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Abstract: Detailed within is an attempt to implement a real-time radar signal classification system to
monitor and count bee activity at the hive entry. There is interest in keeping records of the productivity
of honeybees. Activity at the entrance can be a good measure of overall health and capacity, and
a radar-based approach could be cheap, low power, and versatile, beyond other techniques. Fully
automated systems would enable simultaneous, large-scale capturing of bee activity patterns from
multiple hives, providing vital data for ecological research and business practice improvement. Data
from a Doppler radar were gathered from managed beehives on a farm. Recordings were split into
0.4 s windows, and Log Area Ratios (LARs) were computed from the data. Support vector machine
models were trained to recognize flight behavior from the LARs, using visual confirmation recorded
by a camera. Spectrogram deep learning was also investigated using the same data. Once complete,
this process would allow for removing the camera and accurately counting the events by radar-based
machine learning alone. Challenging signals from more complex bee flights hindered progress.
System accuracy of 70% was achieved, but clutter impacted the overall results requiring intelligent
filtering to remove environmental effects from the data.

Keywords: Apis mellifera; honeybee; radar; machine learning; support vector machine; linear
predictive coding; log area ratios

1. Introduction

Wild bees and honeybees both contribute more than USD 2900 ha−1 each to the
production of insect-pollinated crops [1]. They are seen as critical for achieving sustainable
development goals while being too poorly understood to capitalize on their potential [2].
The decline of managed honeybees and their keepers, as well as wild hives, has been
documented [3,4]. Pressure is mounting to manage hives more effectively and with more
consideration for their needs. Automating the counting of activity at the entrance to hives
will provide detailed, live, and contextual information about their health and productivity.

Bee-counting devices capable of providing accurate data suitable for scientific inquiry
are few. Most operate by using a type of camera to track bee traffic coming to and from the
hive entrance [5]. Cameras can be either visual or infrared, and some studies have utilized
capacitive sensors [6,7]. Radar has been used to monitor the signals reflected from bees and
radar microphones to track bees through hive walls without disturbance [8,9]. However,
fully automated, low-impact systems to achieve counting goals do not currently exist, with
most systems requiring human input or modifications of the hive itself.

Previously published work undertaken by the authors suggests that radar systems
can provide cheap, reliable, and simple-to-deploy bee counters [10,11]. This work differs in
that it expands the problem to include background signal removal. In addition, the work
uses multiple hives across different days to determine whether the system is resilient to the
effects of weather change and clutter differences between hives.

Similar technologies have been used to monitor insect activity. Gaussian models
have been used to address misreadings when counting bee behavior activity using RFID
tags [12]. RFID has also been used with machine learning to determine insect species from
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activity at the entrance [13]. RFID is a powerful tool but relies on both tagging the bees and
modifying the entrance of a beehive, limiting its use for wild and managed bees without
disturbing behavior.

Zenith-pointing linear-polarized small-angle conical-scan (ZLC) entomological radars
have been used to classify insect species based on weight, wing beat, and body length-
to-width ratio [14]. X-band radar has been used alongside Support Vector Regressor
algorithms to estimate insect mass based on each insect’s radio cross-section (RCS [15].)
Radar has been demonstrated as a powerful tool for entomological purposes [8,16].

Machine learning using Doppler radar data captured from bees has not been otherwise
investigated. Human activity has been classified using micro-Doppler signatures and
machine learning [17]. Radar and machine learning have been investigated together for
other animals, such as radar imagery being used to detect bird roosts using convolutional
neural networks [18]. Lameness in farm animals has been automatically detected using
machine learning classification of radar signatures [19]. The lack of research targeting bees
using similar techniques leaves room for work tracking bee activity at the hive entrance
using radar.

Bee movement tracking has been investigated using machine learning on data captured
by a camera [5,10]. However, radar systems require less processing power, are cheaper, and
can be more resilient to weather interference.

