serving a distinct purpose.
Section 2 delves into the discussion of the digital twin system for rolling bearings, en-
compassing the construction of coupled reduced-order models for the multi-physics field
and the establishment of the digital twin model. Furthermore, it provides a fundamental
understanding of ConvNext, a key theoretical component. In Section 3, we present the
TL-ECA-SimAM-ConvNext method, which is proposed in this study and integrated into
the digital twin system, forming a novel framework for fault diagnosis and recognition.
The feasibility of the proposed fault diagnosis method is demonstrated in Section 4, where
two commonly used bearing datasets are combined. The experimental results are presented
and compared with alternative intelligent fault diagnosis approaches. Finally, Section 5
concludes the paper, summarizing the findings and implications.



Sensors 2023, 23, 5334 5 of 22

2. Methodology
2.1. Construction of Rolling Bearing DT Model

The DT model of the rolling bearing depicted in Figure 1 is introduced in this paper.
In this model, the physical entity represents an objective existence that receives instructions
and executes specific functions. The twin model has the capability to accurately replicate
the physical entity within the digital realm, creating a comprehensive twin model that en-
compasses multiple dimensions and domains. It facilitates the assessment and surveillance
of the physical entity’s reliability. The connection facilitates real-time data interchange
between the physical entity and the virtual entity. By analyzing data, it becomes feasible to
achieve state monitoring and fault diagnosis of the target entity.
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Figure 1. Overall framework of DT system for rolling bearings.

2.1.1. Physical Entity

The notion of DT is founded upon the utilization of digital representations to simu-
late the behavior exhibited by physical entities. In the context of a DT system for rolling
bearings, the physical entity serves as the vessel of information, encompassing tangible
attributes such as the bearing’s structure, temperature distribution, fluid dynamics, and
oil film rigidity. These interconnected attributes exert a mutual influence to ensure the
faithful portrayal of the bearing’s performance degradation trend within the virtual model,
as exemplified in Figure 2. The construction of a precise twin model platform necessitates
the aggregation of diverse operational data and environmental parameters pertaining to
the bearing. Communication techniques such as TCP/IP can be employed to establish a
connection between the Internet of Things (IoT) platform and sensors embedded within
mechanical equipment, thereby enabling seamless data integration. This real-time data ac-
quisition endows the virtual model with efficient and accurate data interchange capabilities
that closely resemble the bearing’s actual operational conditions.
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Figure 2. Real working conditions of rolling bearings.

2.1.2. Twin Model

The digital twin model precisely maps the physical entity onto the digital realm
and mirrors the degradation of rolling bearings by utilizing characteristics derived from
historical data. To establish a highly accurate model, this study utilized CAD modeling
and CAE finite element simulation software such as SolidWorks and ANSYS. Incorporating
factors such as wear, thermal effects, and nonlinear materials, a multi-physics coupled
field for the primary bearing was constructed within the ANSYS/Workbench platform.
To address the computational time required for prolonged simulations of the complex
multi-physics three-dimensional model, which failed to meet real-time demands, the
ROM (reduced order model) technique was employed in Ansys Twin Builder, resulting in
computational efficiency.

Within the Ansys Twin Builder environment, this study developed a digital twin
model for the rolling bearing, as illustrated in Figure 3. Through the meticulous adjustment
of virtual sensors and input parameters, vibration displacement signals along the X and
Y axes of the rolling bearing were obtained to facilitate the training of the subsequent
fault diagnosis model. Ultimately, the encapsulated digital twin model can be seamlessly
deployed on IoT platforms such as Microsoft Azure IoT, fostering streamlined connectivity
within the digital twin system framework.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 22 
 

 

establish a connection between the Internet of Things (IoT) platform and sensors embed-

ded within mechanical equipment, thereby enabling seamless data integration. This real-

time data acquisition endows the virtual model with efficient and accurate data inter-

change capabilities that closely resemble the bearing’s actual operational conditions. 

 

Figure 2. Real working conditions of rolling bearings. 

