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Abstract: This paper presents a novel unsupervised learning framework for estimating scene depth
and camera pose from video sequences, fundamental to many high-level tasks such as 3D recon-
struction, visual navigation, and augmented reality. Although existing unsupervised methods have
achieved promising results, their performance suffers in challenging scenes such as those with
dynamic objects and occluded regions. As a result, multiple mask technologies and geometric con-
sistency constraints are adopted in this research to mitigate their negative impacts. Firstly, multiple
mask technologies are used to identify numerous outliers in the scene, which are excluded from
the loss computation. In addition, the identified outliers are employed as a supervised signal to
train a mask estimation network. The estimated mask is then utilized to preprocess the input to
the pose estimation network, mitigating the potential adverse effects of challenging scenes on pose
estimation. Furthermore, we propose geometric consistency constraints to reduce the sensitivity of
illumination changes, which act as additional supervised signals to train the network. Experimental
results on the KITTI dataset demonstrate that our proposed strategies can effectively enhance the
model’s performance, outperforming other unsupervised methods.

Keywords: depth estimation; camera pose; visual odometry; unsupervised learning

1. Introduction

Estimating scene depth and camera pose from video sequences is a critical topic in visual
perception and forms the foundation of many advanced tasks. Such estimations can be used
to build 3D scene structures, which can be implemented in various industrial environments,
including autonomous driving, visual navigation, and augmented reality [1–3]. Traditional
methods rely on geometric cues in the image for inference, making them sensitive to
challenging environments with low texture or strong lighting changes [4–8]. Conversely,
learning-based depth and pose estimation methods exhibit better adaptability to challeng-
ing environments [9–13]. These methods take the image sequence as input and output the
depth map and camera pose through a nonlinear mapping formed by the collaboration
of neurons. This is similar to the human brain processing high-dimensional information
after observing with human eyes. Supervised learning-based methods primarily use exact
sensors like differential GPS, LiDAR, and IMU to obtain labeled data and then train the
estimation network on these labeled data to learn the mapping function by minimizing the
difference between the model’s predicted values and the label values.

While supervised methods have shown excellent performance, their reliance on mas-
sive quantities of labeled data during model training poses a significant limitation. Ac-
quiring labeled data in real-world scenarios often requires expensive equipment or large
amounts of manpower, thus preventing them from further improving the performance
of their models [9]. In contrast, unsupervised methods do not require expensive labels
during training and can leverage larger datasets and more complex models to achieve better
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performance [10]. This is exemplified by recent models such as ChatGPT, which uses large
amounts of data and parameters to achieve state-of-the-art performance [14]. Researchers
have also proposed numerous unsupervised methods for tasks related to depth recovery
and pose estimation [10–13]. A common principle is using the view synthesis process to
generate supervised signals to train the model. This technique employs two sub-networks
based on convolutional neural networks (CNNs), which respectively estimate the depth
map of a view (target view) and the camera pose of the view and the adjacent view (source
view). Once the depth and camera pose is estimated, the source view can be projected
onto the target view to synthesize a new view, and the entire framework is then trained by
minimizing the photometric error between the synthesized new view and the target view.

View synthesis necessitates a static scene without occluded areas; however, real-world
scenes are rife with dynamic objects and occlusions, inevitably resulting in unstable train-
ing [15]. Consequently, numerous studies have proposed various masks to mitigate outliers
in the scene during the view synthesis process [15–21]. However, these methods often over-
look the impact of dynamic objects and occlusion areas on pose estimation, jointly trained
with depth estimation during the view synthesis process. As a result, any degradation in
pose estimation accuracy will decrease depth estimation accuracy. Furthermore, training
the entire unsupervised framework primarily relies on the photometric differences between
the synthesized view and the target view, implying that when the illumination changes
drastically or when the training sequence is lengthy, inconsistent illumination intensities
may interfere with the model’s learning process.

To overcome these challenges, we propose a new unsupervised learning framework
for estimating scene depth and camera pose. Due to the fact that both dynamic objects and
occluded regions in the scene can simultaneously affect the computation of the loss function
and the estimation of the camera pose, we have designed multiple masks to identify
different types of outliers in the scene during forward propagation. These computed masks
are combined and applied in two ways: firstly, to prevent outliers from participating in
calculating the loss function during view synthesis, and secondly, as a supervised signal
for MaskNet, a neural network trained to estimate outliers such as dynamic objects and
occluded regions. The mask obtained by MaskNet is then used to preprocess the input of
the pose network. This involves multiplying the regions that may be outliers by a small
weight coefficient, thereby avoiding the influence of outliers in the scene on pose estimation.
Moreover, since training the network solely with view synthesis is prone to be affected by
changes in lighting, we propose several geometrically consistent loss functions, such as
flow consistency, depth consistency, and pose consistency loss, to exploit the geometric
properties of the 3D scene and further strengthen our model’s functionality as a whole.

The main contributions of the work are twofold: (1) We introduce multiple mask
techniques to mitigate the adverse impact of outliers in the scene during the view synthesis
process. Additionally, we employ a MaskNet network to address the detrimental effects of
outliers on pose estimation; (2) we propose several geometric consistency constraints to
alleviate the limitations of sole training with photometric consistency. Finally, we evaluate
our model on the widely used KITTI dataset and demonstrate its superiority over other
unsupervised methods.