This study aimed to develop a real-time bee counting radar by integrating a Rasp-
berry Pi © processor with a custom 5.8 GHz Doppler radar. This system fills a gap by
allowing accurate counting of bee activity at the entrance of the hive. However, complex
or overlapping bee flights created signals that could not readily be differentiated into the
target classes. These challenges became the focal point of the study, providing a basis for
continued development once these barriers are cleared.

2. Materials and Methods
2.1. Radar Receiver and Modelling Approach

The radar module supporting the present effort was similar to the 5.8 GHz continuous-
wave (CW) radar Printed Circuit Board (PCB, JCLPCB, Hong Kong, China) deployed
in [20] and is visible in Figure 1a. The PCB module integrated an in-phase/quadrature (IQ)
mixer for the discrimination of positive and negative Doppler shifts. The IQ mixer fed 2
channels with identical 60 dB custom-designed Variable Gain Amplifiers (VGAs) and 100
dB common mode rejection ratio (CMRR) for amplification of the Intermediate Frequency
(IF) signal. The VGAs additionally included a first-order low-pass filter limiting the IF
output noise outside of the ~DC-408 Hz range. The VGA’s output was fed to a laptop using
an external USB sound card with a 44.1 kHz sampling rate.
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Figure 1. (a) The radar used during this experiment and (b) Experimental setup (radar encircled in
red) and an example of a standard hive and nuc (nucleus colony) box.
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The received radar signals were well approximated through a simple model overlap-
ping scattering from uniform speed translation of bee body and harmonic oscillation of an
adjacent smaller scatterer, which mimicked wingbeat motion:

xr(t) = A1 cos
(

2π
2
λ

R
)
+ A2 cos

{
2π

2
λ
[R + AH cos(ωHt)]

}
(1)

There, A1 and A2 represent the amplitude for the baseband body translation and
wingbeat motion components, respectively, and are a measure of the respective radar
cross sections (RCSs); A1 and ωH represent the wingbeat amplitude and angular frequency,
respectively; λ represents the incident signal wavelength determined from the 5.8 GHz car-
rier; and R represents the radar-target range and was effectively independent of wingbeat
motion in the extracted micro-doppler signatures scenarios where AH << A2 << A1. For typ-
ical experimental values of A2 = A1/5 = 0.2, AH~1 cm, R = 0.1–2 m, ωH = 2π(150–230) Hz,
λ~5 cm, and bee speed ~0.2 to 2 m/s the body Doppler shift ranged between 2 and 20 Hz
while sidebands from phase modulation in (1) were well visible up to the 400 Hz frequency
range [20]. Conversely, setting A1 = 0, and relaxing the AH << A2 condition encodes an
explicit dependence of range onto harmonic motion and enabled (1) to be used to model:
the effect of radar shaking from wind (ωH ≤ 5 Hz); or mechanical coupling with a nearby
(e.g., laptop fan) vibration source (ωH = 50 Hz). While (1) made higher frequency sidebands
plausible, their prominence was expected to fade with increasing range because the VGAs
output attenuates the IF signal components beyond 408 Hz.

A raw initial interpretation of the data was achieved by investigating the time-stamped
radar signatures recorded of bees against a camera recording of transpiring events. Spec-
trogram representations of these data allowed for an initial assessment of the quality and
detail recorded by the radar. Labels were provided for the events by a human observer.

These data were then processed by extracting features in the form of Log Area Ra-
tios [21]. These features were the dataset used to train Support Vector Machine models to
label new samples recorded by the radar [22]. The predicted labels were compared with
those provided by the observer to provide an estimate of accuracy.

A final interpretation of results was achieved by comparing the accuracy of the gener-
ated models when predicting all labels for a separate, new recording against labels provided
by the observer. This was to measure the effects of changes in environmental conditions on
the ability of the model to predict correctly.

2.2. The Processing Equipment

The computing system was designed to minimize both cost and power consumption
and was centered on a Raspberry Pi 4B. Without an AI Accelerator or equivalent, the Pi
was not suitable for a deep learning approach. Instead, this system would leverage Support
Vector Machines (SVMs [22]) to match previous work [11,20].