2.1.2. Twin Model 

The digital twin model precisely maps the physical entity onto the digital realm and 

mirrors the degradation of rolling bearings by utilizing characteristics derived from his-

torical data. To establish a highly accurate model, this study utilized CAD modeling and 

CAE finite element simulation software such as SolidWorks and ANSYS. Incorporating 

factors such as wear, thermal effects, and nonlinear materials, a multi-physics coupled 

field for the primary bearing was constructed within the ANSYS/Workbench platform. To 

address the computational time required for prolonged simulations of the complex multi-

physics three-dimensional model, which failed to meet real-time demands, the ROM (re-

duced order model) technique was employed in Ansys Twin Builder, resulting in compu-

tational efficiency. 

Within the Ansys Twin Builder environment, this study developed a digital twin 

model for the rolling bearing, as illustrated in Figure 3. Through the meticulous adjust-

ment of virtual sensors and input parameters, vibration displacement signals along the X 

and Y axes of the rolling bearing were obtained to facilitate the training of the subsequent 

fault diagnosis model. Ultimately, the encapsulated digital twin model can be seamlessly 

deployed on IoT platforms such as Microsoft Azure IoT, fostering streamlined connectiv-

ity within the digital twin system framework. 

 

Figure 3. Rolling bearing DT model. 

  

        

         

        

              

       

            

     

         

         

          

      

            

      

Figure 3. Rolling bearing DT model.

2.2. ConvNext Network

The ConvNext network, introduced by Facebook AI Research (FAIR) in 2022, can be
found detailed in reference [31]. This network’s overarching architecture stems from the
researchers’ exploration of ResNet and draws inspiration from six key facets of the Swin
Transformer network structure, enabling refinements to be made upon this foundation.
The comprehensive structure of the ConvNext network is depicted in Figure 4.
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Figure 4. ConvNext Network Structure.

In contrast to conventional mainstream network models, the ConvNext network has
implemented enhancements across various aspects encompassing the overall structure,
deep convolution, inverted bottleneck, large convolution kernel, GELU activation function,
and LN layer. Regarding the overall structure, the Stem layer of the ConvNext network
employs a convolution kernel of identical size and a four-stride convolution operation akin
to the Swin Transformer. As for convolution, the ConvNext network adopts the principle of
deep convolution design, segregating the input and output channel quantities to diminish
the parameter size of the designed deep convolution, which is significantly smaller than that
of traditional convolution. Furthermore, ConvNext incorporates a bottleneck design akin to
ResNet. Taking inspiration from the transformer network model, researchers fashioned the
block module in ConvNext as an inverted bottleneck structure, resembling that depicted
in Figure 5.
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Figure 5. Improvements to ConvNext block module.

The ConvNext network surpasses traditional neural networks through various ad-
vancements. One such improvement involves employing larger 7 × 7 kernels, as opposed
to the typical 3 × 3 convolution kernels, to achieve a wider receptive field. Furthermore,
ConvNext enhances the activation function by substituting the conventional ReLU acti-
vation function with the more effective GELU activation function. Unlike ReLU, which
exhibits a drastic gradient change at 0 and lacks the ability to produce negative values,
GELU permits negative outputs and possesses a smoother gradient near 0, resulting in
faster convergence rates, as depicted in Figure 6.

Moreover, ConvNext replaces the customary BN layer with the LN layer and reduces
the number of normalization layers, thereby eliminating redundancy. The LN layer is
positioned after the initial convolution layer within each convolution block, as illustrated
in Figure 6. These collective improvements augment the ConvNext network’s overall
performance and efficiency.
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3. DT-TL-ECA-SimAM ConvNext Model Bearing Fault Diagnosis Framework

This paper presents a framework for the fault diagnosis and identification of rolling
bearings, as depicted in Figure 7. The proposed approach can be summarized as follows:
Step 1: By manipulating the input parameters of the rolling bearing’s X and Y direction
vibration displacement signals through virtual sensors within the construction of the digital
twin model, source domain datasets of rolling bearing simulation data under various oper-
ational conditions are generated. These datasets are then transformed into time-frequency
maps using continuous wavelet transform in MATLAB. Subsequently, preliminary training
of the ECA-SimAM-ConvNext network model is conducted. Step 2: The ECA-SimAM-
ConvNext model is transferred to the target domain rolling bearings through weight and
feature migration techniques. Step 3: The DT-TL-ECA-SimAM-ConvNext network model
is employed to accomplish precise fault diagnosis and the identification of rolling bearings.
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Figure 7. DT-TL-ECA-SimAM-ConvNext model framework.