The remainder of the paper is structured as follows: Section 2 provides an overview
of the existing literature concerning depth and pose estimations. Section 3 elaborates
on the method and the enhanced strategies proposed in this paper. The effectiveness of
our approach is validated through experimental results and ablation studies, which are
presented in Section 4. Finally, Section 5 offers a summary of our work.

2. Related Works

Visual Simultaneous Localization and Mapping (VSLAM) [4–6] and Structure from
Motion (SFM) [7,8] are two examples of traditional geometry-based techniques used to
estimate scene depth and camera pose. Both of these methods require extracting hand-
designed key points from the image and matching them to estimate the camera pose,
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followed by the triangulation technique to estimate the scene’s structure. However, the
traditional methods may fail in low-texture regions where key points cannot be extracted,
presenting a challenge. Learning-based methods have emerged as a solution to overcome
this challenge. These methods are classified as supervised or unsupervised based on
whether or not they use labels for training.

2.1. Supervised Learning of Scene Depth and Camera Pose

Supervised depth recovery and camera motion estimation approaches typically con-
sider these separate tasks. They learn them individually by minimizing the discrepancies
between the estimated values and the related ground truth. The pioneering work by
Eigen et al. [22] demonstrated the use of deep CNNs to predict depth from a single image
using two network stacks: one for global prediction and the other for local refinement.
In contrast, Liu et al. [23] employed hierarchical conditional random fields and a super-
pixel pooling method to improve the quality of the depth map. Regarding the problem
of camera pose estimation, also called visual odometry (VO), optical flow is a widely
used technique in learning-based VO methods [24–26], where the optical flow (OF) field
contains geometric motion. Costante et al. [25] used a self-encoder to learn the optical flow
field’s low-dimensional latent feature space. Then they used this feature space to regress
the camera’s 6-dimensional pose, thus improving the robustness of the estimated model.
Zhao et al. [26] also used optical flow as the input to the pose estimation network and
continued the work of [25] by adding recurrent neural networks for sequence learning to
improve the estimation accuracy further. Despite the promising performance of supervised
methods, their utility is limited by the requirement for labeled datasets, which can be
arduous, costly, and prone to a lack of generalizability.

2.2. Unsupervised Learning of Scene Depth and Camera Pose

Garg et al. [11] pioneered a novel method to reduce the dependence on labeled data
by training a network with stereo image pairs as input. The objective function of the
training is to minimize the photometric discrepancies between the left image and its cor-
responding right synthetic image using epipolar geometric inference for view synthesis.
Godard et al. [12] extended this methodology by incorporating the left-right consistency
constraint for depth estimation. Additionally, Zhan et al. [13] continued to follow this
approach of using stereo images as input, solving the absolute scale problem of VO esti-
mation [6]. Meanwhile, they also proposed a feature reconstruction loss to strengthen the
training of the framework.

Nevertheless, camera calibration in stereo systems is complex, leading Zhou et al. [15]
to propose an approach relying on monocular sequences. Their core idea is to train both
the depth estimation network and the pose estimation network by using the photometric
consistency loss generated by the view synthesis process as the objective function. Building
upon this pioneering work, subsequent studies have made significant strides. For example,
in [27], Mahjourian et al. further considered the 3D geometry of the whole scene and
required that the estimated 3D point cloud be consistent across the continuous images. Sim-
ilarly, [28] utilized the 3D-2D correspondence constraint and deployed it on an autonomous
driving platform via 5G telephony and wireless communication.

Despite its potential, the monocular unsupervised method has two significant lim-
itations. Firstly, it cannot provide global scale consistent pose estimation, and secondly,
the photometric consistency loss assumes a static scene without occlusion regions and
dynamic objects. For scale ambiguity, Bian et al. [18] introduced geometric consistency loss
to cope with scale inconsistencies on different samples, resulting in VO results comparable
to the stereo image training model. Sun et al. [29] proposed two constraints that operate on
predicted depth and relative poses, enforcing consistency across different training samples
and jointly promoting pose and depth estimation. For dynamic objects and occlusion
areas in the scene, an intuitive method is to design a mask to remove these outliers to
avoid their adverse effects on the calculation of reconstruction loss. Therefore, researchers
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have proposed a variety of mask-generation methods. Some of them generate masks by
adding networks, such as the explainability mask [15] proposed by Zhou et al., the uncer-
tain map [16] proposed by Klodt et al., and the confidence mask [17] proposed by Chen
et al. Alternatively, some methods generate masks through computation, such as those
in [18–21]. In [18], Bian et al. calculated depth inconsistency to generate a self-discovered
mask. Zhao et al. [19] generated an outlier elimination mask by analyzing the consistency
of forward and backward optical flows. Wang et al. [20] derive overlap and blank masks
during forward calculation, while Jiang et al. [21] generate a mask based on the assumption
that the outlier reconstruction error is significantly greater than the average photometric
error. These methods have a positive impact on reconstruction loss computation.

Additionally, several studies have explored the potential benefits of jointly training
the subtasks of scene depth, camera pose, and optical flow by exploiting their inherent
geometric correlation, thus allowing for better nonlinear solutions when constraints are
added to the loss function [30]. For instance, Yin et al. [31] proposed a collaborative learning
framework to estimate all three subtasks and reconstruct a view containing both static
and dynamic scenes using the geometric relationships between them. Zhang et al. [32]
introduced an optical flow estimation network and added additional supervised signals
to the training of the framework through multi-view synthesis to improve the overall
estimation accuracy. Based on this joint estimation framework, Zou et al. [33] also proposed
optical flow consistency loss for rigid regions in the scene to improve their results. Finally,
Ranjan et al. [34] added a motion segmentation task to the above three tasks, and the
individual performance of each task was enhanced by joint training.