The sampling time was limited to 0.4 s. This window represents the smallest observed
complete event in the original dataset. Even within 0.4 s, most recorded samples included
one or more hovering bees as well as the other classes. In 4.4% of samples, both an inward
and outward bee event took place within 0.4 s. This is true of overlapping inward and
outward bees as well. A smaller percentage (0.18%) contained multiple overlaps such as
two inward and one outward.

Other research studies, without machine learning or automatic counting, have placed
the radar onto the hive surface, facing outward [8,23,24]. The approach was chosen to
overcome the following challenges of such placements:

• It removed the need to modify the hive, which is advisable given that the system may
be used on wild bees.

• Bees crawl at the entrance and may cover either antenna, as in Figure 2.
• Antennae have a radiation pattern that may cause flights to be lost from the detection

cone if, for example, they walk to the edge of the hive before takeoff.
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• While offering some protection against hovering bees, surface-mounted radar may
still be obscured more infrequently.

• Limited research suggests that bees may be sensitive to the frequencies used and the
equipment will function as a source of heat, which may affect behavior [25,26].
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Figure 2. A thermal imaging camera capture of bees crawling over the entrance of a busy hive.

The position in this study ensured that the entire front surface of the hive was in view
of the radar, and it was less invasive and the setup quicker. Hovering bees and weaker
power reflection at the entrance of the hive remained an issue because of the free space
between the radar and hive entrance.

Challenges were expected from the outset because there was no effort to standardize
bee flights or control flight direction. Bees were free to leave in any direction, even crawling
along the edge of the hive until takeoff on a side face. Similarly, on approach, bees could
arrive from any angle and could be as quick or slow to enter as needed. When the entrance
was congested, bees would often hover on arrival until there was space to enter, mimicking
other hovering bees and obfuscating other activity when flying close to the antennae. The
free-flying bees created complex radar samples that could not be intuitively labeled solely
on signature structure alone.

Initial data were gathered across three days, consisting of twelve recordings with a
maximum duration of 20 min each. Different hives were used during each day. Replacing
the radar between sample gathering periods was not precise, because the system needed
to be flexible, so long as it was placed within the expected range (1–2 m) of the hive as in
Figure 1. When working with wild colonies it would not be possible to guarantee the same
distance or angle, nor would it be advisable to force such placement if minimal disturbance
was desired.

Each radar stream was accompanied by a video from a digital camera. The video
recording was initiated first, and the radar data were aligned by the operator counting
down to the commencement of the radar recording. This was suitable to align within half a
second. Two or three clean bee events would, by matching video frames to timestamps,
allow complete alignment.

This source dataset was gathered to train the algorithms. Once trained, these would
then be used to label entire videos. The operator would provide corrections of the sample
labels where needed and the resultant datasets fed into the training data pool.
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The machine learning models would be expected to label entire videos. Therefore,
an additional dataset was later included that featured one, full-length recording that was
disaggregated into 0.4 s samples, and this was labeled and included in its entirety.

An overlapping window of 0.1 s was used to extract samples from consecutive or ex-
tended events, such as long hovering flights and background samples. A flexible approach
was used when samples were not an ideal length for sub-division, modifying the final
overlap to ensure all source data were used. For example, a signal of 0.6 s would be split
into two 0.4 s samples with an overlap of 0.2 s.

Feature extraction for the primary system was achieved by using Log Area Ratios
(LARs) derived from Linear Predictive Codes (LPCs) [21]. LPCs and their derivatives are
a means of expressing the spectral envelope of a signal in compressed form. Their use
in machine learning for radar data is relatively new and has successfully classified other,
non-acoustic, signals [17,27,28].

The LARs were used to train a support vector machine with Bayesian hyperparameter
optimization. Five different models were trained:

• Four-way classification.
• Background samples versus all others.
• Hover samples versus in and out.
• Three-way classification (hover, in, and out).
• Binary classification (in and out).

