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Abstract: Multiple-input multiple-output (MIMO) wireless power transfer (WPT) technology which
employs multiple transmitter (TX) coils to simultaneously couple power to the receiver (RX) coil
has proved to be an effective technique to enhance power transfer efficiency (PTE). Conventional
MIMO-WPT systems rely on the phase-calculation method based on the phased-array beam steering
concept to constructively combine the magnetic fields induced by the multiple TX coils at the RX
coil. However, increasing the number and distance of the TX coils in an attempt to enhance the PTE
tends to deteriorate the received signal at the RX coil. In this paper, a phase-calculation method
is presented that enhances the PTE of the MIMO-WPT system. The proposed phase-calculation
method considers the coupling between the coils and applies the phase and amplitude to calculate
the coil control data. From the experimental results, the transfer efficiency is enhanced as a result of
the transmission coefficient improvement from a minimum of 2 dB to a maximum of 10 dB for the
proposed method as compared to the conventional one. By implementing the proposed phase-control
MIMO-WPT, high-efficiency wireless charging is realizable wherever electronic devices are located in
a specific space.

Keywords: beam steering; multiple-input multiple-output (MIMO); multiple transmitters; phase
control; power transfer efficiency (PTE); wireless power transfer (WPT)

1. Introduction

Wireless power transfer (WPT) technology continues to witness a tremendous growth
as it proves to be a relatively effective mode of power supply for a wide range of applications
including electric vehicles, medical implants and consumer electronics [1,2]. The power
transfer efficiency (PTE) of WPT systems, however, greatly depends on how well power
can be coupled from the transmitter (TX) coil to the receiver (RX) coil [3].

WPT via inductive coupling achieves a higher transfer efficiency providing the TX and
RX coils are placed in close proximity and are perfectly aligned with each other. The PTE,
however, deteriorates drastically as the TX and RX coil distance increases [4]. Thus, WPT
via resonant inductive coupling has been proposed in several studies [5]. WPT via resonant
inductive coupling can exchange power efficiently with much larger transfer distance
compared with the conventional WPT via inductive coupling. However, for WPT via
resonant inductive coupling, the TX–RX coil distance must be optimized below a threshold
value to prevent over-coupling, which deteriorates the PTE [6].

Recently, much attention has been focused on finding alternative means to provide a
higher degree of freedom and safety to improve the user experience of WPT. The use of
multi-coil configurations such as the multiple-input multiple-output (MIMO) WPT systems
which consist of multiple TX/RX coils, or both, have been presented in several studies [7,8].
The MIMO-WPT system usually consists of multiple TX coils to simultaneously transmit
magnetic energy to a single RX coil, in order to attain the benefits of added gain and
diversity effects [9]. The magnetic field-based MIMO wireless charging method shows
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higher transmission efficiency because it can transmit high amounts of power by synthe-
sizing magnetic fields generated in individual transmission coils. Figure 1 illustrates the
MIMO-WPT system with the TX coils installed underneath the table that delivers the power
to charge a device placed at an arbitrary position on the table.
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Figure 1. Illustration of the MIMO-WPT system with multiple TX coils installed underneath the table.

For efficient long-distance wireless power transmission, a number of wireless charging
solutions have been implemented using RF, infrared rays, ultrasonic waves, etc. Ossia’s
Cota® demonstrated the use of RF to provide long-distance wireless power via a device
consisting of hundreds of omni-directional antennas [10]. Moreover, Energous Corp. has
implemented a long-distance wireless power transmission using its RF-based WattUP®

technology that can charge multiple devices at the same time from a distance [11].
Furthermore, an ultrasonic wireless charging device named uBeam transmits a signal

using a high ultrasonic band frequency of 45 kHz to 75 kHz. The ultrasonic transmitter
is configured similarly to the electrical principles of the phased-array antenna, and forms
an ultrasonic beam synthesized in free space through thousands of small speakers [12].
Additionally, a magnetic MIMO (MagMIMO) system has been developed by scientists at
MIT, which can wirelessly charge cell phones and portable devices placed about 50 cm
away using multiple TX coils [13].

Most of the literature studies presented above for long-distance wireless power transfer
employ the conventional phase-calculation method based on the phased array concept to
transmit power efficiently from multiple TX coils to a single RX coil.