Although these methods have shown considerable advancements in the basic models,
their treatment of changing scenes is limited to calculating the loss function in view synthe-
sis, ignoring the impact on VO estimation. Moreover, the detrimental effects on training
when the photometry is inconsistent are not considered.

3. Methods

This paper aims to learn the depth and camera pose from unlabeled monocular video
sequences while exhibiting good robustness to outliers in the scene, such as dynamic
objects and occlusion areas. Our framework utilizes training samples composed of three
consecutive frames, with the middle frame as the target view and the other two as the
source view, to obtain two target-source image pairs. Since the operations performed on
the two image pairs are the same, we only show the process for one image pair, as shown
in Figure 1. Our method comprises four sub-networks: (1) DepthNet, which estimates
the depth map of a single image; (2) FlowNet, which estimates the optical flow between
adjacent frames, is an off-the-shelf model that does not require training; (3) MaskNet, which
estimates a mask containing outliers based on two adjacent frames, and its supervised
signal mainly comes from the calculation of multiple masks in the view synthesis process;
and (4) PoseNet, which uses the mask-preprocessed optical flow as input and outputs the
camera motion.

We train the DepthNet, MaskNet and PoseNet sub-networks jointly with a final loss
function comprising four parts: a photometric consistency loss, which is the primary
supervised signal used during network training; a depth smoothness loss, which ensures
the smoothness of the estimated depth values; a mask loss, which enhances the model’s
performance by training a mask to preprocess PoseNet’s input; and a geometric consistency
loss, which provides an additional weak supervised signal by adding several constraints to
the model. Therefore, the final loss function can be expressed as

L = ∑l (Ll
ph + λsLl

sm + λmLl
m + Ll

g), (1)

with Ll
ph, Ll

sm, Ll
m and Ll

g denoting the photometric consistency loss, smoothness loss, mask
loss, and geometric consistency loss, respectively, λs and λm representing the corresponding
weight values. The parameter l is the scale factor of different image sizes, and similar to
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previous work [15], the DepthNet outputs four depth estimation maps at different scales,
with the loss function being calculated for each scale separately.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 1. Overview of our method. The input contains two adjacent images. The DepthNet estimates 
the depth map of the target view (It). The FlowNet estimates the optical flow with the target view 
(It) and the source view (Is). The MaskNet also uses the target-source image pairs as input to estimate 
the outliers in the scene. The estimated mask is used to preprocess the optical flow, and then the 
preprocessed optical flow is used as the input of the PoseNet. The estimated depth (Dt), camera pose 
(𝑇 → ), and the source view (Is) are used to synthesize a new target view (𝐼t). Then the DepthNet and 
the PoseNet are trained by minimizing the difference between the synthesized view (𝐼t) and the 
target view (It) as the main supervised signal. Moreover, the mask obtained by calculation in the 
process of forward propagation is also used as the supervised signal for the MaskNet. 

We train the DepthNet, MaskNet and PoseNet sub-networks jointly with a final loss 
function comprising four parts: a photometric consistency loss, which is the primary 
supervised signal used during network training; a depth smoothness loss, which ensures 
the smoothness of the estimated depth values; a mask loss, which enhances the model’s 
performance by training a mask to preprocess PoseNet’s input; and a geometric 
consistency loss, which provides an additional weak supervised signal by adding several 
constraints to the model. Therefore, the final loss function can be expressed as 𝐿 = ∑ (𝐿 + 𝜆 𝐿 + 𝜆 𝐿 + 𝐿 ), (1) 

with  𝐿 ,   𝐿 ,  𝐿   and  𝐿  denoting the photometric consistency loss, smoothness loss, 
mask loss, and geometric consistency loss, respectively, 𝜆   and  𝜆  representing the 
corresponding weight values. The parameter l is the scale factor of different image sizes, 
and similar to previous work [15], the DepthNet outputs four depth estimation maps at 
different scales, with the loss function being calculated for each scale separately. 

3.1. Photometric Consistency Loss and Smoothness Loss 
The primary supervised signal for training the entire framework is derived from the 

photometric consistency loss generated during view synthesis. The process is illustrated 
in Figure 2. Given two consecutive input frames (It, It+1), represented as the target view 
and the source view, The DepthNet estimates the depth map of the target view. Using this 
depth information (Dt), a pixel in the image can be projected onto a 3D point cloud as 
follows: 𝑄 , = 𝐷 , 𝐾 𝑖, 𝑗, 1 , (2) 

where K is the intrinsic camera matrix and 𝑄 ,   is the 3D point. The camera motion Tt 
estimated by the PoseNet is used to transform 𝑄 ,   to the coordinates at frame t+1 via 𝑄 , = 𝑇 𝑄 , . This 3D point can then be transformed to the camera coordinates at frame 
t+1 using the intrinsic camera matrix K. Therefore, by using these projection 
transformation relations, we can get the projection relationship between the coordinates 
of the target view and the source view, which is expressed as: 𝚤̂, 𝚥̂, 1 = 𝐾𝑇 𝐷 , 𝐾 𝑖, 𝑗, 1 . (3) 

Figure 1. Overview of our method. The input contains two adjacent images. The DepthNet estimates
the depth map of the target view (It). The FlowNet estimates the optical flow with the target view (It)
and the source view (Is). The MaskNet also uses the target-source image pairs as input to estimate
the outliers in the scene. The estimated mask is used to preprocess the optical flow, and then the
preprocessed optical flow is used as the input of the PoseNet. The estimated depth (Dt), camera pose
(Tt→s), and the source view (Is) are used to synthesize a new target view ( Ît). Then the DepthNet
and the PoseNet are trained by minimizing the difference between the synthesized view ( Ît) and the
target view (It) as the main supervised signal. Moreover, the mask obtained by calculation in the
process of forward propagation is also used as the supervised signal for the MaskNet.