These models were chosen to allow multiple potential classification pathways. Either
four-way brute classification, or splitting the problem into multiple, potentially easier,
problems as demonstrated in Figure 3. These separate pathways were developed to
maximize the opportunity for binary classifications that can favor SVM models [29,30].
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To provide context, similar models to those in the authors’ previous work were
used [11]. This was a DenseNet deep learning architecture with a custom head network [31].
This network would operate on spectrograms generated from the 0.4 s samples. While
unlikely to be lightweight enough to run on portable hardware, this model would provide
a crucial understanding regarding the suitability of the data for machine learning.

3. Results
3.1. Preliminary Results

Generated spectrograms of the signal samples provided evidence that signatures
would have less information above 300 Hz (see Figure 4). This would exceed the typical
flight speed of a bee at 8 m/s. As image processing networks require small inputs of no
more than a few hundred pixels square, the authors limited the upper range of spectrograms
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to 300 Hz and then 150 Hz to maximize image quality. The change to 150 Hz was initiated
as accelerating and decelerating bees were always much slower than their cruising speed
and spectrograms contained little information above 150 Hz. Any information here was
lost in the contrast limits of the generated images and would only penalize the models.
Empty space in already small images would reduce the resolution of the lower-frequency,
more powerful signatures.
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However, results from the DenseNet deep learning approach were poor, with the best
accuracy being 46.73%. Given the four-way nature of the problem, this is significantly
better than a random choice, but the results warranted further investigation.

By using LARs, it was possible to achieve a preliminary accuracy of 75.12% in a four-
way scenario (Figure 5). In all cases, a 9:1 split of training and testing data was used and
the results were gathered as an average of tenfold cross-validation. The figure shows the
outputs of running the experiment with three sets of data:

• Set A: the single channel, manually gathered Doppler data from the radar.
• Set B: the dual channel, manually gathered IQ data from the radar.
• Set C: the dual channel, complete IQ dataset including both the manual set and the

full recording breakdown dataset.

Set C would be the dataset used in the testing phase of the work. This shows a
performance penalty associated with fully captured datasets rather than hand-chosen
samples. This is not unexpected, as more difficult samples (such as those with overlapping
events) were required to be included. The results show that complete IQ datasets are more
suited for machine learning than single-channel results.

Separating the problem into smaller challenges did not create better results. While
background prediction is good (91.59%), this would then be followed by either hover
prediction (83.19%) or three-way prediction (78.65%); together these would fall below base
prediction accuracy (75.12%). The targets are the labels generated by the final classification,
the inward and outward bees. Knowledge of background and hovering signals is useful
but is not the goal of this work.
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3.2. Exploring the Weaker Results

The weaker-than-expected results spurred a further investigation into the spectro-
grams generated. Complex signals, difficult to classify, became apparent due to the free-
flying nature of the targets. Figure 6 shows an ideal sample of four consecutive outward
flights of bees, which quickly accelerate toward the radar before passing by in proximity
as confirmed by video recording. The first two flights overlap on the spectrogram, hin-
dering the ability of the machine learning to count them separately as they exist in one
0.4 s window.
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However, not all flights were clean. Figure 7 shows both a visual record and a
spectrogram of complex overlapping events. These events are as follows:

1. Takeoff for a single bee.
2. Flight of the first bee to the right and behind the radar.
3. A hovering bee emerges from under the radar and flies off-screen to the left.
4. Vertical takeoff of two bees, one does not approach the radar.
5. The second of the two bees loops, increasing speed, and exits the frame.
6. The inward bee from the screenshot appears.
7. The first of the three bees in the screenshot takes off.
8. Two more bees take off after the first.
9. Closest approach of the exiting bees.
10. Inward bee enters the hive.
11. The last view of the exiting bees, flying away from the radar both left and right.
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Figure 7. (a) A screenshot of the video recording of an event and (b) the corresponding spectrogram
representation of the signal, showing complex overlapping elements. The red circles are the bees
recorded across the events and the numbered items show correlation between spectrogram and the
video recording.

While the signal happened across eight seconds and would be broken down into
smaller, easier-to-classify samples, there is a paucity of information when multiple overlap-
ping events took place. Specifically, between events 7 and 10, there is a compounding of
the signals, justifying that the spectrogram approach would be met with failure.

