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Abstract: Diving can have significant cardiovascular effects on the human body and increase the
risk of developing cardiac health issues. This study aimed to investigate the autonomic nervous
system (ANS) responses of healthy individuals during simulated dives in hyperbaric chambers and
explore the effects of the humid environment on these responses. Electrocardiographic- and heart-
rate-variability (HRV)-derived indices were analyzed, and their statistical ranges were compared
at different depths during simulated immersions under dry and humid conditions. The results
showed that humidity significantly affected the ANS responses of the subjects, leading to reduced
parasympathetic activity and increased sympathetic dominance. The power of the high-frequency
band of the HRV after removing the influence of respiration, PHF⊥, and the number of pairs of
successive normal-to-normal intervals that differ by more than 50 ms divided by the total number of
normal-to-normal intervals, pNN50, indices were found to be the most informative in distinguishing
the ANS responses of subjects between the two datasets. Additionally, the statistical ranges of the
HRV indices were calculated, and the classification of subjects as “normal” or “abnormal” was
determined based on these ranges. The results showed that the ranges were effective at identifying
abnormal ANS responses, indicating the potential use of these ranges as a reference for monitoring
the activity of divers and avoiding future immersions if many indices are out of the normal ranges.
The bagging method was also used to include some variability in the datasets’ ranges, and the
classification results showed that the ranges computed without proper bagging represent reality and
its associated variability. Overall, this study provides valuable insights into the ANS responses of
healthy individuals during simulated dives in hyperbaric chambers and the effects of humidity on
these responses.

Keywords: hyperbaric environments; autonomic nervous system; heart rate variability; safety ranges;
bagging method

1. Introduction

Diving is an activity that can have significant cardiovascular effects on the human body,
including changes in heart rate (HR), blood pressure and cardiac output, and alterations in
pulmonary circulation [1]. These changes can place significant stress on the cardiovascular
system and increase the risk of worsening underlying cardiomyopathies during diving.
Therefore, it is important for individuals with preexisting cardiac conditions to undergo
a thorough medical evaluation before engaging in diving activities.
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Elevated environmental pressure causes changes in cardiac function, including an increase
in systolic volume and a decrease in HR to maintain an adequate cardiac output and
minimize the impact on the body. This adaptation is possible thanks to the autonomic
nervous system (ANS) response [2]. Assessing the ANS response to significant pressure
changes is challenging and may vary significantly among individuals. Studies aimed
at monitoring and controlling this response in extreme conditions, as well as identifying
potential health risks for divers, are of great interest. Such studies are particularly important
in the training of military personnel. Typically, the response of the ANS is characterized by
both time and frequency analysis of the heart rate variability signal (HRV), particularly
those related to temporal changes in HR and those related to the power of the different
spectral bands and their relationships. Previous studies have shown variations in these
indices when the barometric pressure changes [3,4].

It is important to mention that there are serious health issues that can be derived from
diving activities, particularly if the decompression protocol is not properly followed, that
cannot be directly studied from the HRV signal. The clearest example is an arterial gas
embolism, which can occur when air bubbles, usually caused by pulmonary barotrauma
during a rapid ascent, enter the bloodstream and travel to the heart and other organs,
leading to tissue damage and potentially life-threatening complications [5]. In addition,
diving can also increase the risk of long-term cardiovascular problems such as arterial
disease, hypertension, and atherosclerosis. According to a study published in the Journal
of the American College of Cardiology, diving-induced stress on the cardiovascular system
can lead to endothelial dysfunction, oxidative stress, and chronic inflammation, which can
contribute to the development of cardiovascular diseases [6].

While increased pressure is a critical factor in the adaptive response of the ANS
during diving, other variables can also significantly affect this response. The diving
environment itself can influence the sympathovagal balance and the adaptation to humid
conditions, known as the diving reflex. In this reflex, the HR slows down to reduce oxygen
consumption, mediated by the parasympathetic nervous system. Cold water temperature
leads to vasoconstriction, which is related to increased sympathetic activity. Additionally,
the buoyancy and relaxation effects of water immersion promote parasympathetic activity.

