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Abstract: Cogitive radio networks (CRNs) require high capacity and accuracy to detect the presence
of licensed or primary users (PUs) in the sensed spectrum. In addition, they must correctly locate
the spectral opportunities (holes) in order to be available to nonlicensed or secondary users (SUs).
In this research, a centralized network of cognitive radios for monitoring a multiband spectrum
in real time is proposed and implemented in a real wireless communication environment through
generic communication devices such as software-defined radios (SDRs). Locally, each SU uses a
monitoring technique based on sample entropy to determine spectrum occupancy. The determined
features (power, bandwidth, and central frequency) of detected PUs are uploaded to a database. The
uploaded data are then processed by a central entity. The objective of this work was to determine the
number of PUs, their carrier frequency, bandwidth, and the spectral gaps in the sensed spectrum in a
specific area through the construction of radioelectric environment maps (REMs). To this end, we
compared the results of classical digital signal processing methods and neural networks performed
by the central entity. Results show that both proposed cognitive networks (one working with a central
entity using typical signal processing and one performing with neural networks) accurately locate
PUs and give information to SUs to transmit, avoiding the hidden terminal problem. However, the
best-performing cognitive radio network was the one working with neural networks to accurately
detect PUs on both carrier frequency and bandwidth.

Keywords: multiband spectrum sensing; cognitive radios; radio environment maps; neural networks;
cooperative sensor networks; real-time implementation

1. Introduction

Cognitive radio (CR) is a concept involving a communication device capable of know-
ing the spectral behavior in its environment and adapting to it. Taking advantage of
spectral gaps (or holes) not utilized by licensed users, also known as primary users (PUs),
CR technology allows nonlicensed or secondary users (SUs) to detect these available parts
of the spectrum [1]. Specifically, the operation of CR involves four stages or functions:
spectrum sensing, spectrum sharing, spectrum decision, and spectrum mobility. Spectrum
sensing (SS) is a fundamental task of detecting one or more PUs; this stage shows whether
the sensed spectrum is occupied or empty [2]. Usually, this task is carried out in single
bands; however, the current paradigm of multiband spectrum sensing (MBSS) involves
multiple bands that are not necessarily contiguous [3].
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Many MBSS techniques issued from digital signal processing and machine learning
(ML), such as wavelets, compressed sensing, energy detectors, and blind or semiblind
methods, have been proposed, primarily in simulated scenarios [4–10]. Other works have
been implemented in a real wireless communications environment [11–16], where software-
defined radio (SDR) and universal software radio peripheral (USRP) technologies have
been employed. Recently, SDR devices such as the HackRF One, the LimeSDR Mini, and
the RTL-SDR have become extremely popular because of their affordability and good
performances [17,18]. These generic communication devices offer radio equipment the
flexibility of a programmable system, allowing the modifications to the communication
system behavior simply by changing its software, permitting anyone, including hobbyists
on a budget, access to the full radio spectrum.

In addition to knowing the PUs’ behavior in a given frequency domain and avoiding
the hidden terminal issue, knowledge of the behavior of the radio spectrum in its specific
geographical area of influence is necessary. For this reason, the idea of including a geo-
graphic tool constructed with the radioelectric information provided by the SUs issued
from a real environment is pertinent. Under this perspective, the ability to build a radio
environment map (REM) has become very important in recent years. A REM is “a tool
that combines information collected from the radio environment, such as received signal
intensity, interference measurements, propagation conditions, etc., for specific locations
and frequencies, with the aim of building a map that provides an overview of coverage of
the network” [19]. Thus, REMs permitting the characterization of the position, directivity,
power, and modulation type of PUs have become a challenging task in cognitive radio
network (CRN) design [20]. Indeed, in [21], REMs were used to locate relevant PUs in
a geographic region of interest, characterizing their positions, directivities, powers, and
modulation types. Likewise, in [22], REMs were used to sense the spectrum based on an
adaptive compressed spectrum-sensing algorithm, contributing spatial information to the
network capable of adapting to the radio environment. REMs are very flexible tools, as
shown in [23], where they are combined with ML to determine the effective coverage area
perceived by a cognitive sensor network, correctly estimating it at around 92%.