Some events were too similar in the target frequencies to separate visually. An example
of these is provided in Figure 8. The first event (a) is of a hovering bee that moves both
towards and away from the radar with variable speed. The second event (b) is two inward
bees flying towards the entrance of the hive; however, there is a sudden uplift of wind,
which makes their flight difficult, and they struggle to fly along a fixed path.
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Figure 8. Two signals (a) showing a hovering bee signal and (b) showing an inward bee signal.

Figure 9 shows three hovering bees, none of which enter the hive or leaves the area
during the segment. At 0.4, 0.75, and 1.5 s some examples are like the outward signals
present in the ideal sample. Multiple hovering bees in a signal recording were common.
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Figure 9. A hovering signal of three bees shows similarities to outward bee signals.

These signals are a close visual match to other, less ideal outward signals. In the
samples collected, there were matches between all four classes. A spectrogram deep
learning approach would encounter a point of no improvement due to the restraints of
the visualization format. In the future, as this dataset is expanded, the visual overlap will
continue to grow.

Given this limitation, questions emerged regarding the signal compression techniques
and mild success. To understand how the data allowed the models to perform well, several
exploratory investigations were undertaken.

The major disparity between these results and others found in literature was the
number of LARs used in this work. It is common to expect 10 or fewer LP coefficients
(equivalent in number to LARs) for each small window, itself less than 100 milliseconds [17].

In contrast, the models required that the 400-millisecond signal not be subdivided,
and as such, the number of coefficients climbed at first to 240 per window for a 44.1 KHz
sample rate and 100 per window for a down-sampled 3.5 KHz rate. This high number of
coefficients is problematic. As the number of coefficients increases the algorithm quickly
includes noise from the source.
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Using the full number of coefficients, accuracy response as a function of the sample
rate was assessed. The results are presented in Figure 10. This shows that accuracy required
a sampling rate of greater than 3 KHz to achieve a plateau of growth. The exception to
this was predicting background and binary signals, which had a strong response from any
sampling rate, expected as these are simpler predictions.
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accuracy changes in response to varying the sampling rate of the signal.

To investigate signal sub-division to match other works in the literature, the Raspberry
Pi © was first benchmarked to confirm limits to the number of coefficients that could
be used. The results are presented in Table 1 and ‘times required’ have been measured
to include running a prediction. This is to ensure the process happens faster than the
0.4 s window.

Table 1. Possible sub-window sizes on the Raspberry Pi © and the maximum number of coefficients
per window possible.

Sub-Window Size Encoding Limit Total Number of Features per Channel Time Required

40 ms 76 760 350 ms
50 ms 84 672 348 ms
80 ms 96 480 349 ms
200 ms 110 220 352 ms

400 ms (full window) 240 240 351 ms

Generating many coefficients for a 0.4 s window is computationally taxing. By using
multi-core processing to handle each channel separately, the Raspberry Pi could encode
240 LARs in a 0.35 s window.

With these limits, a benchmarking routine was created to determine accuracy as a
measure of the sub-window size and number of coefficients. The experiment was also
conducted when downsampling the signal to 3 KHz and 1 KHz to measure whether lower
frequency components become more important when sub-dividing the window.

The findings are presented in Figure 11, demonstrating that the sub-division of the
sample window decreases accuracy. For completeness, all sub-window lengths with the full
240 LARs are included, which would not be possible to run in real time on the Raspberry Pi.
Even with all coefficients available, LPC derivative machine learning accuracy decreases
as the signal is segmented. As LPCs are compression techniques, it can be understood
that segmenting the signal further decreased the information in each resulting window.
A comparison would be the segmentation of four similar spoken words into small time
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windows, which would decrease the overall context included as opposed to encoding the
entire words with one compression window.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 16 
 

 

To investigate signal sub-division to match other works in the literature, the Rasp-
berry Pi © was first benchmarked to confirm limits to the number of coefficients that could 
be used. The results are presented in Table 1 and ‘times required’ have been measured to 
include running a prediction. This is to ensure the process happens faster than the 0.4 s 
window. 

