
Citation: Zaman, W.; Ahmad, Z.;

Siddique, M.F.; Ullah, N.; Kim, J.-M.

Centrifugal Pump Fault Diagnosis

Based on a Novel SobelEdge

Scalogram and CNN. Sensors 2023, 23,

5255. https://doi.org/10.3390/

s23115255

Academic Editors: Songling Huang,

Lisha Peng and Kai Song

Received: 18 April 2023

Revised: 28 May 2023

Accepted: 30 May 2023

Published: 1 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Centrifugal Pump Fault Diagnosis Based on a Novel SobelEdge
Scalogram and CNN
Wasim Zaman 1 , Zahoor Ahmad 1 , Muhammad Farooq Siddique 1 , Niamat Ullah 1 and Jong-Myon Kim 1,2,*

1 Department of Electrical, Electronic and Computer Engineering, University of Ulsan,
Ulsan 44610, Republic of Korea; wasim94@mail.ulsan.ac.kr (W.Z.); zahooruou@mail.ulsan.ac.kr (Z.A.);
mfarooq229@mail.ulsan.ac.kr (M.F.S.); niamat016@mail.ulsan.ac.kr (N.U.)

2 PD Technology Cooperation, Ulsan 44610, Republic of Korea
* Correspondence: jmkim07@ulsan.ac.kr; Tel.: +82-52-259-2217

Abstract: This paper presents a novel framework for classifying ongoing conditions in centrifugal
pumps based on signal processing and deep learning techniques. First, vibration signals are acquired
from the centrifugal pump. The acquired vibration signals are heavily affected by macrostructural
vibration noise. To overcome the influence of noise, pre-processing techniques are employed on the
vibration signal, and a fault-specific frequency band is chosen. The Stockwell transform (S-transform)
is then applied to this band, yielding S-transform scalograms that depict energy fluctuations across
different frequencies and time scales, represented by color intensity variations. Nevertheless, the
accuracy of these scalograms can be compromised by the presence of interference noise. To address
this concern, an additional step involving the Sobel filter is applied to the S-transform scalograms,
resulting in the generation of novel SobelEdge scalograms. These SobelEdge scalograms aim to
enhance the clarity and discriminative features of fault-related information while minimizing the
impact of interference noise. The novel scalograms heighten energy variation in the S-transform
scalograms by detecting the edges where color intensities change. These new scalograms are then
provided to a convolutional neural network (CNN) for the fault classification of centrifugal pumps.
The centrifugal pump fault classification capability of the proposed method outperformed state-of-
the-art reference methods.

Keywords: centrifugal pump; stockwell transform; fault diagnosis; rotating machinery; convolutional
neural network; vibrational signals

1. Introduction

Centrifugal pumps (CPs) are gaining popularity in numerous technological applica-
tions, including engine manufacturing, air conditioning, chemical processing, and elec-
tricity generation [1]. Around 20% of the total energy produced worldwide is consumed
by motors driving CPs [2,3]. Despite the long lifespan of CPs, their abrupt failure can
cause unwanted interruptions or even catastrophic failures. These failures lead to economic
losses, long downtime, and costly repairs. To avoid these failures, continuous monitoring
of CPs is required. Monitoring can be provided either by several staff members or by signal
processing and artificial intelligence (AI) techniques that are relatively low-cost and more
reliable [3]. Intelligent Fault Diagnosis must be used to quickly detect soft faults. 34% of
the CP soft faults are caused by faults with the mechanical seal (MS). Soft CP faults, such as
fluid flushing, shaft wear, fretting, etc., are caused by defective MS. Additionally, a flawed
impeller might result in both mechanical and hydraulic soft faults [4]. For this reason, in
recent years AI-based condition monitoring is receiving increasing attention. Mechanical
faults such as mechanical seal-related defects and impeller defects can cause catastrophic
failures in the CP. To avoid catastrophic failure, minimize downtime, and ensure the safety
and efficiency of the production system, it is essential to immediately identify and diagnose
these defects in the CPs.
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In the past decade, condition-based monitoring (CBM) gained popularity for the
health monitoring of CPs. CBM is based on data gathered from the machine under various
situations, making it an economical means of increasing a machine’s runtime [5].

Different types of faults are possible in CPs, namely hydraulic and mechanical faults.
Although these faults are interdependent mechanical failures happen more often [6]. Thus,
mechanical faults such as impeller faults, mechanical seal holes, and scratches must be
detected early to maintain a CP’s health. The vibration signals received from a CP are
significantly impacted by mechanical faults; these faults cause the vibration signals to
be impulsive and non-stationary, which demands attention to analyze these vibration
signals for fault diagnosis [7]. Vibration signals must be pre-processed to extract relevant
fault-related features since fault-related features are frequently obscure and disguised by
the signals’ considerable amounts of noise and fading fault impulses. Time, frequency, and
time-frequency-domain (TFD) analyses are the three basic methods for signal processing.