In this study, we show that for the conventional phase-calculation method of the
MIMO-WPT system, as the number and distance of the TX coils increases in a bid to
increase the PTE, the synthesized magnetic field beam deteriorates, with the formation
of multi-lobes. We further propose a new method to calculate the phase applied to the
individual TX coils which incorporates the coupling coefficient between the TX coils, in
order to transmit optimal power to the RX coil placed at an arbitrary position by the
MIMO-WPT wireless charging method depicted in Figure 1.

2. MIMO-WPT System Modelling and Analysis

Figure 2 shows the schematic diagram of a MIMO-WPT system composed of N number
of TX coils (i.e., T1, T2, . . . , Tn) and two RX coils (i.e., R1 and R2) placed at arbitrary positions
above the TX coils. Assuming that all the coils have the same physical structure and that all
TX coils are fed individually with the same current, it can be considered that the amount
of magnetic energy (H) generated by the individual coils are the same. In the case where
the phase of the current applied to the individual coils is the same, the magnetic fields (H1,
H2, . . . , Hn) generated from the individual coils are synthesized in an arbitrary direction
(i.e., θ = 00) to generate a summation of the magnetic field (HT) as illustrated in Figure 2.
Thus, higher power may be transmitted compared to the case in which a single TX coil is
used. When the RX coil moves horizontally by an angle of (θ) with respect to the center of
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the array, the phase of the individual TX coils must be controlled to optimize the magnetic
energy for each RX coil position. Therefore, assuming that the position of the RX coil moves
freely, the phase-control method applied at TX coils can be a key function for the efficient
operation of the MIMO-WPT system.
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2.1. Analysis of MIMO-WPT Using the Conventional Phase-Calculation Method Based on the
Phased-Array Concept

From the MIMO-WPT system illustrated in Figure 2, the concept of the beam-steering
control employed for the phased-array antenna technology can be employed to determine
the phases of the individual TX coils in order to transmit optimum magnetic energy to
the RX coil. Figure 3 illustrates the application of the phased-array beam-steering control
method to the MIMO-WPT system, where coils are used in place of antenna elements.
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From the antenna array concept, the total radiated field (Eia) from an isotropic linear
array of N number of elements can be represented as [14]

Eia = Eie ×
N

∑
n=1

Anejαn (1)

where An and αn represent the amplitude and relative phases of the isotropic elements,
respectively, and Eie is the radiation from an isotropic element. The second term in (1)
is termed as the array factor (AF). The antenna array factor is the weight of the array
antenna with periodic element spacing and represents the array response. Assuming that
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the spacing between the elements (d) is fixed and all the elements have identical amplitudes
(i.e., an amplitude of 1), then the AF can be represented as

AF =
N

∑
n=1

ej(n−1)(βd sin θ+α0) =
N

∑
n=1

ej(n−1)ψ (2)

ψ = βd sin θ + α0 (3)

where ψ and β represent the phase difference between two adjacent elements and phase
constant, respectively. In the conventional MIMO-WPT system, the AF is employed to
derive the phase-shifts (α) between the TX coils, which are each separated by distance (d)
to transmit optimum magnetic energy to the RX coil.

2.2. MIMO-WPT Based on the Proposed Phase-Calculation Method

In this study, a new phase-control method applied to the coils is presented to improve
the transmission efficiency of the MIMO-WPT system. In the previously used phase-control
method, the phases between each TX coil were determined and used to obtain the desired
synthesized magnetic fields at the receiver. However, due to the close proximity of the
coils, magnetic coupling exists between the TX coils and the TX–RX coils which results
in reflected mutual impedances at the circuits of each of the TX and RX coils. Hence, a
phase-shift due to the coupling from each circuit is introduced. Therefore, the phase of the
input voltages of the coils has to be adjusted to align the currents with the same phase.

Figure 4 shows a circuit diagram composed of N number of TXs and one RX coil and
depicts the mutual coupling (Mmn) between the TX–TX and TX–RX coils. Each coil has
capacitance (Cn), inductance (Ln) and resistance (Rn). Each TX coil is supplied with a source
voltage (Vsn) and current (In).
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Based on Kirchhoff’s voltage Law (KVL), the impedance (Zn) for each TX coil can be
represented in (4) as

Z1 = R1 + jωL1 + 1/jωC1
Z2 = R2 + jωL2 + 1/jωC2

...
Zn = Rn + jωLn + 1/jωCn

(4)

The mutual inductances (Mmn) are related to the coupling coefficients (Kmn) by (5).

Mn,m = kn,m
√

LnLm (5)
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Based on the coupling coefficients between the coils, the phase and amplitude can be
derived using the expressions in (6), (7) and (8) [15]. The phase and amplitude using the
coupling coefficient between individual coils could be obtained mathematically by finding
the coupling relationship between two coils using (6) and calculating the coupling between
multiple coils using (7) and (8).