Several other factors influence the sympathovagal balance during diving. Physi-
cal exertion and increased cardiovascular workload can trigger sympathetic activation.
The respiratory pattern plays a role, with breathing through a regulator potentially induc-
ing sympathetic activation, while controlled breathing techniques may promote vagal tone.
Moreover, gas density is influenced by pressure and temperature, which can impact the
ease and efficiency of breathing. Psychological factors, such as stress and anxiety, can also
promote sympathetic activity [7]. Moreover, individuals with previous expertise in diving
tend to experience relaxation and subsequent parasympathetic dominance.

The present study aims to investigate the autonomic response during diving in both
dry and humid conditions, taking into account that factors related to the environment
may also have an impact, and to identify HRV-derived indices that show significant
discrepancies between the two conditions. For this purpose, electrocardiographic signals
(ECG) were recorded from two groups of subjects. The first group performed a simulated
immersion in a dry hyperbaric chamber, while the second group underwent the same
immersion protocol in a humid hyperbaric chamber.

2. Materials and Methods
2.1. Databases

This study included two separate databases: one conducted in a dry hyperbaric
chamber and the other in a humid hyperbaric chamber. The first database consists of
28 volunteers (25 males and 3 females), with a mean age of 28.5 ± 6.2 years. The second
database includes 5 male volunteers with a mean age of 33.5 ± 2.4 years. All volunteers
provided written informed consent, which was validated by the Ethics Committee ‘Comité
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de ética de la investigación con medicamentos de la inspección general de sanidad de
la Defensa’.

ECG signals were recorded from all participants in the dry hyperbaric chamber at the
Hospital General de la Defensa en Zaragoza (Spain) and in the humid hyperbaric chamber
at the Centro de Buceo de la Armada in Cartagena (Spain). The Nautilus device, developed
by the University of Kaunas, Lithuania [8], was used for this purpose. This device allowed
us to record the ECG signal with three non-orthogonal leads at a sampling frequency of
2000 Hz, providing high-quality ECG data for analysis.

The hyperbaric immersion protocol lasted approximately two hours, during which
time the pressure was gradually increased from 1 atm (reference pressure at sea level) to
a maximum of 5 atm, with time intervals following the decompression table recommenda-
tions (see www.naui.org/resources/, accessed on 15 April 2023). During the immersion in
both hyperbaric chambers, the participants underwent five stops, each lasting five minutes,
at 1, 3, and 5 atm during both the descent (D) and ascent (A) phases. Specifically, the follow-
ing stages were analyzed in this study: from “1D” (baseline state) to “3D”, “5” (maximum
depth), “3A”, and back to “1A”. There were, however, some relevant differences in the
positions of the subjects in each chamber. In the dry chamber, the subjects were seated qui-
etly without performing abrupt movements during the whole immersion protocol. In the
humid chamber, the subjects were lying down flat, submerged under water, breathing air
from a compressed air bottle, wearing a wetsuit, and holding onto a bar with one hand to
maintain the position during the whole immersion protocol.

2.2. Heart Rate Variability

To detect the position of heartbeats in the ECG signal, an algorithm based on the
wavelet transform was used [9,10]. The algorithm corrected ectopic beats, missed beats,
and false detections. Next, the instantaneous heart rate (HR) signal was computed using
the integral pulse frequency modulation model at a sampling rate of 4 Hz [11]. In order
to obtain the HRV signal, low-frequency modulation of HR (i.e., mean heart rate (HRM))
was subtracted by low-pass filtering at 0.03 Hz. Then, the HRV signal was calculated as
the difference between the two terms: HRV = HR− HRM.

Out of all of the possible indices that could be used for the analysis of the ANS response,
eight ECG-derived indices were selected from both the delineated ECG and the HRV signal
to reflect the activity of the sympathetic and parasympathetic branches. Four indices were
selected from the time domain and another four from the frequency domain.