The Fourier transform (FT), one of several signal processing techniques, is the most
widely used in the applications of stationary signals. However, because of the loss
of temporal data, both discrete and continuous FTs yield inaccurate information for
non-stationary signals even though they still retain spectral component information [8].
To successfully analyze non-stationary data, new signal processing techniques such as
the short-term Fourier transform (STFT), wavelet transform (WT), and Stockwell trans-
form (S-transform) have been introduced [9]. The STFT utilizes fixed sample windows,
which are often used for time-frequency analysis; however, higher time resolution might
result in lower frequency resolution and vice versa [10]. In contrast, to address the
STFT’s resolution issues, the WT employs larger windows at lower frequencies and
smaller windows at higher frequencies and is highly successful at collecting informa-
tion in the time and frequency domains [11]. However, the WT is noise-sensitive and
lacks phase information for the analyzed signals [12]. The WT has gained increasing at-
tention in recent years for its efficacy in processing nonstationary signals, as evidenced
by several studies [13]. Extensive research over the past couple of decades has been de-
voted to exploring its utility in machine condition monitoring and health diagnostics [14].
WTs have been employed successfully in diverse applications, such as bearing condition
monitoring [15–17], detection of machine tool failure [18], detection of knock and misfire in
spark ignition engines [19], fault detection in washing machines [20], and monitoring of
alternating-current drives [21]. An energy-based approach for selecting the optimal base
wavelet and ideal decomposition scale using the energy content of the signal’s wavelet
coefficients as a criterion was proposed by Ruqiang et al. [22], whereby the envelopes
of the extracted features were subsequently subjected to Fourier transform to identify
the presence and location of defects in rotating machinery. The methodology proposed
by Delgado et al. [23] for bearing fault diagnosis involved analyzing significant charac-
teristics from a feature set obtained by statistical-time features computed from vibration
signals, applying a nonlinear manifold learning technique for dimensionality reduction,
and performing classification using a hierarchical neural network. In 2017, Xia et al. used a
convolutional neural network (CNN)-based approach for the diagnosis of rotating machin-
ery, which involved collecting vibration data from multiple sensors, combining the data
using a data fusion process into one 2D matrix, and training a CNN model on the extracted
features for automatic feature representation [24]. A three-phase technique proposed by
Ahmad et al. [25] in 2021 involved the transformation of CP vibration signature using the
Walsh Transform in the first phase, extraction of raw statistical features in the time and
Walsh Spectrum domain in the second phase, and the use of cosine linear discriminant
analysis (CLDA) in the final step to choose comparable interclass properties and incorporate
them into the final feature pool, which was then fed into the KNN algorithm for fault classi-
fication. A fault diagnosis technique for multistage centrifugal pumps (MCP) was proposed
by Ahmad et al. [4], where informative ratio principal component analysis (Ir-PCA) was
utilized for dimension reduction in the features extracted from the fault-specific frequency
band of the vibration signal from the CP, which included statistical features in the time
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and frequency domains as well as features extracted from the wavelet domain and fed into
a multi-domain feature pool (MDFP) for classification using the KNN algorithm. Sajjad
et al. [26], proposed a fault classification technique for the CP that involves visualizing
fault-related impulses through kurtogram spectra computation and training a convolution
encoder with a supervised contrastive loss followed by training a linear classifier over the
frozen encoder for fault classification.

The abovementioned work shows better performance for CP fault diagnosis; however,
several shortcomings exist. First, extracting handcrafted features from the vibration signals
requires domain expertise. Second, mother wavelet selection for WT entails experimen-
tation and domain knowledge. To overcome these shortcomings, this paper proposes
a new framework for CP fault diagnosis. The framework employs the S-transform for
preprocessing the CP vibrational signals, which overcomes the limitations of both STFT and
WT by preserving a close connection to the Fourier spectrum, giving frequency-dependent
resolution. After the transformation, a Sobel filter is applied to the traditional scalograms,
and novel SobelEdge scalograms are obtained. The novel scalograms enhance the energy
variations in the S-transform scalograms by detecting the edges where color intensities
change. These new scalograms are then provided to CNN for the classification of centrifugal
pump health conditions.

The overall contribution of the proposed work can be summarized as follows:

1. A low-pass filter is applied to vibrational signals to extract fault-specific frequencies
to improve signal quality and eliminate high-frequency noise.

2. The S-transform is employed to increase time-frequency resolution, enabling a more
precise study of the frequency content of a signal across time. This transformation
is favored over alternative time-frequency representations, such as the short-time
Fourier transform or wavelet transform, due to its superior resolution and capacity to
handle non-stationary signals.

3. The Sobel filter is used to preprocess the Stockwell scalograms; as a result, novel
SobelEdge scalograms are obtained. The novel scalograms enhance the energy vari-
ations in the S-transform scalograms by detecting the edges where color intensities
change that may be indicative of significant signal occurrences such as transients and
abnormalities. To the best of the author’s knowledge, the SobelEdge Scalograms have
not been reported in the literature previously.