Another important tool, owing to the computing power and the amount of available
data, is neural networks (NNs), used widely from pattern recognition and image classifi-
cation to financial market behavior prediction and autonomous vehicle driving [24]. For
spectrum sensing, for example, in [25], an NN was implemented to obtain the local infor-
mation on single-node spectrum detection (spatial and temporal features). The information
(extracted features) from multiple nodes fed another NN, thus permitting cooperation
in the CRN. On the basis of REM and NN paradigms, this work proposed a new CRN
methodology, implementing an MBSS involving a network integrated with low-cost SDR
devices in a controlled, realistic wireless communications environment.

This work developed a CRN for monitoring multiband spectrum and locating PUs
with their characteristic bandwidth, carrier frequency, and power in specific areas. In addi-
tion, our CRN located the spectral opportunities where the SUs could be located and, unlike
models of other studies, could be implemented in real time. In the following, Section 2
briefly lays out the theoretical basis of REMs and NNs, and Section 3 presents the authors’
previous work in implementing the MBSS used as a basis for the new proposal presented
in this work. Section 4 explains in detail the new proposed methodology, and Section 5
details the implemented real scenario. Finally, Section 6 offers the results, conclusions, and
discussion [20].

2. Theoretical Basis of REMs and NNs
2.1. Construction of Radio Environment Maps

REMs are used in telecommunications research to represent the power distribution
at a specific area emitted by different radio sources (one or more). A REM is constructed
by collecting power measurements at different points in a specific area and interpolating
them to produce a graphical representation (map) of the power distribution (or coverage)
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of the emitted signals, as shown in Figure 1. These maps are generally used to evaluate and
predict the behavior of radio signals in a given environment, which is essential for capacity
planning, communication system design, and troubleshooting related to interference. In
addition, REMs are also used in CR applications, where devices can use the information
provided by the REM to select the most suitable frequency to transmit data and avoid
interference with other devices in the same location [20].

Figure 1. Example of a REM: Black dots indicate locations where the power measurements are taken
using eight sensors. In this case, only a transmission source with −60 dBm is considered.

Collecting and interpolating power measurements are the two essential processes in
constructing a correct map. In this case, interpolation methods [26] are critical for correctly
estimating an unknown value between two or more known points (measurement points).
In other words, a REM is simply a smoothed estimate of the power distribution based on a
few known values of measured power. Two interpolation methods widely used to build
REMs are inverse distance weighting (IDW) and Kriging, and both are explained below.

2.1.1. IDW Method

The inverse distance weighting interpolation method [27,28] is simple and easy to
implement, and it is widely used in applications such as precipitation estimation, topo-
graphic data interpolation, and air pollution estimation. IDW is a classical interpolation
method in spatial analysis and is most commonly used in geostatistical and mathematical
interpolation [29].

IDW estimates the value of a variable at a specific point based on known values at
nearby points. This method rests on the idea that nearby points have a greater impact on the
estimate than more distant points. Thus, IDW uses a formula that assigns a weight to each
known point based on the distance between them and the unknown point. The weights are
determined by considering the inverse of the distance, so that the closest points have higher
weights and the farther ones have lower weights. For the IDW method, we considered the
data transposed vector z = (z(s1), . . . , z(sn))

T as observations from a random process. In
our case, z contained the average power at each point of the considered sampled region
(see Figure 1)

{z(s) : s ∈ D}; D ⊂ R2, (1)
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at known geographic locations s1, . . . , sn. The final estimate was obtained using the
weighted sum of the known values in the nearby points, given by [28]:

Z(s) =
∑
(

si
d(si ,s)

p

)
(wi(si))

∑ 1
d(si ,s)

p
, (2)

where Z(x) is the estimated value of the variable at the unknown point s, zi is the known
value of the variable at the i-th point si, d(si, s) is the Euclidean distance between the
unknown point s and the point si, p ∈ R is a smoothing parameter controlling the influence
of the known points over the estimated values, and wi(si) is the weight assigned to each
known point si in order to account for the uncertainty in the known data. In practice, a
value of p = 2 or p = 3 is usually used. The estimated values of Z(s) result in a mesh of
unknown points. However, this method has limitations, such as a tendency to smooth out
data variability and produce an inaccurate estimate in areas with few known points. In this
work, Z(s) represents the power spectral density (PSD) in the different points around the
sensed area.