This article introduces an enhanced Block module within the ConvNext foundational
network, referred to as the ECA-SimAM-ConvNext network model, illustrated in Figure 8.
Recent research has shown that the inclusion of ECA and SimAM attention modules
within the Block module significantly improves the model’s proficiency in extracting
fault features from images. To be precise, the integration of SimAM and ECA attention
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modules enhances the model’s perception of crucial features, emphasizing essential fault
characteristics while suppressing noise. This augmentation strengthens the network’s
ability to represent features, thereby facilitating improved differentiation among various
bearing states. Through the adaptive selection of frequency ranges or spatial regions
of interest, the model can effectively capture signal information related to faults, thus
enhancing its adaptability to different types of bearing faults and ultimately boosting
generalization performance.
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Figure 8. Improved ConvNeXt Block.

3.1. SimAM

Research has unveiled the utilization of attention mechanisms by the human brain to
effectively process intricate information. In the realm of deep learning, the integration of
attention mechanisms allows for the allocation of varying weights to different segments of
input data. This augmentation enhances the model’s interpretive capabilities by enabling
a heightened focus on pertinent information while reducing attention towards extrane-
ous details. Drawing inspiration from neuroscience theory, researchers have introduced
SimAM [32], an attention module devoid of parameters, as depicted in Figure 9.
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The minimum energy can be obtained by the following formula:

e∗t =

4

(
∧

σ2 + λ

)
(

t− ∧u
)2

+ 2
∧

σ2 + 2λ

(3)

Among them, t is the target neuron, and µ and σ2 are the mean and variance of the
remaining neurons. It can be seen from Formula (3) that the lower the energy, the greater the
difference between neuron t and the surrounding neurons, and the higher the importance.
Therefore, the importance of neurons can be obtained by 1/e∗t .

According to the definition of attention mechanism, the features need to be enhanced:

∼
X = sigmoid

(
1
E

)
� X (4)

Through the integration of the SimAM module into the network, it becomes feasible
to bolster the network’s capacity for feature representation, expedite network convergence,
mitigate overfitting to the training data, and consequently amplify the network’s prowess
in image recognition.

3.2. ECA

ECA-Net is a channel attention module that was introduced during the 2020 CVPR
conference [33]. It enhances the channel features of the input feature map while preserving
its original size. The module is visually represented, and the ECA module model is
presented in Figure 10.
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The ECA attention module begins by performing global average pooling on the
input feature maps, resulting in a 1 × 1 × C feature map. It then learns weights for
different channels to enhance the channel features of the input feature map. These channel
weights are applied to each channel of the input feature map, and the resulting channel-
weighted feature map is obtained through element-wise multiplication. The output feature
map, with channel attention, maintains the same size as the original feature map. By
incorporating the ECA module into the ConvNext network, significant improvements in
model performance can be achieved, while simultaneously reducing model complexity.
This module enables the adaptive adjustment of the importance of each channel while
eliminating unnecessary information, thereby enhancing the model’s representational
capacity to capture key features in the image.
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4. Experimental Verification

The proposed fault diagnosis method’s feasibility and effectiveness are validated in
this section through experimentation on two distinct bearing datasets: the publicly available
dataset from Case Western Reserve University and the rolling bearing fault dataset from
Xi’an Jiaotong University. Two sets of experiments were conducted to compare the results
with mainstream algorithms, employing accuracy and loss functions, confusion matrices,
and two-dimensional T-SNE visualization graphs.

The model employed the Adam optimization method to update parameters via back-
propagation. It utilized the classic cross-entropy loss function, a batch size of 32, a learning
rate of 0.0001, and weight decay set at 0.001.