2.3. Time Indices

The four time-domain indices were computed from the R-wave interval series, and
their averaged values in the last four minutes of each immersion stage were obtained.
These indices were the following:

• The median of normal-to-normal intervals (NN(s)), which correspond to the RR series
(left panel in Figure 1) after removing ectopic beats:

NN(s) = MED(NN) = Q2(NN). (1)

• The interquartile range of NN intervals (IQRNN(s)) as a measure of statistical dispersion:

IQRNN(s) = IQR(NN) = Q3(NN)−Q1(NN). (2)

• The root mean square of the successive differences between adjacent NN intervals
(RMSSD(s)):

RMSSD(s) =
||NN||√

M
, (3)

where M represents the number of NN intervals.

www.naui.org/resources/
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• The number of pairs of successive NN intervals that differ by more than 50 ms divided
by the total number of NN intervals (pNN50(%)), expressed as a percentage:

pNN50(%) =
∑M−1

i=1 pi√
M− 1

∗ 100, (4)

where pi = 1 if |NNi+1 − NNi| > 50 ms, pi = 0 if |NNi+1 − NNi| ≤ 50 ms, and M is
the number of NN intervals.
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Figure 1. Example of an ECG signal with R peaks and the RR time series of two consecutive beats (left
panel). Time-frequency map of the HRV signal (warm colours related to high power; cool colours
related to low power) of a subject during the stage at 5 atm of the immersion with the HF and LF
bands delimited with horizontal solid and dotted lines, respectively (right panel).

2.4. Frequency Indices

One of the most common problems found in the analysis of ANS activity using classical
indices in the frequency domain is the fact that the respiration frequency may lie within
the low-frequency band of the HRV spectrum, which may mask the effects produced by
other factors and, therefore, would lead to misleading conclusions [12]. The method used
to avoid this issue in this study involves breaking down the HRV signal into two distinct
components. The first component is associated with respiration and includes all variations
that are linearly related to breathing. The second component, known as the residual
component, includes all of the dynamics that are modulated by mechanisms other than
respiration, including the sympathetic nervous system and other vagal modulators that
may not be linked to respiration. Essentially, the residual component provides insight into
the dynamics of the ANS that are not specifically related to respiration [13,14].

To apply this method, both respiratory and HRV signals are needed. Therefore,
an ECG-derived respiration method based on the slopes and angles of the ECG signal
was used to obtain the respiration signal [15,16]. In order to extract all of the dynamics
of HR that are linearly related to respiration, the HRV is projected onto a subspace V
defined by all variations in the respiratory signal. This subspace is constructed using the
respiratory signal and its delayed versions, as shown in the literature [17]. Then, the HRV
signal can be projected onto the respiratory subspace V obtaining a new signal denoted
as HRVR. The last step is to remove this projected signal from the original HRV to obtain
an orthogonal component of it (known as a residual component) containing all of the effects
unrelated to respiration as follows: HRV⊥ = HRV − HRVR.

The powers of both the respiratory component (PR(a.u.)) and the residual component
(P⊥(a.u.)), i.e., those corresponding to the HRV spectrum after removing respiration, were
computed in this study:

PR(a.u.) =
HRVR · HRVR
HRV · HRV

, (5)
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P⊥(a.u.) =
HRV⊥ · HRV⊥

HRV · HRV
. (6)

The other two analyzed frequency indices represented the power of the residual
component in the LF band (0.04–0.15 Hz) reflecting the activity of the sympathetic sys-
tem (PLF⊥(a.u.)) and the power of the residual component in the HF band (0.15–0.4 Hz)
reflecting the activity of the parasympathetic system (PHF⊥(a.u.)) (right panel in Figure 1):

PLF⊥(a.u.) =
∫ 0.15

0.04
HRV⊥( f ) d f , (7)

PHF⊥(a.u.) =
∫ 0.4

0.15
HRV⊥( f ) d f , (8)

where HRV⊥( f ) is the power spectrum of the residual component of the HRV signal.
Figure 2 shows the values of the time indices (left panels) and frequency indices (right

panels). Additionally, this figure includes the logarithm of PLF and PHF directly extracted
from the HRV spectrum without using the orthogonal subspace projection, for both datasets
(dry in red, humid in blue).