2.1.2. Kriging Method

The Kriging method [30] is an interpolation technique derived from regionalized
variable theory. It depends on expressing the spatial variation of the property using the
variogram, and it minimizes the estimated prediction errors [31]. The goal of Kriging is to
find the most accurate and least uncertain estimate by considering not only the value of
the variable at the known points but also the distribution of the variable in space and its
correlation with the known points. Following [30], the Kriging method can be established
by taking the points and the region mentioned in (1), assuming µ is known and

z(s) = µ + δ(s); s ∈ D, (3)

are considered with known covariance function:

C(s, u) ≡ cov(z(s), z(u)); s, u ∈ D, (4)

where δ(·) is a zero-mean stochastic process. Thus, the best linear unbiased predictor z(s0)
is obtained by minimizing [32]

E

(
z(s0)−

n

∑
h=1

λhz(sh)

)2

, (5)

with λ1, . . . , λn, subject to
n

∑
h=1

λh = 1. (6)

The optimal values were computed using the method of Lagrange multipliers. For
this, the mean-squared prediction error (Equation (5)) was obtained by

E(z(s0)− ẑ(s0))
2 =

= C(s0, s0)− c′C−1c +
(
1− c′C−11

)2(1′C−11
)−1,

(7)

where
c ≡ (C(s0, s1), . . . , C(s0, sn))

′, (8)

C ≡
(
C
(
sh, sj

))
, (9)
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and
ẑ(s0) = γ′ Γ−1Z +

(
1− γ′Γ−11

)(
1′Γ−11

)−1(
1′Γ−1Z

)
, (10)

E(z(s0)− ẑ(s0))
2 =

= γ′Γ−1γ−
(
1− γ′Γ−11

)2(1′Γ−11
)−1,

(11)

where γ ≡ (γ(s0, s1), . . . , γ(s0, sn))
′, Γ is an n× n matrix whose (i, j)th element is γ

(
si, sj

)
, and

2γ
(
si, sj

)
≡ C(si, si) + C

(
sj, sj

)
− 2C

(
si, sj

)
, (12)

is the variogram [γ
(
si, sj

)
γ
(
si, sj

)
, named the semivariogram [33]]. The variogram, a valu-

able tool in modeling spatial variables, describes how the data are correlated with distance
and, in doing so, allows us to accomplish spatial interpolation using the sampled data
and the variogram information to estimate the variance of the values of the variable at the
unsampled points [33,34]. In summary, Kriging was more precise than other interpolation
methods, such as IDW or cubic interpolation [29], and suitable for applications where the
data have a certain spatial dependence.

2.2. Neural Networks

Neural networks are artificial intelligence models inspired by the structure and func-
tioning of the human brain. These networks comprise many nodes, known as „neurons”,
connected to each other through „synapses”. Each neuron receives inputs from other neu-
rons, processes them through an activation function, and sends its output to other neurons,
as shown in Figure 2. The combination of inputs and connections between neurons allows
a neural network to learn complex tasks from the selected training data. Neural networks
are a powerful tool for machine learning because they can model complex relationships
between inputs and outputs and make accurate inferences from real data. However, these
tasks require a large amount of training data and are computationally intensive (sometimes
impossible) to train and use in real-time implementations [35].

Figure 2. Neural network concept: the multilayer perceptron.

In this work, we used the multilayer perceptron (MLP), as shown in Figure 2. This
type of artificial neural network consists of an input layer, one or more hidden layers, and
one output layer. In the MLP, neurons in each layer are connected to neurons in the next
layer, and they use an activation function to determine the neuron’s output. Information
flows only in one direction, from the input to the output layers, passing through the
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hidden intermediate layers between the input and the output [36]. The general formula for
calculating the output of a multilayer perceptron is given by [37]

O = f
(
∑
(
Wi,j Ii

)
+ b
)
, (13)

where O is the output of the multilayer perceptron, f is the activation function, which can
be a step function, sigmoid, rectified linear unit (ReLU), etc., Wi,j are the synaptic weights
connecting the input Ii to the current neuron, Ii is the input of the multilayer perceptron,
and b is the bias, where i = 1, . . . , n and j = 1, . . . , k, with n being the number of input
features to the NN (corresponding to the number of neurons in the input layer), k the
number of neurons in a given hidden layer, and m the number of provided outputs (i.e.,
the number of neurons in the output layer of the NN).

The formula is applied to every neuron in every network layer, including the input,
hidden, and output layers. Each neuron in a hidden layer takes the output of all the
neurons in the previous layer (i.e., assuming a fully connected network) as its input, and
the output of one neuron in the output layer is the network’s final output. During the
training phase, the weights and the bias are adjusted to minimize the error between the
network output and the desired output. This is achieved by a learning algorithm, such as
the backpropagation algorithm [38], which updates the weights and bias in the direction of
the downward gradient [39].