4.1. CWRU Bearing Dataset

Figure 11 illustrates the experimental setup at Case Western Reserve University
(CWRU). The dataset employed in the experiment comprises vibration signals obtained
from a SKF-manufactured rolling bearing model 6205-2RS. The signals were collected at
a sampling frequency of 12 kHz, encompassing four distinct operational conditions. For
each operational condition, experiments were conducted on rolling bearings featuring
single-point faults introduced on the ball, inner race, and outer race, with fault diameters
measuring 0.18 mm, 0.355 mm, and 0.533 mm, respectively. Additionally, normal rolling
bearings were included in the study. Altogether, Table 1 displays a comprehensive overview
of ten distinct fault types.
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Figure 11. CWRU rolling bearing test platform.

Table 1. CWRU bearing fault classification and tag value.

Label Fault Type Fault Diameter

1 Rolling Element Fault 0.18
2 Rolling Element Fault 0.355
3 Rolling Element Fault 0.533
4 Inner Ring Failure 0.18
5 Inner Ring Failure 0.355
6 Inner Ring Failure 0.533
7 Outer Ring Fault 0.18
8 Outer Ring Fault 0.355
9 Outer Ring Fault 0.533
10 Normal 0

Through the amalgamation of the synthetically produced virtual vibration signals
along the X and Y directions, derived from the digital twin model of the rolling bearing,
with the authentic vibration signals from the CWRU dataset, employing non-overlapping
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segmentation, and subjecting each set of data points to continuous wavelet transform
to produce relevant time-frequency spectrogram samples, we acquired the total count
of experimental samples. The training set encompasses 140 experimental time-frequency
images derived from the testing apparatus, as well as 1000 time-frequency images generated
through the implementation of the digital twin model, as exemplified in Table 2.

Table 2. Number of experimental samples.

Fault Type Training Set Verification Set Test Set

1 140 + 1000 40 20
2 140 + 1000 40 20
3 140 + 1000 40 20
4 140 + 1000 40 20
5 140 + 1000 40 20
6 140 + 1000 40 20
7 140 + 1000 40 20
8 140 + 1000 40 20
9 140 + 1000 40 20
10 140 + 1000 40 20

The accuracy and loss curves depicted in Figure 12 illustrate the outcomes of the
DT-TL-ECA-SimAM-ConvNext model after 50 training epochs, utilizing the rolling bearing
experimental sample data from Table 2. By the 40th epoch, the accuracy of both the training
and validation sets showcased in Figure 12a had reached a flawless 100%, while the loss
function value in Figure 12b had descended below the threshold of 0.01. Subsequently,
the accuracy and loss curves demonstrated a gradual plateau, indicating the model had
achieved a state of stable convergence. These findings conclusively establish that the
proposed DT-TL-ECA-SimAM-ConvNext fault diagnosis model exhibited a commendable
classification performance when employed with this experimental dataset.
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Figure 12. Accuracy and loss rate curve of DT-TL-ECA-SimAM-ConvNext model training.
(a) Accuracy, (b) loss rate.
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In the domain of machine learning and statistics, a confusion matrix assumes a pivotal
role as a tabular representation utilized to assess the efficacy of a classification algorithm.
In the context of a classification problem, the confusion matrix enables a comprehensive
evaluation of the algorithm’s predictive capabilities by contrasting the predicted categories
with the actual categories, thereby elucidating both the accuracy and errors of the classifica-
tion algorithm. Each row of the confusion matrix corresponds to the actual category, while
each column represents the predicted category.

Initially, leveraging the empirical data outlined in Table 2, this investigation con-
ducted a series of replicated experiments to evaluate the proposed approach. The clas-
sification outcomes of the test set were visually represented using a confusion matrix,
showcased in Figure 13. An analysis of Figure 13a reveals that the proposed method
encountered only one instance of mutual misclassification between a 0.355 mm rolling
element fault sample and a 0.533 mm rolling element fault sample. Remarkably, the remain-
ing classification results were accurate, and even the misclassifications pertained to minor
faults, thereby signifying the presence of a discernible warning effect within the proposed
method. A comparison of the experimental findings in Figure 13b,c highlights that the
DT-TL-ECA-SimAM-ConvNext model, proposed in this study, achieved superior recog-
nition accuracy in diagnosing diverse types of faults in rolling bearings, surpassing the
performance of traditional algorithms.