Table 1. Possible sub-window sizes on the Raspberry Pi © and the maximum number of coefficients 
per window possible. 

Sub-Window Size Encoding Limit Total Number of Features per Channel Time Required 
40 ms 76 760 350 ms 
50 ms 84 672 348 ms 
80 ms 96 480 349 ms 

200 ms 110 220 352 ms 
400 ms (full window) 240 240 351 ms 

Generating many coefficients for a 0.4 s window is computationally taxing. By using 
multi-core processing to handle each channel separately, the Raspberry Pi could encode 
240 LARs in a 0.35 s window. 

With these limits, a benchmarking routine was created to determine accuracy as a 
measure of the sub-window size and number of coefficients. The experiment was also 
conducted when downsampling the signal to 3 KHz and 1 KHz to measure whether lower 
frequency components become more important when sub-dividing the window. 

The findings are presented in Figure 11, demonstrating that the sub-division of the 
sample window decreases accuracy. For completeness, all sub-window lengths with the 
full 240 LARs are included, which would not be possible to run in real time on the Rasp-
berry Pi. Even with all coefficients available, LPC derivative machine learning accuracy 
decreases as the signal is segmented. As LPCs are compression techniques, it can be un-
derstood that segmenting the signal further decreased the information in each resulting 
window. A comparison would be the segmentation of four similar spoken words into 
small time windows, which would decrease the overall context included as opposed to 
encoding the entire words with one compression window. 

 
Figure 11. Results from sub-windowing the signal with differing coefficient numbers. Includes ac-
curacy at 44.1 KHz sampling rate and change in accuracy at both 3 KHz and 1 KHz. At 1000 Hz, 
some window/coefficient combinations could not be run due to insufficient data. 

It became clear that there were either high-frequency and/or low-power components 
to the signals that were not easily shown on a spectrogram. These elements were crucial 

Figure 11. Results from sub-windowing the signal with differing coefficient numbers. Includes
accuracy at 44.1 KHz sampling rate and change in accuracy at both 3 KHz and 1 KHz. At 1000 Hz,
some window/coefficient combinations could not be run due to insufficient data.

It became clear that there were either high-frequency and/or low-power components
to the signals that were not easily shown on a spectrogram. These elements were crucial for
machine learning success. The signal could not be further segmented without decreasing
accuracy. Together, these findings supported that these components are being obscured by
background noise.

It had been an expected evolution of the work to begin creating filtering algorithms to
strip out the clutter associated with outdoor recordings in variable weather. However, the
complexity of the filters will now become more challenging. Preserving complex patterns
while removing the effects of wind and other clutter will be challenging.

However, without filtration, the machine learning models would be unlikely to adapt
to new recordings. The existing data were recorded as subsets each from a single or group of
videos, each with its own setups and environmental conditions. This could be introducing
noise into the dataset, which meant that models were unprepared for new sets of data from
previously unseen conditions.

The following question was whether leaving the sampling rate at the maximum
44.1 KHz was introducing needless noise that was affecting the feature encoding stage.
Another routine was designed to measure how accuracy reflected the number of coefficients
at differing sample frequencies. Lowering the sampling rate decreases accuracy, as shown
in Figure 12. However, at lower sampling frequencies accuracy requires fewer encoding
coefficients. A notable plateau is present at 100 coefficients or more with a sampling
frequency of 3.5 KHz, followed similarly by other sampling frequencies with the same
number of coefficients.

While these results compare poorly to allowing an unrestricted sampling frequency,
they show that the models require fewer LARs at lower frequencies to achieve maximum
accuracy. This could indicate that the models may have been learning more general patterns
in the data when given lower sampling frequencies to work with. When running the final
tests, the results of lower-frequency, fewer-coefficient encoding would be included to
measure whether models could become more generalized.
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Figure 12. Accuracy versus the number of encoding coefficients for a range of sampling frequencies.
Legend indicates sampling frequency in Hz. When using a 1.5 KHz sampling rate, it was not feasible
to include large numbers of coefficients as the data became sparse.