4. CNN is used to extract features with substantially more pronounced classification,
which may be used for fault classification. CNNs are trained on SobelEdge Scalograms
to acquire features that are discriminative and invariant to signal fluctuations. By
merging diverse signal processing and deep learning approaches to enhance the
accuracy and dependability of the analysis, the proposed method provides a complete
solution for defect detection and condition monitoring.

This paper is structured as follows: the proposed method is discussed in Section 2, the
experimental setup and test rig setup for the centrifugal pump are described in Section 3,
the technical background of the proposed method is discussed in Section 4, Section 5
comprises results and discussion, and Section 6 concludes with a summary and suggestions
for future research.

2. Proposed Approach

In the area of vibration analysis, the S-transform is a potent tool for studying non-
stationary signals. By offering a localized spectral estimate of the signal, it is a time-
frequency analysis technique that enables a more precise representation of the frequency
content of a signal across time.

The S-transform can be very helpful in the context of centrifugal pump vibration
analysis for identifying and diagnosing faults with the pump’s rotating parts, such as the
impeller and mechanical seal. S-transform works well in identifying fault types such as
impeller faults, mechanical seal holes, and mechanical seal scratches as well as differen-
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tiating between healthy and unhealthy circumstances. However, these scalograms still
contain noise.

The Sobel filter is used on the Stockwell scalograms in order to enhance the details of
the scalograms’ edges. The Sobel filter is often used in image processing for the purpose of
edge detection. When the Sobel filter was applied to Stockwell scalograms, the outcome
was the development of Sobel-filtered Stockwell scalograms. These scalograms allowed for
improved visibility of the edges that were present in the original scalograms.

The proposed method for a CP fault classification is a combination of signal processing
and deep learning techniques. First, the vibration signal is taken from the sensor attached
to the CP, and the signal is preprocessed by applying a low-pass filter with a 4.6 kHz
cutoff frequency to obtain fault-specific frequencies [4]. After the preprocessing, we apply
the S-transform, which generates a time-frequency scalogram for the time series signal.
Afterward, a Sobel filter is applied to create new SobelEdge scalograms. We fed these new
images (scalograms) into a CNN model that extracts latent features from the images and
finally classifies these images into four classes (i.e., normal, impeller fault, mechanical seal
hole, and mechanical seal scratch) using several densely connected layers. An abstract
diagram of the proposed approach is depicted in Figure 1.
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The proposed approach comprises the following six steps:

(1) Acquire vibration signals under different CP conditions using a data acquisition system.
(2) Extract fault-specific frequencies using a low-pass filter with a 4.6 kHz cutoff fre-

quency [4].
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(3) Generate traditional scalograms using the S-transform.
(4) Use the Sobel filter for edge extraction to generate SobelEdge Scalograms.
(5) Train a CNN classifier with SobelEdge Scalograms for the classifications Impeller

Defect, Mechanical Seal Hole, Mechanical Seal Scratch, and Normal.
(6) Classify the CP vibration signal using a trained CNN classifier according to the

aforementioned four classifications.

3. Experimental Setup and Test Rig Setup

The experiment used a CP (PMT-4008, a commonly used pump in the industry)
powered by a 5.5 kW motor, as well as a control panel with an ON/OFF switch, speed
controller, flow rate controller, temperature controller, water supply controller, display
screens, pressure gauges, clear steel pipes, and two tanks (main tank and buffer tank). The
water tank was positioned at a suitable height to maintain the net positive suction head
(NPSH) at the pump inlet for the regular functioning of the CP. Figures 2 and 3 illustrate the
test rig configuration as well as a schematic of the system. The test rig was run to circulate
water in a closed loop once the primary setup was made. Four accelerometers were used to
record the CP vibration data, two of which were adhered to the pump casing, and the other
two of which were installed adjacent to the mechanical seal and the impeller. Each sensor
uses a separate channel to record the pump’s vibration.
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The signal was then sent to a signal monitoring unit, where it was digitized by a Na-
tional Instruments 9234 device. Table 1 lists the specifications of the data collection devices.
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Table 1. Specifications of data acquisition devices.

Device Name Specification

Accelerometer (622b01) Range of frequency: 0.4→ 10 kHz
Sensitivity: 100 mV/g (10.2 mV/g (ms−2)) ± 5%

DAQ System (NI9234) Range of frequency: 0→ 13.1 MHz
Generator: Four analog input channels 24-bit ADC resolution

Data is collected for Impeller, MSH, MSS, and Normal for 304, 311, 315, and 317 s,
respectively, with a sampling rate of 25.6 kHz. The high sample rate was maintained due
to the mechanical seal excitation frequencies, which occur between the second and third
modes of vibration. A total of 1247 samples, each having a length of 25,600, were obtained
from the CP under various operational situations. In the current study, the pump was
operated under both normal and simulated fault situations. The simulated faults include:

I. Mechanical seal faults

a. Mechanical seal hole
b. Mechanical seal scratch

II. Impeller faults.

The signals were acquired by simulating these faults, one by one. The measurement
noises for the collected signals under each circumstance were estimated relative to a
healthy baseline vibration signal. The mechanical seal hole, mechanical seal scratch, and
impeller fault vibration signal measuring noises were determined to be −69.10, −62.07,
and −63.78 dB, respectively.