VS1 = I1Z1 − jωI2M12 (6)

0 = I2Z2 − jωI1M12 (7)

I2 =
VS1 jωM12

Z1Z2 + (ωM12)
2 (8)

The voltage (Vsn) and current (In) expressions for the nth coil is given in (9) and (10) as

VSn = InZn − jωI1M1n − jωI2M2n − jωI3M3n − · · · − jωIn MnL (9)

In =
VS1 + jωI1M1n + jωI2M2n + jωI3M3n + · · ·+ jωIn MnL

Zn
(10)

Using the phase data of the currents derived from (10), the phase applied to each TX
coil (θ11), the phase of the current at the RX coil (θ11), and the phase of the current due to
other TX coils (θ21, θ31, · · · , θn1) can be obtained. The total phase at each of the TX coils is
the sum of the phase shift due to the coupling with the RX coil, and the coupling due to the
other TX coils. Therefore, the phase adjustment (θT

n ) and amplitude adjustment (AT
n ) at the

nth TX coil can be expressed in (11) and (12) as

θT
n =

L

∑
k=1

θkn, ∀i, i = 1, · · · , n, L (11)

AT
n =

L

∑
k=1

Akn, ∀i, i = 1, · · · , n, L (12)

3. Experimental Results and Analysis

In this section, the effectiveness of MIMO-WPT based on the beam-steering phase-
calculation method, and the MIMO-WPT based on the proposed phase-calculation method
is verified and compared using ANSYS Maxwell electromagnetics software [16]. In the
simulation set-up, the MIMO-WPT system illustrated in Figure 5 is used for different n-TXs
(i.e., three-TXs, five-TXs and seven-TXs) configurations. The distance between the TX coils
(d) is kept at 50 cm while the phase steps (ψ) of the TX coils are varied from ψ = 0◦, 30◦, 60◦

and 90◦.
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3.1. Experimental Results for MIMO-WPT Based on the Conventional Beam-Steering
Phase-Control Method

Tables 1–3 show the distribution of the magnetic field (H) with varying phase steps
(ψ) for three-TXs, four-TXs and five-TXs coil configurations. The ‘Azimuth’ and ‘Elevation’
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columns of Tables 1–3 represent the cross-section of the simulated magnetic field intensity
from the TX coils measured with respect to the xy- and yz-planes, respectively, as shown
in Figure 5.

Table 1. Simulated magnetic field distribution of the beam-steering MIMO-WPT implemented with
three-TX coils.

Phase Step (ψ) Azimuth (xy-Plane) Elevation (yz-Plane)

0◦
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Table 2. Simulated magnetic field distribution of the beam-steering MIMO-WPT implemented with
five TX coils.
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seven TX coils are used. It can be observed that the magnetic beam pattern begins to dete-
riorate as ψ increase from ψ = 30° to 90°. Compared to the case of three-TXs and five-TXs 
in Tables 1 and 2, a significant beam split is noticed for increasing ψ using seven-TXs. 

Table 3. Simulated magnetic field distribution of the beam-steering MIMO-WPT implemented with 
seven TX coils. 

Phase Step (ψ) Azimuth (xy-Plane) Elevation (yz-Plane) 

0° 

  

   

Sensors 2023, 23, x FOR PEER REVIEW 8 of 13 
 

 

60° 

  

90° 

  

In Table 3, the simulated magnetic field (H) results are given for different ψ when 
seven TX coils are used. It can be observed that the magnetic beam pattern begins to dete-
riorate as ψ increase from ψ = 30° to 90°. Compared to the case of three-TXs and five-TXs 
in Tables 1 and 2, a significant beam split is noticed for increasing ψ using seven-TXs. 

Table 3. Simulated magnetic field distribution of the beam-steering MIMO-WPT implemented with 
seven TX coils. 

Phase Step (ψ) Azimuth (xy-Plane) Elevation (yz-Plane) 

0° 

  

   

90◦

Sensors 2023, 23, x FOR PEER REVIEW 8 of 13 
 

 

60° 

  

90° 

  

In Table 3, the simulated magnetic field (H) results are given for different ψ when 
seven TX coils are used. It can be observed that the magnetic beam pattern begins to dete-
riorate as ψ increase from ψ = 30° to 90°. Compared to the case of three-TXs and five-TXs 
in Tables 1 and 2, a significant beam split is noticed for increasing ψ using seven-TXs. 