3.1. Photometric Consistency Loss and Smoothness Loss

The primary supervised signal for training the entire framework is derived from the
photometric consistency loss generated during view synthesis. The process is illustrated
in Figure 2. Given two consecutive input frames (It, It+1), represented as the target view
and the source view, The DepthNet estimates the depth map of the target view. Using
this depth information (Dt), a pixel in the image can be projected onto a 3D point cloud
as follows:

Qi,j
t = Di,j

t K−1[i, j, 1]T , (2)

where K is the intrinsic camera matrix and Qi,j
t is the 3D point. The camera motion Tt

estimated by the PoseNet is used to transform Qi,j
t to the coordinates at frame t + 1 via

Qi,j
t+1 = TtQ

i,j
t . This 3D point can then be transformed to the camera coordinates at frame

t + 1 using the intrinsic camera matrix K. Therefore, by using these projection transformation
relations, we can get the projection relationship between the coordinates of the target view
and the source view, which is expressed as:[

î, ĵ, 1
]T

= KTt

(
Di,j

t K−1[i, j, 1]T
)

. (3)

To reconstruct the target view It, we need to obtain the corresponding pixel values of
the reconstructed frame Ît based on the projected position on frame It+1. However, the pixel
values after projection are not integers. Hence we use bilinear interpolation to obtain the
pixel value at pt+1. Specifically, we linearly interpolate the 4-pixel values (top-left, top-right,
bottom-left, and bottom-right) around pt+1 using the formula:

Ît(pt) = ∑i∈{t,b},j∈{l,r} wij It+1

(
pij

t+1

)
, (4)

where wij is the proportional term for bilinear interpolation, measuring the spatial proximity
of pt+1 and pij

t+1 with ∑i,j wij = 1. Then, the synthesized view Ît is obtained.
Assuming that the photometric values of 3D spatial points projected onto the target

view and the source view are equal, it can be theoretically deduced that the photometric
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values of the target view and the synthesized target view obtained through interpolation
using the source view should be consistent. This property is used to construct the loss
function for training the entire framework. Similar to other works [20,21], we use the
combination of the L1 norm and the structural similarity index measure (SSIM) [35] to
construct the photometric consistency loss, which is expressed as:

Lph
(

It, Ît
)
= α

1− SSIM
(

It, Ît
)

2
+ (1− α)

∥∥It − Ît
∥∥

1, (5)

where α is set to 0.85 empirically.
During the training of the depth estimation model, the edge smoothness loss is often

used to filter out incorrect predictions and preserve clear details. We use the same loss
function as [31], expressed as

Lsm = ∑
pt

|∇D(pt)|
(

e−|∇I(pt)|
)T

(6)

where |·| denotes the elementwise absolute value, ∇ represents the vector differential
operator, and T denotes the transpose of image gradient weighting.
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3.2. Calculated Mask and Mask Loss

Due to the many assumptions involved in view synthesis, such as the scene is static and
devoid of dynamic objects and occlusions, training images that violate these assumptions
will inevitably hinder model training. Therefore, it is necessary to consider the influence
of these factors when using the view synthesis process to calculate the loss function. A
common principle is to design masks to shield these outlier regions and prevent them from
participating in the calculation of the loss function, thereby improving the performance of
the model.

During the view synthesis process, when the pixels in the target view are projected
onto the source view, some pixels will be projected beyond the imaging plane of the source
view so that the pixel value of the point cannot be reconstructed. As shown in Figure 3,
suppose there are two points (p1

t , p2
t ) in the target view It. When the camera moves to the

frame It+1, the projection of p1
t onto source view It+1 is p1

t+1, and the projection of p2
t is p2

t+1,
which is located outside the boundary of It+1, making it impossible to determine the pixel
value of that point accurately. Therefore, we mark all these points projected outside the
boundary as 0, thus generating a boundary mask denoted as Me. After being multiplied by
the target view, the mask can avoid calculating the loss function for some boundary points.

In addition to the boundary points that will affect the training of the model, the
occluded areas in the scene will also affect the training of the model. For example, as shown
in Figure 4a, when a car equipped with a camera travels from frame It to frame It+1, there is
an obstacle on the left side of the yellow car. In frame It, the camera can capture the areas
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of S1 and S2, but in frame It+1, the area of S1 will be occluded by the area of S2, and only
the area of S2 can be seen. Thus, the problem arises that the areas of S1 and S2 captured by
frame It is projected onto frame It+1 and overlap in coordinates, making it impossible to
use the image captured at frame It+1 to restore the area of S1 captured at frame It.
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When occluded areas appear in the image, they must be marked to avoid their partic-
ipation in calculating the loss function. As shown in Figure 4b, when two pixels (p1

t , p2
t )

in frame It are projected onto frame It+1, if they fall in the same grid, that is, they have
four identical interpolation points, we consider occlusion to have occurred. According
to the distance between these two pixels and the camera, we mark the farther point as 0
and the closer point as 1. In Figure 4b, we assume that p1

t is closer, so it is marked as 1,
while p2

t is marked as 0. This generates a mask denoted as Mo, which is used to identify the
occlusion area.