3.1. Mechanical Seal Faults

Excessive pressure is the main cause of seal failure. The rotating portion of the
mechanical seal is kept in contact with the stationary portion using a spring or combination
of springs to prevent leaking from the pump during installation. These springs require a
specific amount of compression pressure. When this pressure is exceeded, the mechanical
seal faces are subjected to excessive pressure. This may cause overheating, and, in turn, the
thin lubricating coating of liquid between the sealing faces may be converted into vapor.
One of the greatest hazards to the mechanical seal is dirt. Due to the increased pressure of
the springs in the absence of a lubricating coating, any dirt particles that become wedged
between the sealing faces during operation can cause holes, scratches, and even harden
and brittle the seal faces. These kinds of early seal failures are extremely harmful and cause
the pump to fail catastrophically. In this work, hole and scratch faults were seeded in the
mechanical seal and vibration signals were recorded to prevent ailments caused by these
types of premature seal failures.

3.1.1. Mechanical Seal Hole

A mechanical seal is composed of a rotating part and a stationary part. Two seals, each
with a diameter of 38 mm, were employed in this study. As seen in Figure 4, a hole was
made in the rotating part of the seal, whereas the stationary part had no defects. The hole
had a 2.8 mm diameter and a 2.8 mm depth. This was utilized as a faulty seal to analyze
the weak fundamental fault associated with a mechanical seal hole defect.

3.1.2. Mechanical Seal Scratch

A scratch was generated in the rotating part of the mechanical seal, whereas the
stationary part remained fault-free. The mechanical seal in Figure 5 has a severe fault
caused by a scratch that measures 2.5 mm in diameter, 10 mm in length, and 2.8 mm
in depth.
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3.2. Impeller Fault

One common cause of an impeller malfunction is crevice corrosion. Crevice corrosion
causes an uneven surface with numerous overlapping holes of various sizes that give the
impression that an insect has eaten away at the impeller’s surface. Due to shear on the
material, these holes may turn into significant cracks, which can cause fatigue and lead to
catastrophic collapse. In this study, an impeller with a comparable issue was seeded, and
vibration signals from the flawed impeller were collected.

Three cast iron impellers 161 mm in diameter were employed in this study. The
two impellers were brand new and in perfect condition. As seen in Figure 6, a defect
was made in the third impeller by removing some of the metal. The defect measured
2.5 mm in diameter, 18 mm in length, and 2.8 mm in depth. Figure 7 depicts the vibration
signal acquired from the damaged impeller while maintaining the functionality of all
other components.
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4. Technical Background
4.1. Stockwell Transform

STFT and wavelet transform components are uniquely combined in the S-transform,
an encoding time-frequency spectral localization method.

The S-transform is derived as the “phase correction” of the continuous wavelet trans-
form (CWT). CWT W(τ, d) is a function of h(t), which is defined by,

W(τ, d) =
∫ ∞

−∞
h(t)ω(t− τ, d)dt (1)

where ω(t, d) represents a scaled version of the basic mother wavelet. The resolution is
governed by the dilation d, which defines the “width” of the wavelet ω(t, d). In addition to
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Equation (1), the mother wavelet ω(t, d) also has an admissibility requirement that it has a
zero mean [13].

According to the definition, the S-transform of a function h(t) is a CWT with a particu-
lar mother wavelet multiplied by the phase factor.

S(τ, f ) = ei2π f τW(τ, d) (2)

The mother wavelet is described as

ω(τ, f ) =
| f |√
2π

e−
t2 f 2

2 e−i2π f τ (3)

Note that the frequency f and the dilation factor d are inverses of each other.
Because the wavelet in (3) does not adhere to the strict definition of a CWT (zero mean),

(2) is not a valid CWT. The explicit formula for the S-transform is,

S(τ, f ) =
∫ ∞

−∞
h(t)

| f |√
2π

e−
(τ−t)2 f 2

2 e−i2π f τdt (4)

If the local spectrum is represented by the S-transform, the Fourier spectrum should
be produced by a straightforward process of averaging the local spectra across time [12].

A signal is divided into a sequence of time-frequency slices using the S-transform,
where each slice reflects the energy content of the signal at a certain frequency during
a brief time period. More energy content in the signal at a specific frequency and time
interval is indicated by brighter zones in a vibration signal’s S-transform.

Brighter regions in the S-transform can be used to identify parts of a vibration signal
that have larger amplitudes or more intense vibrations. The behavior of the system that
is causing the vibration signal may be examined and understood using this information.
When the CP operating conditions were changed, the scalograms computed from the CP
vibrational signals with the S-transform clearly displayed various brighter areas. The
S-transform scalograms of the vibration signals for each CP operating state are shown in
Figure 8.