To present a more visually comprehensive demonstration of the proposed model’s
adeptness in feature extraction, t-SNE, a machine learning algorithm employed for nonlin-
ear dimensionality reduction and the visualization of high-dimensional data, was employed.
By applying the t-SNE algorithm, the deep learning algorithm employed in this paper
effectively reduced the high-dimensional fault features to two dimensions, showcasing
them in the form of a scatter plot, as depicted in Figure 14.

The findings depicted in Figure 14 reveal variations in the classification of bearing
fault features across different algorithms. Specifically, within this study, the proposed DT-
TL-ECA-SimAM-ConvNext fault diagnosis model exhibits remarkable enhancements in
the effectiveness and distinctiveness of feature classification. This improvement stems from
its adaptive feature extraction approach and dimensionality reduction techniques applied
to the test set data, thereby ensuring the absence of overlapping regions between distinct
fault types (as exemplified in Figure 14a). In comparison, the TL-ConvNext model, which
relies on a traditional experimental bench fault dataset as its source domain for learning
(as depicted in Figure 14b), and the ResNet, a classic network model (as demonstrated
in Figure 14c), demonstrate a degree of accuracy in certain fault feature classifications.
However, they still encounter instances where overlapping regions exist, resulting in
ambiguous classification outcomes.

Drawing upon Table 3, along with Figures 13a and 14a, it becomes apparent that the
DT-TL-ECA-SimAM-ConvNext fault diagnosis model proposed within this research not
only adeptly discriminates the distinguishing features among ten distinct states of rolling
bearings within the test set but also sustains a commendable level of accuracy. This serves
as a testament to the model’s precision and efficacy.

Table 3. Accuracy of each model.

Model Test Set Samples Accuracy

LeNet 200 0.793
CNN 200 0.854

ResNet 200 0.885
ConvNext 200 0.925

TL-ConvNext 200 0.965
DT-TL-ECA-SimAM-ConvNext 200 0.998



Sensors 2023, 23, 5334 14 of 22Sensors 2023, 23, x FOR PEER REVIEW 14 of 22 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 13. Classification confusion matrix for fault diagnosis of each algorithm. (a) DT-TL-ECA-

SimAM-ConvNext, (b) TL-ConvNext, (c) ResNet. 

To present a more visually comprehensive demonstration of the proposed model’s 

adeptness in feature extraction, t-SNE, a machine learning algorithm employed for non-

linear dimensionality reduction and the visualization of high-dimensional data, was 

Figure 13. Classification confusion matrix for fault diagnosis of each algorithm. (a) DT-TL-ECA-
SimAM-ConvNext, (b) TL-ConvNext, (c) ResNet.



Sensors 2023, 23, 5334 15 of 22

Sensors 2023, 23, x FOR PEER REVIEW 15 of 22 
 

 

employed. By applying the t-SNE algorithm, the deep learning algorithm employed in 

this paper effectively reduced the high-dimensional fault features to two dimensions, 

showcasing them in the form of a scatter plot, as depicted in Figure 14. 

 
(a) 

 
(b) 

 
(c) 

Figure 14. Scatter diagram of fault diagnosis classification characteristics of each algorithm. (a) DT-

TL-ECA-SimAM-ConvNext, (b) TL-ConvNext, (c) ResNet. 

The findings depicted in Figure 14 reveal variations in the classification of bearing 

fault features across different algorithms. Specifically, within this study, the proposed DT-

TL-ECA-SimAM-ConvNext fault diagnosis model exhibits remarkable enhancements in 

                                
                        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                          

                                
                        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                          

Figure 14. Scatter diagram of fault diagnosis classification characteristics of each algorithm.
(a) DT-TL-ECA-SimAM-ConvNext, (b) TL-ConvNext, (c) ResNet.