2.5. Statistical Analysis and Subject Classification

As observed in Figure 2, there are large variabilities between different subjects in the
values of the indices extracted. Therefore, in order to focus on relative changes during the
immersion, these indices were referenced to their values at the baseline stage “1D” using
the following expression:

R(YS) =
YS −Y1D

YS + Y1D
, (9)

where YS is the value of the index computed at stage “S”, and Y1D is the value of the index
computed at the baseline stage “1D”. Note that only one value per index representative of
the ANS response at each stage for each subject was computed. Since all of the computed
indices after referencing them to the baseline have positive values, the interpretation of the
indices using this equation is very intuitive: a value close to 1 means that the index value
at that stage is much larger than the index measured at “1D”, a value close to −1 means the
index value at that stage is much smaller than the index measured at “1D”, and a value
around 0 means the index value at that stage has not changed much with respect to the
index measured at “1D”.

In order to statistically compare the distribution of the indices in dry and humid
hyperbaric chambers for each stage of immersion, Wilcoxon signed-rank test analyses
were performed.

Due to the reduced number of subjects in the humid dataset, they were used as
a “test group” to be classified according to the values obtained with the “train group”
(i.e., the subjects of the dry dataset). To perform this classification, we first calculated
the interquartile (IQR) and 5–95 percentile (%) ranges for each stage in the dry dataset,
referred to as “safety-range models”. The classification of divers of the humid dataset was
then based on the number of indices over a total of 32 (8 indices per stage for 4 stages)
outside of these ranges, indicating abnormal responses during the immersion: more than
8 indices out of the 5–95 percentile ranges and/or more than 20 indices out of the IQR was
considered as “abnormal”. This also enabled us to identify the indices with the greatest
impact on the classification and the stages where more significant differences in the ANS
response occurred.
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Figure 2. Boxplots of the computed values of the time indices (left panels) and frequency indices
(right panels), including the logarithms of PLF and PHF directly extracted from the HRV spectrum,
in the five stages of the immersion for each dataset: red for the dry hyperbaric chamber; blue for
the humid hyperbaric chamber. The central line in each boxplot indicates the median value; the top
and bottom edges are the first and third quartiles, respectively; and the vertical lines represent the
minimum and maximum values not considered to be outliers (i.e., 1.5 IQR away from the bottom/top
of the box). Individual values are plotted with symbols on top of the boxplots. *: p-value < 0.05 with
Wilcoxon signed-rank test.

3. Results

Figure 3 illustrates that the computed indices showed similar trends in the referenced
indices between the two groups of subjects. To avoid unnecessary repetitions, the referenc-
ing symbolR is not used in the rest of the text of the manuscript when specific indices are
mentioned. The time indices in the dry dataset exhibited positive values in general for all
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stages, with slight increases over time, whereas the trend was also increasing for the indices
with the humid dataset, except for a strong decrease in the stage “1A” for NN, RMSSD,
and pNN50. Only the pNN50 exhibited significant differences between the two datasets in
three out of the four stages analyzed. Regarding the frequency indices, the general trends
over time were not so clear, with the four indices showing median values close to 0 in
the dry dataset, and similarly with P⊥ and PLF⊥ in the humid dataset. PHF⊥ displayed
the most significant differences, since, in the humid dataset, it took negative values and
showed a decreasing trend over time. It is worth mentioning that PR had a large variability
in both datasets, whereas that of P⊥ was very reduced, particularly in the humid dataset.

Figure 3. Boxplots of the normalized values of the time indices (left panels) and frequency indices
(right panels) in the four stages of the immersion for each dataset: red for the dry hyperbaric
chamber; blue for the humid hyperbaric chamber. The central line in each boxplot indicates the
median value; the top and bottom edges are the first and third quartiles, respectively; and the vertical
lines represent the minimum and maximum values not considered to be outliers (i.e., 1.5 IQR away
from the bottom/top of the box). Outliers are shown with circles. *: p-value < 0.05 with Wilcoxon
signed-rank test.
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Interestingly, the stages that showed significant differences in the highest number of
indices were the stage with the highest pressure, stage “5” (for pNN50, PR⊥, P⊥ and PHF⊥),
and the last stage of the immersion, stage “1A” (for NN, RMSSD pNN50, P⊥), which
suggests that the differences between datasets were more prominent at high pressure and
after spending a long time in hyperbaric conditions (see Figure 3).