4.2. SobelEdge Scalograms

The vibration signal is collected from a centrifugal pump by means of sensors, and
after pre-processing, the s-transform is applied. This transformation provides s-transform
scalograms that contain noise, and the CNN model could not classify them accurately. To
remove the noise, the Sobel filter was applied to these noisy scalograms, converting them
to grayscale, making the edges clear, and reducing the amount of noise. The modified
scalograms are special in that they emphasize both the time and frequency domains of
the signal. Moreover, it is much simpler to discover and investigate localized phenomena
such as oscillations, transient events, and frequency modulations with these scalograms.
These modified scalograms are called SobelEdge scalograms. As a result, the SobelEdge
scalograms are less noisy, enabling a CNN to accurately classify them. Figure 9 shows the
SobelEdge scalograms that correspond to the classical scalograms seen in Figure 8.

4.3. Materials and Methods

After the vibration sensors are installed in the CP, we take the vibration signal
from the sensor. Our model classifies the vibrational signal into four main fault states
(i.e., impeller fault, MSH, MSS, and normal) to show if there is any problem in the CP. From
the experiment, we noticed that this problem can be encountered by the phase difference
of the vibrational signal. By applying the S-transform, phase information is added to the
wavelet transform [27], providing better time-frequency resolution than STFT [28] and
preserving phase information where other transformations do not [29], as well as handling
non-stationary signals more effectively and exhibiting greater robustness to noise [30],
making it a useful tool for signal processing applications in noisy environments.
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4.4. Convolutional Neural Network

A deep feed-forward neural network model called CNN is used to handle data having
mesh-like structures [31]. CNNs are mostly used for handwritten figure identification and
were initially described by Yann LeCun in 1989 [32]. Through the construction of several fil-
ters, a CNN can extract complex feature representations from input data layer by layer [33].
It integrates the sparse connections with the parameter weight-sharing technique, down-
samples the data dimensions in time and space, and significantly decreases the number of
training parameters to prevent the algorithm from overfitting [34]. The backpropagation
(BP) technique is utilized in the CNN model to update the model’s parameters [34,35]. It
is commonly used in image recognition and other comparable issues because of its high
flexibility in the scaling, rotating, and translating of pictures [36,37]. Figure 10 depicts the
fundamental organizational structure of a CNN [38].
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CNN is a multilayer neural network [24]. One trainable feature extraction step and
one classification stage make up the simplest CNN model [33]. Each stage has a particular
purpose and uses both linear and nonlinear procedures. The convolutional layer, the acti-
vation layer, and the pooling layer are the three layers that make up the feature extraction
step [33]. Multiple feature extraction levels can be alternately stacked to create a deep
CNN network. Layer by layer, representative features are extracted from the input data
using the feature extraction steps. Several densely connected layers make up the multilayer
perceptron’s classification step [36]. Feature maps are sets of matrices that are used as
the input and output of each layer [39]. The mathematical formula for the feedforward
calculating procedure is:

f (X) = fL

(
. . . f2

(
f1

(
X, w1

)
, w2

)
, . . .

)
, wL (5)

Here, X is the input feature, e.g., a text, image, or vibrational signal from the sensor;
w1, w2, . . . wL are the trainable parameters, i.e., weights and biases; f1 , f2, . . . fL are
linear or nonlinear activation functions that apply to associated layers; and f (X) is the
model that applies multiple activations, convolution, and pooling operations to a set of
input features X, and gets the predicted label.

The CNN model consists of several layers, each serving a specific purpose in process-
ing the input data. The initial “rescaling” layer standardizes the input images. Subsequently,
three convolutional layers, “conv2d”, “conv2d_1”, and “conv2d_2”, apply convolution
operations to extract relevant features, utilizing the ReLU activation function. Max pooling
layers, “max_pooling2d” and “max_pooling2d_1”, reduce spatial dimensions through
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down sampling. The final “max_pooling2d_2” layer produces a feature map of dimensions
(32, 32, 64). The “flatten” layer reshapes the feature map into a 1D vector. Two dense layers,
“dense” and “dense_1”, with ReLU and Softmax activations, respectively, are responsible
for classification. The model contains a total of 8,413,064 trainable parameters. The ReLU
activation introduces non-linearity, while Softmax produces probability distributions for
accurate classification. Through its architecture and learned parameters, the CNN model
effectively processes input data and makes predictions with high accuracy. The whole work
is summarized in the following Table 2.

Table 2. The CNN architecture.