Table 3. Simulated magnetic field distribution of the beam-steering MIMO-WPT implemented with 
seven TX coils. 

Phase Step (ψ) Azimuth (xy-Plane) Elevation (yz-Plane) 

0° 

  

   

Sensors 2023, 23, x FOR PEER REVIEW 8 of 13 
 

 

60° 

  

90° 

  

In Table 3, the simulated magnetic field (H) results are given for different ψ when 
seven TX coils are used. It can be observed that the magnetic beam pattern begins to dete-
riorate as ψ increase from ψ = 30° to 90°. Compared to the case of three-TXs and five-TXs 
in Tables 1 and 2, a significant beam split is noticed for increasing ψ using seven-TXs. 

Table 3. Simulated magnetic field distribution of the beam-steering MIMO-WPT implemented with 
seven TX coils. 

Phase Step (ψ) Azimuth (xy-Plane) Elevation (yz-Plane) 

0° 

  

   



Sensors 2023, 23, 5312 8 of 13

Table 3. Simulated magnetic field distribution of the beam-steering MIMO-WPT implemented with
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The results in Tables 1–3 were compared according to the number of TX coils and the 
beam steering angle and are given in Figure 6. Figure 6 shows the change in the beam 
steering angle when the interval between coils (d) is set to 50 cm for the different n-TX of 
coil configurations. When ψ = 0°, it can be seen that the transmission efficiency increases 
as the number of TX coils increases. For the case of to ψ = 30°, multiple lobes are formed 
for the seven-TXs, and the beam moves towards the left side relative to the three-TXs and 
five-TXs. For ψ = 60°, the multi-lobes generated for the case of seven-TXs becomes more 
significant, and when three-TXs are used, the beam tilts more towards the left side com-
pared to ψ = 30°. For ψ = 60° with the five-TX configuration, the beam tilts towards the 
right side.  

As ψ increased to 90°, multiple lobes were generated even for five- and seven-TX 
coils. However, for three-TX coils, the beam tilted towards the right side. As a result, it 
may be seen that as the coil arrangement increases, the beam steering angle is distorted, 
and multiple lobes are generated for the conventional phase-calculation method of the 
MIMO-WPT system. 
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From the ‘Elevation’ results in Table 1, it can be seen that the synthesized magnetic
field from the three TX coils realize a beam tilt in the left direction as ψ increases from 0◦ to
60◦. However, when ψ = 90◦, a beam split is observed with a beam tilt in the right direction.

Furthermore, from the results of Table 2, as ψ changes from 0◦ to 30◦, the beam tilts
significantly towards the left side compared to using the three-TX coil configuration in
Table 1. However, at ψ = 60◦, the radiated beam pattern deteriorates and tilts towards the
right side resulting in a beam split. At ψ = 90◦ the beam splits into two different beam
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directions. It can be further realized that the magnetic field beam starts to deteriorate at
ψ = 30◦ in Table 2 for the five-TX coil implementation compared to that of Table 1, which
starts to deteriorate at ψ = 60◦.

In Table 3, the simulated magnetic field (H) results are given for different ψ when seven
TX coils are used. It can be observed that the magnetic beam pattern begins to deteriorate as
ψ increase from ψ = 30◦ to 90◦. Compared to the case of three-TXs and five-TXs in Tables 1
and 2, a significant beam split is noticed for increasing ψ using seven-TXs.

The results in Tables 1–3 were compared according to the number of TX coils and the
beam steering angle and are given in Figure 6. Figure 6 shows the change in the beam
steering angle when the interval between coils (d) is set to 50 cm for the different n-TX of
coil configurations. When ψ = 0◦, it can be seen that the transmission efficiency increases
as the number of TX coils increases. For the case of to ψ = 30◦, multiple lobes are formed
for the seven-TXs, and the beam moves towards the left side relative to the three-TXs
and five-TXs. For ψ = 60◦, the multi-lobes generated for the case of seven-TXs becomes
more significant, and when three-TXs are used, the beam tilts more towards the left side
compared to ψ = 30◦. For ψ = 60◦ with the five-TX configuration, the beam tilts towards the
right side.
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As ψ increased to 90◦, multiple lobes were generated even for five- and seven-TX
coils. However, for three-TX coils, the beam tilted towards the right side. As a result, it
may be seen that as the coil arrangement increases, the beam steering angle is distorted,
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and multiple lobes are generated for the conventional phase-calculation method of the
MIMO-WPT system.