Now that it had been determined that the models were not influenced by noise
included with an unrestricted sampling rate, it became prudent to analyze the signals in
greater depth. LPCs are a compressed form of the spectral envelope of a signal. As such,
it was useful to generate the spectral envelope for each signal and produce a standard
deviation per class. In Figure 13, the standard deviation of all spectral envelopes in each
class is shown up to 1.5 KHz. Standard deviation is shown, as averaging spectral envelopes
would remove most peaks.
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Figure 13. The standard deviation of the spectral envelopes for each class.

The standard deviation in the background class is the flattest, except for several peaks
centered at 1 KHz, which is faint noise in the signals, often masked by the bees themselves,
caused by the recording equipment.

The bees themselves are visible as a strong peak of deviation at sub 150 Hz frequencies,
matching the signatures seen on spectrograms. Outward signals have a peak slightly higher
in frequency, which can be explained by bees rapidly accelerating away from the hive.
Inward bees decelerate and hovering bees are unlikely to reach a maximum speed near



Sensors 2023, 23, 5250 13 of 17

the hive. Notable peaks can be seen at 400 Hz and 800 Hz. Smaller peaks can be seen
throughout, some more pronounced in one class over others but these are minor.

3.3. Testing Stage

The machine learning was assessed on its accuracy in predicting the entire test set
with all other data included as learning data (Figure 14). Significant penalties when using
a separate setup are apparent. When exposed to new data, from a new radar position in
differing conditions, the models lose their capabilities. Four-way classification accuracy
drops to 70%, with a precision of 0.63 and recall of 0.70 due to imbalanced class sizes.
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Figure 14. Testing results from the final stage that show a decrease in performance versus the
preliminary results. This is an effect of recording in outdoor spaces with variable conditions.

Sets in this figure are as follows:

• Set A: the complete training dataset was used, sampled at 44.1 KHz with 240 LARs.
• Set B: the complete training dataset was used, sampled at 3.5 KHz with 100 LARs.
• Set C: the smaller, manually extracted dataset with higher training accuracy was used,

sampled at 44.1 KHz with 240 LARs.
• Set D: the smaller, manually extracted dataset with higher training accuracy was used,

sampled at 3.5 KHz with 100 LARs.

For completeness, the results for a down-sampled dataset at 3.5 KHz with 100 co-
efficients are included. Overall accuracy improved by 1–12% despite the lower training
accuracy. A critical note for the four-way classification is that no inward bees were predicted
correctly (121 samples or 4.8% of the data to label.) The figures for this four-way classifica-
tion are skewed by the much larger hover and background classes. This is evident when
looking at the F1 macro scores, which expose accuracy bias caused by imbalanced classes.

Set B outperformed Set A despite lower training-stage results. This supports that
different frequency bands and coefficient numbers benefit some classifications despite
lower training accuracy. While adding more recordings, from differing weather and hive
conditions, will improve the results further, the results above suggest that future gains will
be ever-diminishing.

To achieve complete capability in this system, filters are a requirement. These
filters will be challenging because of the complex signatures that form part of the
machine-learning process.
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4. Discussion

Compared to previous work by the authors, the results from this work are poorer [20].
For three-way classification, 93.37% accuracy was achieved, and 91.13% binary accuracy
was achieved in the last effort. Similar results for this work were 81.67% and 88.33%
accuracy for three-way and binary classification respectively (see Figure 5).

However, some key changes in the experimental setup explain the differences. This
study used no data augmentation as the volume of data was considered sufficient. Data
augmentation improves smaller datasets by creating a larger pool for training but can
also make a set more homogenous and therefore easier to classify. The data recorded here
were gathered across multiple days from more than one hive, which differs from previous
studies where one hive was used on one day. The changes in radar distance and angle,
coupled with varying weather, introduce more difficulty. These additional challenges were
inevitable in the development of a real-time implementation radar classification system.

Nevertheless, the expected outcome of this study was to meet or exceed previous
results. Without this being achieved, there is further work remaining to overcome the
shortcomings highlighted in this study.