Layer (Type) Output Shape Param No. Activation Function

rescaling (Rescaling) (None, 256, 256, 1) 0 -

conv2d (Conv2D) (None, 256, 256, 16) 160 ReLU/-

max_pooling2d (Maxpooling2D) (None, 128, 128, 16) 0 -

conv2d_1 (Conv2D) (None, 128, 128, 32) 4640 ReLU/-

max_pooling2d_1 (Maxpooling2D) (None, 64, 64, 32) 0 -

conv2d_2 (Conv2D) (None, 64, 64, 64) 18496 ReLU/-

max_pooling2d_2 (Maxpooling2D) (None, 32, 32, 64) 0 -

flatten (Flatten) (None, 65536) 0 -

dense (Dense) (None, 128) 8388736 ReLU/-

dense (Dense) (None, 4) 516 Softmax

4.5. Sobel Filter

The Sobel filter is a filter used in image processing to find edges. It works by combining
an image with a tiny matrix called the Sobel operator. This operator calculates the gradient
at each pixel to enhance the edges in the image. A Sobel filter for Stockwell scalograms is
a digital filter applied to the time-frequency representation of a two-dimensional signal
known as a Stockwell scalogram. By applying a complicated Fourier transform to a sliding
window of the signal and then computing the magnitude of the resultant spectrum, the
S-transform is used to generate the scalogram. By comparing neighboring frequency
components in the scalogram, the Sobel filter is used to identify abrupt changes in the
signal’s frequency content. These variations may be suggestive of significant events in the
signal, such as transients or anomalies, and may be of importance for many applications,
such as leak detection and condition monitoring [40].

Depending on the application and the intended output, the precise implementation of
a Sobel filter for a Stockwell scalogram might vary. By comparing neighboring frequency
components in the scalogram, the filter is generally intended to identify rapid changes in
the signal’s frequency content. The filtered scalogram that is produced may then be further
studied to find particular areas or characteristics of interest, which may be symptomatic of
leaks or other problems in a fluid-carrying system [41]. The efficiency of the Sobel filter
relies on the quality of the S-transform, the design of the filter, and the user’s skill in reading
the resultant scalogram after filtering. Overall, Sobel filters for Stockwell scalograms are
a valuable tool for detecting and evaluating changes in the frequency content of signals,
and they may be used in a wide array of signal processing and condition monitoring
applications [42].

5. Results and Discussions

It is important to build up appropriate training and testing subsets of the data in order
to assess the effectiveness of our approach to fault identification. A total of 1247 Stockwell
images were used in this study: 304 impeller fault images, 311 mechanical seal hole images,
315 mechanical seal scratch images, and 317 normal images. The Stockwell images were
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split into training and testing sets where the test size was 0.2. The testing set had 250 data
samples, whereas the training set included 997 Stockwell images.

Performance and Comparison

In this study, Stockwell images of vibration signals were calculated, and after receiving
Stockwell images, a Sobel filter was applied in order to detect edges. Those grayscale
images were fed into a CNN classifier. The CP’s health status was then determined by
the classifier. The findings from the suggested model were more accurate and robust
than those of existing state-of-the-art models. We employed several measures, such as
accuracy, precision, recall, and F1 score to compare the performance of our technique with
the performance of the reference methods. The following list includes the formulae used to
calculate these measures.

Accuracy
(TN + TP)

(TN + TP + FN + FP)
× 100% (6)

Precision =
TP

(TP + FP)
× 100% (7)

Recall =
TP

(TP + FN)
× 100% (8)

F1 − Score =
2TP

2TP + FP + FN
= 2× Precision× Recall

Precission + Recall
(9)

where TP is true positives (positive samples correctly retrieved by the classifier), TN is
true negatives (negative samples correctly retrieved by the classifier), FP is false positives
(positive samples incorrectly retrieved by the classifier) and FN is false negatives (negative
samples incorrectly retrieved by the classifier).

In the research conducted, K-fold cross-validation was the preferred technique for
training and validating deep learning models. It also helps to reduce bias in deep learning
models by providing a more accurate estimate of a model’s performance on unseen data.
In the proposed study, 80% of the data were used for training while the remaining 20% of
the data were used for testing the model performance. This division theory is explained
by Géron A [43] for the similar size of the dataset. Utilizing five-fold validation with a
confusion matrix enabled a comprehensive analysis of each model’s performance and the
identification of areas for improvement. A comparison of performance metrics across dif-
ferent models demonstrated the superiority of this approach and validated its effectiveness
in addressing the research problem.

After applying the proposed method to real-world industrial vibrational data, the
suggested technique resulted in accuracy, precision, recall, and F1 scores of 99.68%, 99.65%,
99.68%, and 99.66%, respectively. Table 3 presents the results obtained from the proposed
method and the reference methods. It can be seen from Table 4 that the proposed method
outperformed the reference methods in terms of classification accuracy. The overperfor-
mance of the proposed method can be explained as follows. The proposed method outper-
forms reference models across all performance parameters because of its core idea of using
SobelEdge scalograms for vibrational signals, which is useful in improved time-frequency
resolution, ability to capture transients, reduced interference, and ease of interpretation.

To evaluate the effectiveness of the proposed model, the proposed model was com-
pared with two other relevant models used for similar purposes. The first model is a fault
diagnosis method by Weifang Sun et al. [43] that uses converted 2D vibrational signal matri-
ces, a mean curvature algorithm to eliminate interference, a histogram of oriented gradients
(HOG) features for fault feature extraction and a support vector machine for automatic
fault classification. After applying the steps presented by Weifang Sun et al. [44] to our
dataset, the method resulted in accuracy, precision, recall, and F1 scores of 91.60%, 91.56%,
91.60%, and 91.43%, respectively. Underperformance was expected because the vibrational
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signals are heavily affected by noise. Furthermore, these scalograms do not carry energy
distribution as well because they lack phase information in the vibrational signals.