3. Preliminary Work

This section briefly describes the preliminary work on a novel MBSS technique based
on the sample entropy (SampEn) developed and published by the authors in [39], con-
stituting the basis of the new proposal. However, the MBSS technique presented in [39]
was the result of the authors’ previous efforts to refine and complement it with modules
implemented in real time to, for instance, diminish the noise introduced by SDR devices.
Hence, several comparative studies have been carried out in order to measure the perfor-
mance of the proposed MBSS technique compared with other classical methods, such as
energy detectors. The efficiency of locating the PUs by this MBSS technique stands out
in SNR values close to 0 dB [11]. Table 1 highlights the principal contributions of these
previous works.

Table 1. Main contributions of previous works.

Previous Work. Contributions

“A Novel Multiband
Spectrum Sensing Method
Based on Wavelets and the

Higuchi Fractal
Dimension” [9].

- Two MBSS techniques: Wavelets and multiresolution
analysis (MRA). Decision rule based on the Higuchi fractal
dimension (HFD).

- 95% effective in detecting PUs for SNR values higher than
0 dB.

- Controlled simulated environment.
- Blind technique.

“Multiband Spectrum
Sensing Based on the
Sample Entropy” [40].

- MBSS technique based on SampEn.
- Technique implemented in a real environment of wireless

communications.
- Technique with real-time operation (updated every 100 ms).
- Probability of 0.99 to correctly detect the PU for SNR values

greater than 0 dB.
- Cooperation of the different SUs to sense a wide range of

frequency.
- Blind technique.
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Table 1. Cont.

Previous Work. Contributions

“Real-Time Implementation
of Multiband Spectrum

Sensing Using SDR
Technology” [11].

- MBSS technique based on MRA, ML, and HFD
implemented in a real wireless communications
environment.

- Real-time operation (update every 100 ms).
- Implemented with SDR devices.
- A module is proposed for the elimination through the

detailed coefficients obtained with the MRA.
- Efficiency of 95% for SNR values greater than 0 dB.
- Blind technique.

“Machine Learning
Techniques Applied to
Multiband Spectrum
Sensing in Cognitive

Radios” [41].

- Three machine learning methods are applied to the MBSS
- Effectiveness of 98% in detecting PUs in the spectrum for

SNR values greater than 0 dB.
- Controlled simulated environment.
- Blind technique.

The last MBSS technique from Table 1 was implemented in a real environment using
low-cost SDR devices. Each connected SDR device was considered an SU, independent
from others, processing its information locally in a determined single band to achieve
ensemble wideband spectrum sensing. The MBSS technique used in this proposal, however,
combines different SDR devices, namely the RTL-SDR [42], the HackRF One [43], and the
LimeSDR mini [44], to conform each considered SU, forming a CR infrastructure, which
permits having an MBSS in a specific location. Figure 3 below shows how this MBSS
method works. The MBSS blocks are as follows:

Figure 3. General scheme of implemented MBSS technique [40].

• Sliding window of 100 ms. In this block, the complex signal xIi,l(n) + jxQi,l(n) from
each SDR in the time domain was received and updated every 100 ms from the radio
environment of the i-th SU integrated by z different SDR devices;

• Power Spectrum Density (PSD) estimation. In this module, the Welch method [45]
was applied to each signal xIi,l(n) + jxQi,l(n) in order to obtain, on a linear scale, the
wideband PSD Ri,l(k) from the SU ensemble;

• Impulsive noise reduction. In this block, impulsive noise, high-frequency noise,
and abrupt changes (many of them generated by the SDR devices themselves) in
the signal Ri,l(k) were eliminated or diminished through discrete wavelets via the
multiresolution analysis [46], resulting in the signal R′ i,l(k);
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• Estimation of frequency bands and detection of primary users. In this module, the
MBSS technique based on SampEn, K-means algorithm [47] (permitting to optimize
specific detection parameters), and discrete wavelets was applied to each SU’s an-
alyzed wideband spectrum in order to obtain the spectrum occupation given by
OccupationTt

{
R′ i,l(k)

}
. This result included three vectors [bi,1, bi,2, . . . , bi,N−1]Tt

which
contained binary values indicating occupied (“1”) and empty (“0”) bands. The second
vector was [Li,1, Li,2, . . . , Li,N ]Tt

and contained the corresponding computed bound-
aries for each detected band, and the third was [Pi,1, Pi,2, . . . , Pi,N−1]Tt

, which contained
the power for each detected band.