3.1. Safety Ranges

Figure 4 shows the evolution of both the IQR and 5–95 percentile ranges in dry
hyperbaric conditions (in red) together with the individual values of the five subjects
of the humid dataset (symbols in blue) during the simulated immersions. It is worth
mentioning that the index variations between consecutive stages were considered linear
for the representation of the patches. As can be derived from the analysis of the statistical
ranges, NN and RMSSD showed, in general, less prominent variations than the rest of
the indices with respect to the baseline in all of the stages of immersion (i.e., the values
were closer to 0). Interestingly, the ranges tended to be enlarged in the last stage of the
immersion for all of the time indices, when the pressure was the same as in the baseline
conditions before the immersion started, probably indicating that ANS recovery may be
highly variable between subjects with different previous diving expertise and/or physical
condition, whereas the widths of the ranges of the frequency indices were more stable in
the four stages of immersion.

In the analysis of the humid indices with the dry chamber ranges, there was an overlap
between the two groups for all of the stages and indices, except for NN and RMSSD in
the “1A” stage. This was due to the narrow ranges of these two indices, indicating small
relative variations between the subjects in both datasets. The differences in the two other
time indices were subtle: the IQRNN trends were similar in both datasets, while pNN50
showed larger positive ranges in the dry chamber subjects than in the humid chamber
subjects in the early stages of immersion. This resulted in an increasing overlap between
the two groups as the immersion progressed.

Regarding the frequency indices, the large variability of the PR was reflected in both
the wide ranges observed in Figure 4 and the indices of the humid subjects. The ranges of
P⊥ overlapped; however, in this case, the overlap was due to the thin width of the ranges
computed with the humid dataset. Regarding the ranges of PLF⊥ and PHF⊥, the main
differences were observed in the second, with indices showing more negative values in the
humid dataset than the dry dataset ranges, suggesting a reduction in the index during the
immersion with respect to the baseline.

3.2. Subject Classification

As explained in the Methods section, the determination of whether a subject’s ANS
response was classified as “abnormal” relied on the identification of indices that fell outside
the previously calculated ranges. This classification process was conducted using all of the
indices of individual subjects in both datasets (28 dry + 5 humid) with the ranges derived
from the 28 subjects of the dry dataset. The results of the classification are shown in Table 1.

Table 1. Number and percentage of subjects classified as out of 5–95% range (more than 8 indices
out) and IQR (more than 20 indices out), without and with bagging, for dry and humid datasets.

DATASET

DRY
(28 Subjects)

HUMID
(5 Subjects)

DRY
RANGE

5–95% 0 (0%) 2 (40%) (>8 ind. out)

IQR 3 (11%) 3 (20%) (>20 ind. out)

As expected, since the ranges were based on the dry dataset values, out of the
28 subjects of the dry chamber, none of them exhibited significantly abnormal behav-
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ior (i.e., with more than 8 indices outside of the 5–95 percentile dry ranges), and only
3 subjects showed more than 20 indices outside of the IQR (one female and two males).
In the classification of the subjects in the humid chamber dataset, of the five subjects,
two showed more than 8 indices outside of the 5–95 percentile range, one of them with
more than 20 indices outside of the IQR.

Figure 4. IQR (dark red) and 5–95 percentile ranges (light red) of the baseline-referenced values of
the time indices (left panels) and frequency indices (right panels) in the four stages of the immersion
for dry dataset. The five subjects of the humid dataset are shown with different symbols in blue.