Due to the pixel points that meet the hypothesis, the photometric errors will gradually
converge to a lower value during training. In contrast, for some pixel points caused
by various adverse factors, the photometric error value will always remain at a higher
value [21]. Using this characteristic, those points with photometric errors much higher than
the average are identified as outliers. Precisely, for each pixel on the target view, we can
determine whether it is an outlier point according to the following expression:

Ma
(

It, Ît
)
=

{
1, Lph

(
It, Ît

)
≤ βLph

(
It, Ît

)
0, Lph

(
It, Ît

)
> βLph

(
It, Ît

) , (7)

where Lph is the average value of all photometric errors, Ma indicates mask, β is the
corresponding weight that reflects the tolerance for outliers. The larger the value, the more
outliers will be retained. 1.5 is used here empirically.

The three masks mentioned above can effectively remove the majority of outliers.
However, there are still some special cases that need to be considered, such as objects
moving at speed similar to the camera or scenes where the camera is stationary, both
of which violate the assumptions required for the view synthesis process, i.e., a moving
camera and a stationary scene. To address this issue, we adopt the auto-making technique
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used in [12], i.e., the photometric error of the synthesized target view should be less than
the photometric error calculated directly using the source view. The mask denoted as Ms is
expressed as follows:

Ms
(

It, Ît
)
=

{
1, Lph

(
It, Ît

)
< Lph(It, Is)

0, Lph
(

It, Ît
)
≥ Lph(It, Is)

. (8)

The minimum projection technique proposed in [12] addresses the problem of oc-
cluded areas in the scene, which in essence, is also a mask, and we denote this mask by Mm
and calculate it by the following expression:

Mm
(

It, Ît
)
=

{
1, Lph

(
It, Ît

)
≤ min

s
Lph(It, Is)

0, Lph
(

It, Ît
)
> min

s
Lph(It, Is)

. (9)

Then, all the masks are combined using element-wise logical conjunction, as shown
below, to generate the final mask, marked Mf.

M f
(

It, Ît
)
= Me

(
It, Ît

)
·Mo

(
It, Ît

)
·Ma

(
It, Ît

)
·Ms

(
It, Ît

)
·Mm

(
It, Ît

)
, (10)

Finally, the photometric consistency loss is updated as follows:

Lph
(

It, Ît
)
= M f

(
It, Ît

)
·Lph

(
It, Ît

)
. (11)

The final mask obtained through forward propagation also serves as a supervised
signal for the MaskNet. The MaskNet takes the target-source image pairs as input and
generates a mask of estimated outliers. Unlike the final mask, the values in the generated
mask are not binary but continuous, ranging from 0 to 1, making it more convenient
for model training. The MaskNet is trained by minimizing the difference between the
estimated mask (Me) and the calculated mask (M f ). The loss function is as follows:

Lm

(
M f , Me

)
= − 1

n∑
i

[
M fi

logMci + (1−Mci )log
(

1−M fi

)]
(12)

where n represents the number of elements in M f and Me, and log is the logarithm function.
Figure 5 shows two examples of the visualization of the calculated mask (M f ) and the
estimated mask (Me).
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3.3. Geometric Consistency Loss

To address the issue that the photometric consistency loss function fails to hold in
scenes with significant illumination variations, we propose the geometric consistency loss
with its generation mechanism illustrated in Figure 6. This loss leverages the geometric
constraints inherent to the 3D scene, rendering it impervious to illumination variations and
serving as a complementary measure to the photometric consistency loss. The geometric
consistency loss comprises optical flow consistency loss, depth consistency loss, and pose
consistency loss, which is expressed as follows:

Lg = λ f L f lo + λdLdep + λpLpos (13)

with L f lo, Ldep and Lpos denoting the optical flow consistency loss, the depth consistency
loss, and the pose consistency loss, respectively, and λ f , λd and λp are the corresponding
weighting coefficients.
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Figure 6. The generation mechanism of the geometric consistency loss function. The geometric
consistency loss consists of three components: optical flow consistency loss, depth consistency loss,
and pose consistency loss. The optical flow consistency loss is calculated from the difference between
the estimated optical flow and the calculated projected optical flow; the depth consistency loss is
calculated from the difference between the estimated depth and the inverse warping depth [18]; and
the pose consistency loss is obtained in three frames of snippets by ensuring a tight coupling of the
transformation matrices with each other.