One of the primary motivations for this technique was to propose an MBSS method
(i) adequate to correctly detect a primary user and the operating parameters, such as
carrier frequency, bandwidth, and power, with (ii) computational complexity permitting
a real-time implementation. Both aims were fulfilled, and the results were used to create
a compact CRN capable of sharing spectral information with a central entity in order
to estimate the area occupied by different detected PUs in the studied zone. A wireless
communications environment was proposed considering these SDR devices.

4. New Proposal and Methodology

This section presents the new research proposal and the implemented methodology.

4.1. Proposal

Our previous work’s novel idea was to consider a computer integrating different
SDR devices detecting each PU in a single band to sense a wide frequency range, as
shown in Figure 4a. This model was seen as the only entity containing different SUs.
Our follow-up work proposed replicating this entity containing different connected SDR
devices and creating a cooperative CR network for sensing a wide frequency range in
a broader geographical region. Each entity was considered an SU containing different
technologies for sensing a broad spectrum, as shown in Figure 4b. In addition, to sense
the radio spectrum and uncover the PUs’ behavior in a given geographical region, this
cooperative CR network had the task of avoiding the hidden terminal problem. One of the
main strengths of this new proposal (see Figure 4b) over previous work is the cooperation
of the different SUs in geographically locating the PUs through the REMs and the ability to
carry out this processing in real time.

Figure 4. (a) Previous work and (b) new proposal.
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4.2. Methodology

The proposed methodology can be outlined in three big blocks, shown in Figure 5:

• The collection of information obtained by SUs. For this, each SU locally processes the
sensed data to be sent to a central entity, including the occupancy of the observed
spectrum in its geographic location and the frequency band edges and estimated
power vectors;

• The database for storing the information obtained by each SU at a specific time;
• The central entity overseeing the processing determines the geographic area occupied

by the detected PUs in the radio spectrum.

Figure 5. General scheme of the methodology.

Each block is described in detail below.

4.2.1. Collection of Information Locally by the SUs

The information collection was carried out every 100 ms for each SU, resulting in the
OccupationTt

{
R′ i,l(k)

}
of analyzed spectral signal, as mentioned in Section 3 and displayed

in Figure 3. This information was conveyed by three vectors: (i) the edge detector vector
[Li,1, Li,2, . . . , Li,N ]Tt

, which stores the frequency edges where it is possible to find the
presence of PUs, (ii) the binary decision vector [bi,1, bi,2, . . . , bi,N−1]Tt

, which stores a binary
decision for corresponding delimited bands where noise or a possible PU transmission
is detected, and (iii) the power vector [Pi,1, Pi,2, . . . , Pi,N−1]Tt

, which stores the received
average power corresponding to each classified window (i.e., each binary decision). The
vectors in (ii) and (iii) are the same size.

4.2.2. Database

The edge detector, binary decision, and power vectors were stored in the database. It is
important to note that the information stored in the database stemming from each SU was
not necessarily similar; the lengths of the vectors were different for each SU. Indeed, each
SU observed a different behavior of the radioelectric spectrum, because they were placed
randomly in different geographic coordinates. To account for this discrepancy, all vectors
were labeled with the exact sensing time Tx (see Table 2), i.e., synchronized. Information
was uploaded to a server, saving only enough relevant data (three different vectors for
each SU) in the database to permit fast storage and extraction, taking advantage of SUs’
hardware performing the MBSS technique locally. Indeed, the three uploaded vectors for
each SU take up very little memory space. In the best case (without even a PU in the sensed
spectrum), the edge detection vector had a length of two, while the binary decision vector
and the power vector had a length of one. In the worst case, when the SNR had a low value
(close to 0 dB), multiple windowing appeared due to noise, thus increasing the vectors’
lengths. However, regardless of the size of the three vectors, the information was compact
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and facilitated the reconstruction of the spectrum signal occupation, including the average
power for each reconstructed window.

Table 2. Information that each SU shares in the database at each sensing time Tx.