3.3. Stage and Index Classification

In order to identify the stages and indices in which differences in the ANS behavior
between both databases were more prominent, an additional classification of the humid sub-
jects with the dry ranges was performed. Figure 5 shows the indices of the humid subjects,
separated by stages, outside of the 5–95 percentile range of the dry database. On the one
hand, the stage with the largest number of indices classified as out of range was “1A” (over
50% of a total number of indices of 40 (8 indices × 1 stage × 5 subjects)). On the other hand,
the indices that led to classifying the largest number of stages as out of range were: NN
and RMSSD (over 50% of a total number of stages of 20 (1 index × 4 stages × 5 subjects)).
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Figure 5. Total number of subjects per stage and index (left panel), indices per stage (middle panel),
and stages per index (right panel) classified as out of range with the humid dataset and dry ranges.

4. Discussion

The present study aimed to investigate the ANS responses of healthy individuals
during simulated dives in hyperbaric chambers and to explore the effects of humidity and
the factors associated with the protocols in both chambers (temperature, body position. . . )
on these responses. Our analysis of HRV-derived indices and their statistical ranges
revealed important insights into the ANS responses of the subjects at stages at different
depths during the immersions.

The results showed that the PHF⊥ index was notably reduced in all stages of the humid
dataset compared to the dry dataset, indicating a reduction in parasympathetic activity not
associated with respiration in humid conditions. This finding is consistent with previous
studies [18] and suggests that the longer the time spent within the hyperbaric chamber,
the more prominent the sympathetic dominance becomes. Additionally, the pNN50 index
was found to be the most different between datasets, with a reduction in the humid dataset
compared to the dry dataset [4]. This points to activation of sympathetic activity triggered
by factors such as cold water temperature and psychological stress or anxiety associated
with diving. There are, however, studies pointing to an increase in parasympathetic ac-
tivity when the skin makes contact with water [19] or when subjects breathed through
a mouthpiece compared to spontaneous breathing [16]. This effect may also be present
in the baseline state, thereby negating its effect when referencing the rest of the measure-
ments to this state. In the case of hyperbaric conditions, there is an additional factor to
consider. As the pressure increases, more effort is required to extract air from the regulator,
and, over time, this respiratory effort can become tiring, triggering the dominance of the
parasympathetic response [16]. All of this may suggest that the impact of the pressure of
the environment dominates over other effects. Overall, the impact of the differentiating
factors between the dry and humid chambers is mitigated by referencing the indices’ values
to those obtained at the baseline stage. For instance, the changes associated with the diving
reflex, which typically lead to an increase in parasympathetic activity, as mentioned earlier,
already occur during the baseline stage (1D). Consequently, the ANS response stemming
from the diving reflex is present throughout all stages. Similarly, the increased vagal tone
resulting from breathing through a respiration mask persists throughout the entire immer-
sion period, and referencing the baseline values helps minimize this factor. Furthermore,
the decision to keep the divers in a horizontal position in the humid chamber was made
to ensure that the entire body experiences the same pressure when immersed in water.
If the divers were seated or in a vertical position, there would be variations in the pressure
sensed by the head and feet.

One of the key contributions of our study was the classification of subjects into “normal”
and “abnormal” categories based on the statistical range between the 5 and 95 percentiles
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and the IQR for each index and stage. These ranges could be used to generate warnings
when monitoring the activity of divers and serve as a reference for avoiding future immer-
sions if many indices are out of the normal ranges. Importantly, all subjects were apparently
healthy, and most had significant previous expertise in diving, indicating that these ranges
could be used as a baseline for any diver (professional or amateur). Among the few subjects
classified as “abnormal” in the dry dataset, the ratio between females and males was much
higher than that of the complete dataset (one out of three classified out of IQR). This could
indicate that it may be necessary to adapt the warning ranges based on gender differences.

Our analysis also revealed that the humidity of the surrounding environment, together
with its associated immersion protocol and body position, plays a crucial role in the ANS
response of the subjects and their classification as “abnormal”. The stage with the largest
number of indices out of range was “1A”, indicating that the recovery of ANS activity at
sea level notably diverges between subjects within the two datasets. The indices with the
highest number of stages classified as abnormal with the alternate dataset ranges were
different between datasets, with NN and RMSSD being the most affected in the humid
dataset, as well as P⊥ and, to a lesser extent, PLF⊥ and PHF⊥ in the dry dataset. These
results suggest that HR, reflected in these time indices, is a crucial factor in determining
whether a subject should be warned in a dry immersion, while P⊥ is key in the classification
of abnormality in humid conditions [18].