Figure 7 shows the effect of varying the TX–TX coil distance (d) for different beam
steering angles for the MIMO-WPT with the five-TX coil configuration. When tilt angle
is 0◦, the synthesized magnetic field beam decreases as the TX–TX distance increases.
Additionally, it can be seen that when ψ = 30◦, multiple lobe characteristics occur as d
increases, and the beam steering direction changes towards the left side. When ψ = 60◦,
the multi-lobe characteristic becomes apparent as the distance increases. For ψ = 90◦, the
multi-lobe characteristics become more severe, resulting in two to three beam splits.
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3.2. Experimental Results for MIMO-WPT Based on the Proposed Phase-Calculation Method

The simulation results for different MIMO-WPT phase-calculation methods using the
five-TX coil configuration are given in Figure 8. In the results ‘No Phase adjust’, ‘Phase
adjust’, ‘Amplitude adjust’, and ‘Receive adjust’ the phase-calculation method for each
beam tilt angle are presented. ‘No Phase adjust’ represents the case where the coupling
coefficient is not considered. ‘Phase adjust’ is the case where the proposed phase coefficient
using (11) is used. For ‘Amplitude adjust’, the amplitude coefficient is applied using (12),
and for ‘Receive adjust’, the coupling coefficient between each TX and RX coil is used.
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Figure 8. Comparison of different phase-control methods according to the beam steering angle for
the five-TX coil configuration: (a) tilt angle = 0◦; (b) tilt angle = 14◦; (c) tilt angle = 26.5◦; (d) tilt
angle = 37.0◦; (e) tilt angle = 51.0◦; (f) tilt angle = 60◦.

Figure 8a shows the results for the case where the beam tilt angle is 0◦, which shows
that ‘Phase adjust’ has the highest transmission coefficient (S21). ‘Amplitude adjust’ and
‘No phase adjust’ are about 3 dB lower than ‘Phase adjust’, and ‘Receive adjust’ is about
8 dB lower than ‘Phase adjust’.

Figure 8b shows that the two methods, ‘Phase adjust’ and ‘Amplitude adjust’, have
the highest transmission coefficients for the tilt angle measured at 14◦. The results of ‘No
phase adjust’ and ‘Receive adjust’ show about 3 dB and 8 dB lower, respectively, compared
to the phase adjust and amplitude adjust. At a beam tilt of 26.5◦, all the phase-calculation
methods show similar performance as shown in Figure 8c.
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In Figure 8d, for a beam tilt angle of 37◦, the ‘Phase adjust’, ‘Amplitude adjust’ and ‘No
phase adjust’ show similar results, however ‘Receive adjust’ shows a lower transmission
coefficient of about 3 to 5 dB, comparatively. For a beam tilt of 51◦ as shown in Figure 8e,
the ‘Phase adjust’ method shows the highest transmission coefficient, with the ‘Amplitude
adjust’ and ‘No phase adjust’ methods showing similar results. However, the ‘Receive
adjust’ method shows a transmission coefficient about 6 dB lower than ‘Phase adjust’.
Moreover, in Figure 8f, the formation of multiple lobes is noticed for a beam tilt of 60◦.

From the results of Figure 8, it can be confirmed that the ‘Phase adjust’ which is
based on (11) exhibits the highest transmission coefficient compared to the other phase-
calculation methods. Furthermore, it can be seen that ‘Amplitude adjust’ and ‘No phase
adjust’ exhibit similar performance, indicating that ‘Amplitude adjust’ using (12) does not
have a significant impact on transmission efficiency of the MIMO-WPT system. Since the
‘Receive adjust’ method shows the lowest transmission coefficient, it can be concluded
that this method is not an efficient phase-calculation method to improve the PTE of the
MIMO-WPT system.

The transfer efficiency (η) at the RX coil is related to the transmission coefficient (S21),
and can be determined by [17]

η = bs21c2 × 100% (13)

4. Conclusion

In this paper, different phase-control methods for improving the transfer efficiency
of a MIMO-WPT system were presented. From these studies, it was realized that the
beam pattern splits and deteriorates when the number and distance between the TX coils
increases for the conventional phase-control method based on the beam-steering concept
of the phased-array antenna. Additionally, multiple lobes appear for higher steering
angles in the conventional phase-calculation method. Hence, a MIMO-WPT phase-control
method is presented which incorporates the coupling between the coils in the phase-
calculation method. The transmission efficiency is improved based on the results of the
transmission coefficient, which shows an improvement from 2 dB to 10 dB compared to the
conventional method.
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