T1 T2 . . . Tx

SU1
[L1,1, L1,2, . . . , L1,N ]T1

[b1,1, b1,2, . . . , b1,N−1]T1

[P1,1, P1,2, . . . , P1,N−1]T1

[L1,1, L1,2, . . . , L1,N ]T2

[b1,1, b1,2, . . . , b1,N−1]T2

[P1,1, P1,2, . . . , P1,N−1]T2

. . .
[L1,1, L1,2, . . . , L1,N ]Tx

[b1,1, b1,2, . . . , b1,N−1]Tx

[P1,1, P1,2, . . . , P1,N−1]Tx

SU2
[L2,1, L2,2, . . . , L2,N ]T1

[b2,1, b2,2, . . . , b2,N−1]T1

[P2,1, P2,2, . . . , P2,N−1]T1

[L2,1, L2,2, . . . , L2,N ]T2

[b2,1, b2,2, . . . , b2,N−1]T2

[P2,1, P2,2, . . . , P2,N−1]T2

. . .
[L2,1, L2,2, . . . , L2,N ]Tx

[b2,1, b2,2, . . . , b2,N−1]Tx

[P2,1, P2,2, . . . , P2,N−1]Tx

. . . . . . . . . . . . . . .

SU8
[L8,1, L8,2, . . . , L8,N ]T1

[b8,1, b8,2, . . . , b8,N−1]T1

[P8,1, P8,2, . . . , P8,N−1]T1

[L8,1, L8,2, . . . , L8,N ]T2

[b8,1, b8,2, . . . , b8,N−1]T2

[P8,1, P8,2, . . . , P8,N−1]T2

. . .
[L8,1, L8,2, . . . , L8,N ]Tx

[b8,1, b8,2, . . . , b8,N−1]Tx

[P8,1, P8,2, . . . , P8,N−1]Tx

4.2.3. Central Entity

The main tasks of the central entity were (i) to indicate how many PUs appear in the
spectrum compared with the perceived SUs, (ii) to build a REM for each detected PU using
the location of each SU, the perceived power in each SU, the time of radio space monitoring
as parameters, and finally (iii) to show the area covered by the PUs.

Two ways of implementing these tasks were developed, the first through classical
digital processing and the second using machine learning techniques (specifically, the NN).
Both approaches are detailed below.

4.2.3.1. Central Entity Implementing Classical Digital Signal Processing

Digital signal processing, which uses programmed algorithms to process and analyze
data, is a well-established and stable technology that has been used for decades in a variety
of applications. It is relatively easy to implement and can be very fast and efficient in
situations where the datasets and tasks are specific. In this case, the central entity was
implemented with classical techniques for reconstructing the spectrum occupation from
the shared information (edge detector, binary decision, and power vectors) obtained by
each SU in the database. The central entity processing the information is shown in Figure 6
and described by Algorithm 1.

Figure 6. Implementation of the central entity using classical digital signal processing.
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Algorithm 1 Central Entity Computed by Traditional Signal Processing

Step 1.1 The central entity collects the edge detector, binary decision, and power vectors
of each PU at determined time instant t from the database. With this
information, the central entity reconstructs the occupancy signal
OccupationTt{R′ i(k)} and constructs simultaneously, an approximation of the
power spectral density PSD_recTt{R′ i(k)} using only the average powers
(power vector) associated to each SU. The length of these frames is set to 1024
samples.

Step 1.2 Once the reconstruction of the occupation of each SU is performed, the mean
value E[OccupationTt{R′ i(k)}] is computed.

Step 1.3 After computing the average value of the Occupation, it is possible to infer the
presence of one or several PUs, giving two possible vectors. First, the vector
FC_vector = [FC1, FC2, . . .] containing the central frequencies values of detected
PUs. The length of this vector will be the number of PUs detected by the
algorithm. A sec ond vector, containing the occupied bandwidths by each
detected PU Bvector = [BPU1 , BPU2 , . . .], is also obtained. Through the number of
sin gularities and their corresponding widths detected in
E[OccupationTt{Ri

′(k)}], it is possible to estimate how many PUs are in the
spectrum and their respective bandwidths (Bvector = [BPU1 , BPU2 , . . .] ). The
FC_vector is integrated by the central frequency values of estimated bandwidth
for each detected PU.

Step 1.4 Knowing now the central frequency and the corresponding bandwidth of each
detected PU, it is possible to locate them in each reconstructed PSD
PSD_recTt{Ri

′(k)}. The mean of the interval BPUN centered on FCN of the
PSD_recTt{Ri

′(k)} is computed giving the scalar aux_psdi,N . In the strict
sense, this scalar represents the average power in the carrier, sensed by each
SU, where the PUN is or should be.