Table 3. Comparison of results of the proposed model with those of Weifang Sun et al. [44] and
Gabor et al. [45].

Accuracy Precision F1 Score Recall

Model IF MSH MSS Nomal IF MSH MSS Nomal IF MSH MSS Nomal IF MSH MSS Nomal

Proposed 99.62 100 99.10 100 98.93 100 99.69 100 99.27 100 99.39 100 99.62 100 99.10 100
Weifang

Sun 85.58 87.02 93.79 100 86.84 83.59 96.60 100 85.58 87.02 93.79 100 85.60 84.95 95.15 100

Gabor 83.01 89.58 85.84 100 90.54 76.53 97.98 100 83.02 89.58 85.84 100 83.10 81.47 91.32 100

Table 4. Comparison of average results of the proposed model with those of Weifang Sun et al. [44]
and Gabor et al. [45].

Model Accuracy Precision Recall F1 Score

Proposed 99.68 98.93 100 99.69

Weifang Sun 91.60 91.57 91.60 91.43

Gabor 89.61 91.26 89.61 88.96

The method proposed by Gabor et al. [45] uses an improved STFT algorithm and im-
age processing techniques, including differential and moving average predictive tracking
algorithms, with the potential for real-time condition monitoring based on a basic vibration
measurement. The method was tested and validated with simulated signals and transient
measurements on rotating machines, demonstrating efficient and accurate analysis. Af-
ter applying the steps proposed in [45] to our dataset, the method resulted in accuracy,
precision, recall, and F1 scores of 89.61%, 91.26%, 89.61%, and 88.96%, respectively. The
underperformance outcomes were due to the use of STFT scalograms for vibrational sig-
nals, which carry certain limitations including poor resolution, interference, computational
complexity, sensitivity to window selection, and inability to catch transients.

Table 3 compares the proposed method with the Weifang et al., and Gabor et al.,
models in terms of all performance parameters for each fault class. Additionally, Table 4
compares the average performance parameters of the three models. Moreover, the compari-
son of confusion matrices in Figure 11, provides valuable insights into the classification
performance of each model. The observed results indicate that among all the models
considered, only the proposed model achieved precise classification for the normal class. In
contrast, the remaining three classes were accurately classified only by the proposed model.
This discrepancy can be attributed to the fact that the vibrational signals used in the refer-
enced models are susceptible to significant noise interference, thereby compromising their
classification accuracy. Additionally, the reference scalograms employed in these models
exhibit limitations in terms of capturing the energy distribution due to the absence of phase
information in the underlying vibrational signals. To further illustrate the discriminative
capabilities of the proposed study, t-SNE plots presented in Figure 12 are analyzed. The
t-SNE plots demonstrate that, similar to the reference models (Weifang et al., and Gabor
et al., models), the proposed study effectively discriminates the faulty signals. However,
the proposed model outperforms the referenced models by significantly enhancing the
discrimination of each distinct type of fault. This remarkable improvement is a noteworthy
contribution of the proposed model, enabling more precise and accurate fault classification.



Sensors 2023, 23, 5255 15 of 18

Sensors 2023, 23, x FOR PEER REVIEW 15 of 18 
 

 

computational complexity, sensitivity to window selection, and inability to catch transi-
ents. 

Table 3 compares the proposed method with the Weifang et al., and Gabor et al., 
models in terms of all performance parameters for each fault class. Additionally, Table 4 
compares the average performance parameters of the three models. Moreover, the com-
parison of confusion matrices in Figure 11, provides valuable insights into the classifica-
tion performance of each model. The observed results indicate that among all the models 
considered, only the proposed model achieved precise classification for the normal class. 
In contrast, the remaining three classes were accurately classified only by the proposed 
model. This discrepancy can be attributed to the fact that the vibrational signals used in 
the referenced models are susceptible to significant noise interference, thereby compro-
mising their classification accuracy. Additionally, the reference scalograms employed in 
these models exhibit limitations in terms of capturing the energy distribution due to the 
absence of phase information in the underlying vibrational signals. To further illustrate 
the discriminative capabilities of the proposed study, t-SNE plots presented in Figure 12 
are analyzed. The t-SNE plots demonstrate that, similar to the reference models (Weifang 
et al., and Gabor et al., models), the proposed study effectively discriminates the faulty 
signals. However, the proposed model outperforms the referenced models by signifi-
cantly enhancing the discrimination of each distinct type of fault. This remarkable im-
provement is a noteworthy contribution of the proposed model, enabling more precise 
and accurate fault classification. 

Table 3. Comparison of results of the proposed model with those of Weifang Sun et al. [44] and 
Gabor et al. [45]. 