To better extract the geometric features in the image when estimating the camera pose,
we use the optical flow estimated by FlowNet as an input. In addition, the estimated optical
flow (F f ) can provide an additional supervised signal to the framework. Specifically, using
the estimated depth and the estimated camera pose, we can calculate the projected optical
flow (Fcal) using the following expression:

Fcal(pt) = KTt→sDt(pt)K−1 pt − pt. (14)

After removing outliers, the calculated optical flow (Fcal) should be theoretically
consistent with the estimated optical flow (F f ). Then the optical flow consistency loss can
be calculated using the following formula:

L f lo = ∑
pt∈V

∥∥∥Fcal(pt)− F f (pt)
∥∥∥

1
(15)
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where V denotes the valid region after excluding the outliers.
Since the correspondence between the target view and source view coordinates can be

determined computationally during the projection process, there is also a correspondence
between the target view depth map and the source view depth map estimated by DepthNet.
That is, the source view depth map and the projected optical flow can inverse warp the
target view depth map, which is consistent with the depth map estimated by DepthNet [18].
Therefore, we also use the L1 norm to calculate their differences, and the depth consistency
loss is represented as follows:

Ldep = ∑pt∈V

∥∥Dt(pt)− Dt(pt)
∥∥

1. (16)

The pose consistency loss is obtained in the three-frame snippet by ensuring that the
transformation matrices are closely coupled. Specifically, with the PoseNet network, the
pose information between each pair of the three image frames can be estimated, denoted
as Tt−1→t, Tt→t+1 and Tt−1→t+1. Using the transformation relationship between them, i.e.,
Tt−1→t·Tt→t+1 = Tt−1→t+1, the pose consistency loss is proposed to constrain the entire
model further, expressed as follows:

Lpos = Tt−1→t·Tt→t+1 − Tt−1→t+1. (17)

4. Experiments

In this section, we conduct several experiments to evaluate the estimation results of
our pose and depth models and visualize the estimated results. We also conduct ablation
experiments to validate the effectiveness of our used strategies as well as tests on unfamiliar
datasets to verify the generalization ability of the model.

4.1. Implementation Details

Our framework comprises four sub-networks. For the depth estimation network
(DepthNet), we employ a U-shaped architecture [36] with skip connections, which takes
a single image as input and outputs the corresponding depth map. The encoder mainly
consists of cascaded residual convolutional neural networks, with ResNet18 [37] as the
underlying network that contains 11 million trainable parameters. The decoder primarily
consists of cascaded deconvolutional layers. For the pose estimation network (PoseNet),
we also use ResNet18 as the encoder, followed by a global average layer before the final
prediction to obtain the 6 DOF camera pose (3 for translation and 3 for rotation in Eu-
ler angles), with the pre-processed optical flow as input. The mask estimation network
(MaskNet) has the same network structure as DepthNet but with different inputs, taking a
stack of two frames in RGB channels and outputting the probability of each pixel being an
outlier in the scene. Finally, for optical flow estimation, we adopt a pre-trained network,
MaskFlownet [38], to accelerate the training process by computing the optical flow infor-
mation for all adjacent and intermediate frames in advance, which can be directly read
during training.

The framework was implemented on the PyTorch platform [39], and all experiments
were performed using a single NVIDIA graphics card (RTX 1080 Ti) and an Intel Core
i7 3.6 GHz CPU. We use Adam [40] for optimization. The hyperparameters of the loss
function, including λs = 0.001, λm = 0.2, λ f = 0.2, λd = 0.2 and λp = 0.5. To ensure fair
comparisons with other works, we cropped the image resolution to 640 × 192, accelerat-
ing the network training. Similar to other works [20,21], we applied data augmentation
techniques such as cropping, random scaling, and horizontal flips. For all ResNet18-based
models, including DepthNet, PoseNet, and MaskNet, we initialized their encoder parts
using the weights pre-trained in ImageNet [41], following the practice of MonoDepth2 [12].
The batch size was set to 8, the initial learning rate was set to 0.0001, and it was multiplied
by 0.6 every 5 epochs. The total training time was approximately 30 h, and the network
was trained for 20 epochs.
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4.2. Datasets and Metrics

We conducted our training and testing on the widely used KITTI benchmark [42], the
most popular dataset in the field of autonomous driving. It provides 56 driving scenes at a
rate of 10 frames per second with an image resolution of approximately 1226× 370, covering
various urban, residential, and highway driving scenarios. In addition, the dataset includes
ground truth for camera poses and depth maps, which are derived from multiple modalities
such as high-precision LiDAR, GPS, and IMU sensors. Since our method is unsupervised
and only requires a sequence of consecutive frames as input, we also pre-trained our model
on the Cityscapes dataset [43], which consists of video sequences of cars driving in over
50 cities and stereo data without annotations. Additionally, we validated the generalization
performance of our trained model on the Make3D dataset [44], which includes single-view
images and corresponding low-resolution depth maps but no monocular sequences or
stereo images.

As in previous work [15], we adopted the absolute trajectory error (ATE) to evaluate
pose estimation and the synthetic policy [12] to evaluate depth estimation. The following is
the definition of ATE:

Fi = Q−1
i SPi

ATE =

√
1
N

N
∑

i=1
‖trans(Fi)‖2

(18)

Pi and Qi represent the estimated pose and its corresponding ground truth, S denotes the
similarity transformation matrix, and trans represents the translation component [45].

Depth estimation was evaluated using various metrics, including absolute relative
error (Abs. Rel), which measures the relative error between predicted and ground truth
values; square relative error (Sq. Rel), which squares Abs. Rel and accentuates the differences;
root mean squared error (RMSE), which reflects the absolute error between predicted and
ground truth values; log root mean squared error (RMSE log), which uses logarithmic
operations to reduce the impact of outliers on RMSE; and prediction accuracy (δ), which
intuitively reflects the accuracy of the predictions. The following are the definitions of these
evaluation standards:

Abs.Rel =
1
N ∑N

i=1

∣∣Di − D∗i
∣∣

D∗i
, (19)

Sq.Rel =
1
N ∑N

i=1

∣∣Di − D∗i
∣∣2

D∗i
, (20)

RMSE =

√
1
N ∑N

i=1

∣∣Di − D∗i
∣∣2, (21)

RMSE(log) =

√
1
N ∑N

i=1|lgDi − lgD∗i |
2, (22)

δ = max(
Di
D∗i

,
D∗i
Di

) < T, (23)

where Di and D∗i represent the estimated depth and its related ground truth. We used T
values of 1.25, 1.252, and 1.253. Lower values for error metrics (Abs. Rel, Sq.Rel, RMSE,
RMSE log) and higher values for the accuracy metric (δ) indicate better performance.