4.2. XJTU-SY Bearing Dataset

In order to showcase the model’s capacity for generalization, this study employs the
XJTU-SY bearing dataset [34], sourced from the publicly available experimental dataset
of Xi’an Jiaotong University. This comprehensive dataset encompasses vibration sig-
nals throughout the complete lifecycle of 15 rolling bearings operating under three dis-
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tinct conditions, accompanied by explicit labels indicating the positions of failure for
each bearing.

Figure 15 depicts the experimental platform of the XJTU-SY bearing dataset, encom-
passing an AC motor, an electric motor speed controller, a rotating shaft, support bearings,
a hydraulic loading system, and the test bearings themselves. This sophisticated platform
facilitates accelerated life tests on various rolling or sliding bearings under diverse op-
erating conditions, thereby capturing the full range of vibration signals throughout the
lifespan of the test bearings. Notably, the operating conditions of the test platform can be
precisely adjusted, primarily in terms of radial force and rotation speed. The hydraulic
loading system generates the radial force, exerted upon the bearing seat of the test bearing,
while the AC motor’s speed controller establishes and fine-tunes the rotation speed.
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The bearings employed for experimentation within this study consisted of LDK
UER204 rolling bearings. The experimental design encompassed three distinct operat-
ing conditions, as illustrated in Table 4. Each operating condition involved a set of five
bearings, with a sampling frequency of 25.6 kHz and a sampling interval of 1 min. Each
sampling period lasted for 1.28 s. The specific bearing fault data selected for analysis are
presented in Table 5.

Table 4. Bearing accelerated life test conditions.

Condition Number 1 2 3

Speed/(r/min) 2100 2250 2400
Radial Force/KN 12 11 10

Table 5. List of bearing fault data set information selected in this paper.

Label Failure Location Data Set Total Number of Samples

1 Holder Bearing 2_3 533
2 Inner Circle Bearing 2_1 491
3 Outer Circle Bearing 1_1 123
4 Inner Circle, Rolling Element, Cage, Outer Circle (Mixed Fault) Bearing 3_2 2496

In a manner akin to Experiment 1, the virtual X and Y-direction vibration signals,
emanating from the rolling bearing digital twin model, are amalgamated with the orig-
inal vibration signals sourced from the experimental test rig dataset. Employing non-
overlapping segmentation, a collection of time-frequency spectrogram samples is derived,
generating a comprehensive pool of experimental samples. The training set encompasses
350 experimental time-frequency images from the test rig, along with 1000 time-frequency
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images engendered by the digital twin model. As delineated in Table 6, the dataset is
further partitioned into distinct training, validation, and testing sets.

Table 6. Number of experimental samples.

Fault Type Training Set Verification Set Test Set

1 350 + 1000 100 50
2 350 + 1000 100 50
3 350 + 1000 100 50
4 350 + 1000 100 50

Upon subjecting the training set data from Table 6 to 50 iterations of the training
process using the proposed DT-TL-ECA-SimAM-ConvNext model, the accuracy and loss
curves are visualized in Figures 16a and 16b, respectively. Figure 16a exhibits a remarkably
stable curve with minimal fluctuations, showcasing the accuracy of the validation set as
being slightly below that of the training set. Simultaneously, Figure 16b signifies that the
loss rate of the validation set marginally surpasses that of the training set, confirming the
absence of overfitting and affirming the satisfactory training effectiveness.
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To further evaluate the proficiency of the DT-TL-ECA-SimAM-ConvNext model in
discerning bearing faults, a comprehensive analysis was performed utilizing a confusion
matrix. This matrix, presented in Figure 17, provides intricate insights into the quantitative
assessment of misclassifications among various fault types found in rolling bearings.
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Examining Figure 17a, it becomes evident that the proposed DT-TL-ECA-SimAM-
ConvNext algorithm outperforms traditional deep learning algorithms in terms of misclas-
sified fault samples. Merely three samples were misjudged, all erroneously classified as
outer ring faults for mixed faults. The complexity of real-world bearing operating envi-
ronments, coupled with intricate dynamic interactions between the inner and outer races,
cage, and rolling elements, contributes to the potential misjudgment of mixed fault types.
Nonetheless, the model attains remarkable recognition accuracy in other bearing fault
categories. Furthermore, the TL-ConvNext approach in this paper employs conventional
experimental benches as the source domain dataset, exhibiting commendable classifica-
tion ability in comparison to the classic ResNet algorithm, as depicted in Figure 17b,c.
However, it falls short of the effectiveness achieved by the proposed method in certain
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fault classifications. This discrepancy arises from the heavy reliance of traditional transfer
algorithms on the quality and quantity of the experimental bench dataset. Leveraging
both digital twinning and experimentally generated datasets as the source domain dataset,
the algorithm captures more intricate fault characteristics, resulting in enhanced precision
during subsequent fault classifications while maintaining a certain level of reliable quality
and augmenting the number of source domain datasets.