 Accuracy Precision F1 Score Recall 
Model IF MSH MSS Nomal IF MSH MSS Nomal IF MSH MSS Nomal IF MSH MSS Nomal 

Proposed 99.62 100 99.10 100 98.93 100 99.69 100 99.27 100 99.39 100 99.62 100 99.10 100 
Weifang 

Sun 
85.58 87.02 93.79 100 86.84 83.59 96.60 100 85.58 87.02 93.79 100 85.60 84.95 95.15 100 

Gabor 83.01 89.58 85.84 100 90.54 76.53 97.98 100 83.02 89.58 85.84 100 83.10 81.47 91.32 100 

Table 4. Comparison of average results of the proposed model with those of Weifang Sun et al. [44] 
and Gabor et al. [45]. 

Model Accuracy Precision Recall F1 Score 
Proposed 99.68 98.93 100 99.69 

Weifang Sun 91.60 91.57 91.60 91.43 
Gabor 89.61 91.26 89.61 88.96 

 

   

(a) (b) (c) 

Figure 11. Confusion matrices of (a) proposed model, (b) Weifang Sun et al. [44] (c) Gabor et al. [45].

Sensors 2023, 23, x FOR PEER REVIEW 16 of 18 
 

 

Figure 11. Confusion matrices of (a) proposed model, (b) Weifang Sun et al. [44] (c) Gabor et al. [45] 

   

(a) (b) (c) 

Figure 12. t-SNE of (a) proposed model, (b) Weifang Sun et al. [44], and (c) Gabor et al. [45]. 

6. Conclusions 
This research presented a novel approach for fault classification in centrifugal pumps 

using signal processing and deep learning techniques. The proposed approach employed 
a vibration sensor that recorded raw frequencies, which were passed from a low-pass filter 
to attain fault-specific frequencies and are further processed using the Stockwell Trans-
form and Sobel filtering to generate new scalograms called “SobelEdge scalograms” for 
classification using a CNN model. The proposed approach has the potential to provide an 
accurate and efficient solution for fault diagnosis, which could help to prevent pump fail-
ures and reduce maintenance costs in industrial applications. The findings of this study 
could be useful for researchers and practitioners working in the field of fault diagnosis 
and classification in centrifugal pumps. The overall accuracy of the proposed model is 
99.68%. Furthermore, the proposed method was able to classify all four operation states, 
unlike state-of-the-art methods that have failed to classify the IF, MSH, and MSS precisely. 
Our aim for upcoming research is to improve our method so that it can classify all possible 
faults of CPs. Additionally, we intend to improve our method such that it can monitor the 
health condition of all parts of CPs. 

Author Contributions: Conceptualization, W.Z., Z.A., M.F.S., N.U. and J.-M.K.; methodology, 
M.F.S., Z.A. and J.-M.K.; validation, W.Z., Z.A. and J.-M.K.; formal analysis, W.Z., Z.A. and J.-M.K.; 
resources, W.Z., Z.A., and J.-M.K.; writing—original draft preparation, W.Z., Z.A., M.F.S., N.U. and 
J.-M.K.; writing—review and editing, J.-M.K.; visualization, W.Z., Z.A. and J.-M.K.; project admin-
istration, J.-M.K.; funding acquisition, J.-M.K. All authors have read and agreed to the published 
version of the manuscript. 

Funding: This research was funded by Ministry of Trade, Industry and Energy (MOTIE) and sup-
ported by Korea Evaluation Institute of Industrial Technology (KIET). [RS-2022-00142509, The de-
velopment of simulation stage and digital twin for Land Based Test Site and hydrogen powered 
vessel with fuel cell]. This work was also supported by the Technology Infrastructure Program 
funded by the Ministry of SMEs and Startups (MSS, Republic of Korea). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data is from the industry. Due to the privacy policy of the industry 
the data is not available publicly. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 12. t-SNE of (a) proposed model, (b) Weifang Sun et al. [44], and (c) Gabor et al. [45].

6. Conclusions

This research presented a novel approach for fault classification in centrifugal pumps
using signal processing and deep learning techniques. The proposed approach employed
a vibration sensor that recorded raw frequencies, which were passed from a low-pass
filter to attain fault-specific frequencies and are further processed using the Stockwell
Transform and Sobel filtering to generate new scalograms called “SobelEdge scalograms”
for classification using a CNN model. The proposed approach has the potential to provide
an accurate and efficient solution for fault diagnosis, which could help to prevent pump
failures and reduce maintenance costs in industrial applications. The findings of this study
could be useful for researchers and practitioners working in the field of fault diagnosis
and classification in centrifugal pumps. The overall accuracy of the proposed model is
99.68%. Furthermore, the proposed method was able to classify all four operation states,
unlike state-of-the-art methods that have failed to classify the IF, MSH, and MSS precisely.
Our aim for upcoming research is to improve our method so that it can classify all possible
faults of CPs. Additionally, we intend to improve our method such that it can monitor the
health condition of all parts of CPs.
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Nomenclature

AI Artificial intelligence
CBM Condition-based monitoring
CPs Centrifugal pumps
CNN Convolutional neural network
FD Fault diagnosis
FT Fourier transform STFT—Short-term Fourier transform
S transform: Stockwell transform
TFD Time-frequency-domain
WT Wavelet transform
ω Wavelet
wL Set of trainable parameters at Lth layer
fL Activation function at Lth layer
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