4.3. Evaluation of Depth Estimation

In the monocular depth estimation experiments, we evaluated the performance of
our depth estimation network using the widely used Eigen split of the KITTI dataset [42].
Specifically, our training set consisted of 39,810 monocular triplets, while the validation set
consisted of 4424 triplets, and the testing set included 697 representative frames. As with
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other unsupervised methods, the median ratio [15] aligns each predicted depth map with
the corresponding ground truth depth map. Again, conventional metrics and the cropping
region in [12] were used, and the upper limit of the standard depth was set to 80 m. Finally,
we compared our method with other classic approaches using learning-based methods,
and the quantitative and qualitative comparisons are shown in Table 1 and Figure 7.

Table 1. The quantitative comparison of our method with other methods.

Method
Supervised

Signal
Training
Dataset

Error Metric Accuracy Metric

Abs.Rel Sq.Rel RMSE RMSE (log) δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [22] Coarse Depth K 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen et al. [22] Fine Depth K 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [23] Depth K 0.202 1.614 6.523 0.275 0.678 0.895 0.965
Zhan et al. [13] Stereo K 0.144 1.391 5.869 0.241 0.803 0.928 0.969

Godard et al. [12] Stereo K 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Zhou et al. [15] Mono K 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Zhou et al. [15] updated Mono K 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Mahjourian et al. [27] Mono K 0.163 1.240 6.220 0.250 0.762 0.916 0.968
Jin et al. [28] Mono K 0.169 1.387 6.670 0.267 0.748 0.904 0.960
Yin et al. [31] Mono K 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Ranjan et al. [34] Mono K 0.140 1.070 5.326 0.217 0.826 0.941 0.975
Wang et al. [20] Mono K 0.147 0.889 4.290 0.214 0.808 0.942 0.979
Bian et al. [18] Mono K 0.137 1.089 5.439 0.217 0.830 0.942 0.975
Jiang et al. [21] Mono K 0.112 0.875 4.795 0.190 0.880 0.960 0.981

Godard et al. [12] Mono K 0.154 1.218 5.699 0.231 0.798 0.932 0.973
Ours Mono K 0.110 0.793 4.553 0.184 0.886 0.964 0.983

Zhou et al. [15] Mono CS + K 0.198 1.836 6.565 0.275 0.718 0.901 0.960
Mahjourian et al. [27] Mono CS + K 0.159 1.231 5.912 0.243 0.784 0.923 0.970

Jin et al. [28] Mono CS + K 0.162 1.039 4.851 0.244 0.767 0.920 0.969
Yin et al. [31] Mono CS + K 0.153 1.328 5.737 0.232 0.802 0.934 0.972

Ranjan et al. [34] Mono CS + K 0.139 1.032 5.199 0.213 0.827 0.943 0.977
Wang et al. [20] Mono CS + K 0.155 1.184 5.765 0.229 0.790 0.933 0.975

Ours Mono CS + K 0.103 0.634 3.367 0.178 0.899 0.969 0.984

In the supervised signal column of Table 1, “Depth” indicates that the method is
supervised, “Stereo” suggests that the method is trained on stereo images with baseline
information, and “Mono” suggests that the method is trained solely on monocular image
sequences. The third column indicates the dataset used for training, where “K” denotes
training only on the KITTI dataset and “CS + K” denotes fine-tuning on the KITTI dataset
following pre-training on the Cityscapes dataset. Among all the unsupervised methods,
our method outperforms all the others, especially Godard’s Monodepth2 [12], a classical
depth estimation network. Our model has the same number of parameters compared to
Monodepth2’s, but the model’s performance is significantly improved by using a variety of
optimization strategies we have proposed. We also pre-trained our model on the Cityscapes
dataset [43] and fine-tuned it on the KITTI dataset. The results (in the bottom part of
Table 1) show that increasing the training data can improve the model’s performance. This
demonstrates the advantage of unsupervised methods over supervised methods, where
the estimation accuracy increases as the training data grows and the model size increases.
However, for supervised methods, increasing the training data requires more work to
generate labels, and increasing the model capacity blindly without increasing the data
can lead to overfitting. This is why unsupervised methods are increasingly preferred by
researchers.

A qualitative comparison of our method with some classical methods is shown in
Figure 7. Compared with other methods, our method estimates the boundaries of vari-
ous objects more clearly, including dynamic objects (moving cars and pedestrians) and
distant cars.
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4.4. Evaluation of VO Estimation

For pose estimation, we conducted experiments on the KITTI odometry dataset, using
sequences 00-08 for training and sequences 09 and 10 for testing, following the method
of previous work [15]. To ensure a fair comparison, the input sequences were modified
from 3 to 5 frames to be consistent with other methods [11–13]. Our method’s qualitative
and quantitative results compared to similar methods are shown in Figure 8 and Table 2,
respectively.

Table 2. The performance of various methods on the KITTI VO dataset was compared in terms of
Absolute Trajectory Error (ATE).