The closest study in the literature to this work comes from Souza Cunha et al. in
2020 [8]. This study used the root mean square (RMS) of a Doppler radar as a measure of
activity at the hive entrance, validating this by manually counting bees during recordings
using a handheld clicker. RMS has key benefits as it is a simple, non-ML approach that
gives a good measure of activity, which they were able to show correlates to hive health. As
such, this approach is closer to field deployment readiness than the work here. However,
they admit that ‘non-foraging’ bees (equivalent to hovering bees in this work) are counted
in the RMS signal and there is no discernment between inward and outward bees using the
radar. Our work is an attempt to overcome these limitations and once fully developed will
provide more precise information for future study.

The results show a pattern in that so long as sufficient data are available for each
hive, distance, and weather condition, then the models are reasonably accurate. As soon
as new conditions are introduced, the models lose accuracy. This is not unexpected, but
the degree to which minor signal elements are necessary for good classification was not
anticipated. These minor elements would too easily be removed by simple filters for
environmental conditions.

Hovering bees introduce unique challenges in that, given the resolution of the radar,
they appear to mimic the flights of other bees. They do this by passing close to the entrance
of the hive while accelerating or decelerating, but not stopping. Minor differences in the
signals will be useful to detect the difference between a slowing bee and one that stops.
Again, these differences will be subject to interference from the environment.

Despite lower performance during initial training, models trained on subsampled
signals with fewer LARs performed better than those with the complete data. This supports
the interpretation that the bulk of useful information is contained at lower frequencies.
This is also shown when investigating the spectral envelope of each class, which shows
more deviation at lower frequencies. However, the identification of which exact frequency
bands are most important is challenging. Further work could look at performing statistical
analysis of the signals in depth. This could provide guidance when developing filters as to
which frequency bands are most important.

Hand-picked samples provided better training accuracy than the dataset containing
all available data. The dataset containing all the data was more useful at the test stage. This
is evidence that a hybrid approach may be useful in the future, with a dataset containing a
core set of hand-chosen, clearer samples to provide a strong foundation. This is in addition
to containing entire recording breakdowns, which will provide many hard-to-classify
ambiguous samples.

This work is useful as no similar attempt has been made to classify honeybee activity
at the entrance of a beehive using Doppler radar. Early experiments such as the one
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presented are necessary to identify the limits of existing technologies and algorithms as
well as provide guidance for overcoming such restrictions.

This research implies that further work is needed to create a deployable real-time
radar. A greater understanding of radar bee signatures is required so that good filtration
can be enacted that does not remove the weaker signal elements.

5. Conclusions

An investigation into generating machine learning models to classify real-time radar
data on honeybees has been detailed. These models aimed to monitor and count activity
at the entrance to the beehives. Data gathered in this fashion, which are automatically
labeled by machine learning models, would provide valuable data for ecological research
and for businesses looking to improve their use of honeybees. The models generated in this
work achieved an accuracy of 70% though, by other metrics, the class imbalance created
biased results.

Data were gathered from multiple hives across a few days from beehives kept at a
farm. The data were split into 0.4 s samples, labeled by using video camera recordings of
each event, and transformed into Log Area Ratios. These were then used to train Support
Vector Machines to predict labels for new samples.

Challenges in progressing further have been identified. It is argued that a filter
is needed, as high-frequency, weak signal elements appear to be needed for successful
classification. These high frequencies are subject to interference and contain weak signal
components that will be difficult to preserve. A greater understanding of these weak signal
components is needed.

The limits of this work are clear. Four days of data were used from a small selection
of beehives. To develop the solution further, many more hives would be required. Data
would need to be captured that reflected all feasible weather conditions. Some, such as
rain, may render the system incapable of predictions at all. In addition, an intelligent filter
must be investigated to provide a means of removing much of the radar clutter that is
unavoidable when recording outdoors while preserving weak but vital signal elements.

No further machine learning work is advised until filters are developed. Though
additional data will result in increased accuracy, the system will not be resilient until
environmental changes can be addressed. This work has functioned to provide specifica-
tions that future filters will need. With suitable further study, the work supports that the
capability will exist to classify honeybee activity in real time.
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