To visually illustrate the diagnostic prowess of the proposed algorithm, t-distributed
stochastic neighbor embedding (t-SNE) analysis was employed to visualize the output
outcomes of various algorithms on the XJTU-SY dataset, as showcased in Figure 18.

Through the reduction of high-dimensional data in the test set to a two-dimensional
visualization, Figure 18a reveals the remarkable performance of the proposed DT-TL-ECA-
SimAM-ConvNext model in accurately classifying bearing fault points, surpassing other
conventional deep learning models. This superiority stems from the model’s heightened
sensitivity to capture fault features within the image set, enabling a more precise clas-
sification of diverse bearing fault types. To validate the effectiveness of the proposed
model, a comparative analysis is conducted with the TL-ConvNext algorithm, utilizing
testbed data as the source domain dataset, and the ResNet algorithm without transfer
learning, as depicted in Figure 18b,c. The results demonstrate that while the traditional
deep learning model can classify certain fault points, it still misclassifies numerous others,
leading to suboptimal classification accuracy when compared to the employment of the
DT-TL-ECA-SimAM-ConvNext model proposed in this paper.

Moreover, based on the accuracy data presented in Table 7, it is evident that the
DT-TL-ECA-SimAM-ConvNext model, leveraging digital twin data as the source domain,
attains superior accuracy in categorizing various fault types in comparison to conventional
deep learning models. This serves as further confirmation of the exemplary performance
exhibited by the proposed model in this research.

Table 7. Accuracy of each model.

Model Test Set Samples Accuracy

LeNet 200 0.786
CNN 200 0.804

ResNet 200 0.825
ConvNext 200 0.903

TL-ConvNext 200 0.946
DT-TL-ECA-SimAM-ConvNext 200 0.995
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5. Conclusions

To enhance the precision of rolling bearing fault diagnosis in mechanical equipment,
this study introduces a fault diagnosis framework, named DT-TL-ECA-SimAM-ConvNext,
which integrates digital twin data, transfer learning theory, and deep learning algorithms.
Firstly, addressing the limitations of using laboratory data as the source domain dataset
in transfer learning, this paper proposes the utilization of a rolling bearing DT system
to replicate real-world operating conditions and generate an extensive dataset. This ap-
proach enables the synthesis of experimental datasets, thereby overcoming the scarcity of
actual fault data in real-world scenarios. Secondly, for the fault diagnosis model, a novel
convolutional neural network called ConvNext is adopted. Compared to conventional
deep learning algorithms, ConvNext ensures a smoother network gradient and acceler-
ated convergence. Additionally, by incorporating ECA and SimAM attention modules
into specific positions of the Block module, the enhanced network can effectively capture
intricate fault characteristics across diverse samples. Lastly, the proposed bearing fault
classification method is validated through two sets of design experiments. The results
demonstrate the versatility of the DT-TL-ECA-SimAM-ConvNext model, which can be ap-
plied to different categories of rolling bearings, various environments, operating conditions,
and laboratory settings, thereby serving as a valuable tool for fault diagnosis in rotating
mechanical equipment.
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