Method ATE of Seq.09 ATE of Seq.10

ORB-SLAM [6] 0.014 ± 0.008 0.012 ± 0.011
Zhou et al. [15] 0.016 ± 0.009 0.013 ± 0.009
Bian et al. [18] 0.016 ± 0.007 0.015 ± 0.015

Mahjourian et al. [27] 0.013 ± 0.010 0.012 ± 0.011
Yin et al. [31] 0.012 ± 0.007 0.012 ± 0.009

Ranjan et al. [34] 0.012 ± 0.007 0.012 ± 0.008
Ours 0.008 ± 0.005 0.007 ± 0.005

Our method achieves the best results, especially over Zhou et al. [15]. On the one hand,
they use raw RGB images in estimating the pose, which contains redundant information
that does not help the network learn the motion information of the camera. On the other
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hand, many outliers in the scene, such as occlusions and dynamic objects, impact their
pose estimation model. In contrast, our method uses optical flow as input, which contains
camera motion information that can be more easily learned by the network. In addition,
the interference of outliers, such as dynamic objects, is effectively avoided by the multiple
masking techniques, which leads to a significant improvement in the accuracy of pose
estimation.
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4.5. Ablation Study

To verify the effectiveness of our proposed strategies, we conducted an ablation study
on the entire framework. Since the DepthNet and the PoseNet adopt a joint training method
and their accuracy also affects each other, it is sufficient to test only one sub-network. Here
we test the PoseNet, using the sequences 00-08 on the KITTI dataset as the training set and
the sequences 09 and 10 as the test set. The results of the ablation experiments are shown in
Table 3.

The baseline model represents that no mask is used, and the loss function used for
training only includes the photometric consistency loss and the smoothness loss. M f
denotes that the model calculated the mask used to eliminate outliers during training and
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used the mask when calculating the photometric consistency loss. The model is represented
by Me not only calculates the mask M f during training but also adds Lm to the final loss
function to train the MaskNet and preprocesses the input of PoseNet with the estimated
mask Me. L f lo represents that only the optical flow consistency constraint is used, Ldep
represents that only the depth consistency constraint is used, Lpos represents that only the
pose consistency constraint is used, and L f ull represents a complete model. That is, two
masks and three consistency constraints are used.

Table 3. Comparison between various variants of our model on KITTI odometry.

Method ATE of Seq.09 ATE of Seq.10

Baseline 0.018 ± 0.011 0.017 ± 0.011
Baseline + M f 0.014 ± 0.010 0.013 ± 0.010
Baseline + Me 0.012 ± 0.008 0.011 ± 0.008

Baseline + Me + Ldep 0.012 ± 0.007 0.010 ± 0.007
Baseline + Me + Lpos 0.011 ± 0.009 0.009 ± 0.006
Baseline + Me + L f lo 0.009 ± 0.005 0.007± 0.005
Baseline + Me + L f ull 0.008 ± 0.005 0.007 ± 0.005

We evaluate each improved component in the proposed monocular system and remove
them from the whole system to prove their effectiveness indirectly. It can be seen from
Table 3 that the accuracy of the baseline is the worst of all models, and all the strategies
we propose help to improve the accuracy of the framework. In addition, we found that
the increase of Ldep and Lpos was relatively small, while the increase of L f lo was relatively
large. We believe this is because the optical flow consistency constraint, the supervised
signal used, comes from the trained network. This additional supervised signal has further
improved the accuracy of the model. Depth consistency and pose consistency are implicit
constraints within the model. Their design is mainly used to ensure global consistency in
pose estimation. Since the input is a continuous multi-frame picture, the scale consistency
constraint of every two frames will also ensure that the constant multi-frame pictures
maintain the same scale, thus ensuring the global consistency of pose estimation.

4.6. Generalization on Make3D Dataset

To verify the generalization of our trained model, we conducted tests on the
Make3D [44] dataset using the model trained on the KITTI and Cityscapes datasets. This
means that our model has never encountered any images from the Make3D dataset before.
The qualitative and quantitative results of the depth estimation network are shown in
Figure 9 and Table 4. It can be observed that our method has certain advantages over
other methods of the same type. However, due to different domain biases in different
datasets, there is still room for improvement in the performance of our model compared to
the results obtained on the KITTI dataset.

Table 4. Quantitative comparison of depth estimation of different methods on Make3D dataset.

Method
Error Metric

Abs. Rel Sq. Rel RMSE RMSE (log)

Liu et al. [23] 0.481 6.761 10.55 0.169
Zhou et al. [15] 0.396 5.731 10.869 0.513

Godard et al. [12] 0.579 11.235 11.892 0.201
Ours 0.304 3.452 7.186 0.203
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5. Conclusions

This paper introduces a novel unsupervised learning framework for estimating scene
depth and camera pose from video sequences, focusing on challenging scenes. Our pro-
posed method incorporates multiple mask techniques to identify and eliminate the influence
of outliers in challenging scenes during the view synthesis process and pose estimation. Fur-
thermore, we have proposed several geometrically consistent loss functions as additional
supervised signals to enhance the performance of our model. We conducted evaluation
and ablation experiments on the KITTI dataset, and the results validate the effectiveness of
our contributions. Our framework has promising potential for addressing the challenges of
estimating scene depth and camera pose in real-world scenarios. Future work can extend
our method to handle more complex scenes and design the framework using high-capacity
models such as Transformer and training with more data.
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