Finally, we checked whether using mathematical methods to overcome the limitations
of the relatively low number of subjects in both hyperbaric chambers by increasing the
variability presented by default datasets, such as the bootstrap aggregating method [20],
would affect the results of the classification and observed that it had a slight impact on the
number of subjects classified as abnormal.

As stated in the Introduction section, the ANS response in variable hyperbaric en-
vironments can be influenced by numerous factors, both directly and indirectly. These
factors contribute to the complex dynamics of the sympathovagal balance during diving,
and gaining a comprehensive understanding of their interplay is crucial. While this study
has shed light on some of these factors, there is still a need for further research to delve more
deeply into their specific contributions and implications for divers’ physiological responses.
One aspect requiring further investigation is the role of some environmental factors, such as
water temperature, which may also vary with pressure and humidity. These factors can
significantly impact the ANS response and have implications for divers’ cardiovascular
and respiratory systems. Examining how changes in these environmental conditions affect
the sympathovagal balance will provide valuable insights into the adaptive mechanisms of
the ANS during diving.

Additionally, individual factors, including divers’ physical fitness, previous diving
experience, and psychological state, can influence the ANS response. Investigating how
these individual characteristics interact with environmental factors will enhance our under-
standing of the personalized nature of the sympathovagal balance in divers. Furthermore,
the potential influence of different breathing patterns, respiratory control techniques,
and gas mixtures on the ANS response warrants further exploration.

By conducting comprehensive studies that incorporate these various factors, re-
searchers can unravel the intricate web of interactions shaping the sympathovagal balance
during diving. This knowledge will not only contribute to our fundamental understanding
of human physiology but also have practical implications for diving safety and performance.
Ultimately, continued research in this field will provide valuable insights for optimizing
dive protocols, training strategies, and medical guidelines tailored to individual divers,
enhancing their overall well-being and performance in hyperbaric environments. Overall,
our findings provide important insights into ANS responses during simulated dives in
hyperbaric chambers and could be used as a reference for divers in the future.
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Limitations

Obtaining an extensive database of signals recorded under realistic diving conditions
at such great depths is very challenging for several reasons: specific equipment that is not
accessible to the general population is needed (hyperbaric chambers), there are significant
health risks for subjects if descent and ascent protocols are not properly followed, and sub-
jects must have prior diving experience. Taking all this into consideration, the number of
subjects registered in this study was limited, especially in the dataset from the humid hy-
perbaric chamber, which could affect the statistical significance of the differences between
datasets. Nevertheless, the database was still large enough to derive qualitative conclusions
about the impact of humidity on the ANS response during dives.

On the other hand, our study only utilized data from stationary stages with stable
barometric pressure lasting several minutes within the immersion. Thus, extrapolating the
evolution of index values and their respective ranges during intervals of pressure change
should be approached with caution. To further analyze the raw signals and ensure accuracy,
non-stationary methods should be considered in future studies.

5. Conclusions

The present study explored the ANS responses of healthy subjects during simulated
dives in hyperbaric chambers, with a particular focus on the effects of humidity and
the associated immersion protocol on these responses. The results demonstrated that
subjects in the humid chamber had a significantly different ANS response to immersion,
with reduced parasympathetic activity and increased sympathetic dominance in humid
conditions. The study also identified several key indices, including the average high-
frequency power and the average pNN50 index, which were particularly sensitive to
changes in the humid protocol. These indices were used to classify subjects as “normal”
or “abnormal,” with the statistical ranges providing a useful reference for monitoring the
health of divers during high-pressure dives. The study also demonstrated the importance
of considering the variability in ANS responses among individuals, as well as the impact
of the surrounding environment, when assessing the health risks associated with deep
sea diving. Overall, the findings highlight the complex interplay between the ANS and
environmental factors and the importance of carefully monitoring and managing the health
risks associated with high-pressure diving.
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