Step 1.5 With the scalar aux_psdi,N of each SU located in a specific coordinate, the REM
will be built using a double interpolation. First interpolation is done through
the IDW method and for the sec ond one, the Kriging method is applied. Due to
the fact that in our case only eight geographical points are considered (i.e., only
eight SUs are implemented), this double interpolation is carried out with the
purpose of having a better precision to describe the behavior of the radio
electric space in the environment described later. In this case, each REM is
constructed with values aux_psdi,N that specifically correspond to the average
power of the bandwidth BPUN .

Step 1.6 Finally, the active area of each PU will be determined according to the
information collected by each sec ondary entity SUi. For this, a threshold of
−80 dBm is used to classify the area estimated by the REMs that was chosen in
[41] for a wireless environment. That is, regions in the REM that are above this
threshold correspond to the active area of detected PUs.

4.2.3.2. Central Entity Implementing Classical Digital Signal Processing

The central entity was implemented using ML techniques, specifically NNs. NNs
have the ability to learn from data and improve their performance as they absorb more
information. This makes them particularly useful in applications where the data are
complex, difficult to understand, and processed using traditional methods. Furthermore,
NNs can perform tasks that traditional methods cannot, such as recognizing patterns in
unstructured data or processing input signals that change over time. In this case, some
modules in the central entity were replaced by NNs, as shown in Figure 7. The steps of this
operation (Algorithm 2) are described below.
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Figure 7. The central entity determining the REM construction parameters and area maps
through NNs.

Algorithm 2 Central Entity Computed by NNs

Step 2.1 The central entity collects the data from each of the SUs in the database at a
specific time Tx. In the module input estimator and processor, a processing is
carried out in order to estimate the inputs driving a NNs ensemble. As
mentioned above, the three vectors coming from each SU for time Tx do not
have the same length as the vectors for time Tx+t1 or Tx−t2 . Even, the size of the
vectors differs from one SU to another SU even though they are at the same
time Tx. Based on this fact, this module oversees building the input vectors
PSD_recTt{Ri

′(k)} and Edge_recTt{Ri
′(k)} driving the NNs. For this, these

vectors must have always the same length (in our case this length is set to 13
samples). This block is detailed below.

Step 2.2 The vector PSD_recTt{Ri
′(k)} is evaluated by NN1, at the same time the vector

Edge_recTt{Ri
′(k)} is evaluated by NN2 and by NN3. This evaluation is

performed sequentially, i.e., each vector of each SU will be evaluated by its
corresponding NN one after the other until the result of the i− th connected SU
be obtained. As a result of this step, NN1 provides an approximate number of
detected PUs and their powers. NN2 gives an approximate number of detected
PUs and their central frequencies. Finally, NN3 returns an approximate
number of detected PUs and their bandwidths. At the end of this section, it is
discussed what would happen if the number of PUs detected by each NN is not
the same.

Step 2.3 The information obtained from Step 2.2 is evaluated to determine the number
of PUs in the spectrum and their corresponding power, bandwidth, and carrier
frequency. This evaluation is detailed below.

Step 2.4 The information obtained from Step 2.3 will be shared with the REM estimator
module. This block receives (i) the geographic coordinates of the SUs in the
network, (ii) the data of the possible PUs in the spectrum (power, carrier, and
bandwidth) and (iii) an identifier that corresponds to time Tx in which the
spectrum was monitored.

The rest of the steps of this algorithm that include NNs corresponds to Steps 1.5 and
1.6 of the methodology described in Algorithm 1 (Section 4.2.3.1). The input estimator and
processor (Step 2.1) and the information collector (Step 2.3) modules are described below.

Figure 8 shows the process of generating PSD_recTt{R′ i(k)}, the input vector of NN1.
First, power, edge detector, and binary decision vectors were used, with samples ranging in
the intervals of [1–20], [1–20], and [2–21], respectively, according to the studies carried out
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in our preliminary work [39]. As mentioned above, using these vectors, we obtained (i) the
frequency range that was sensed by each SU, (ii) the number of samples of the estimated
power spectral density, and (iii) the number of windows in which the sensed spectrum was
partitioned. An occupation value was assigned for each detected window, 1 for a possible
PU transmission or 0 for the noise. Accompanying each occupation value was an average
power value or the power vector element representing the power estimate in each detected
window. The occupation and the power signal were reconstructed using these average
values of each detected window, setting both vectors to a length of 1024 samples each.

Figure 8. Edge_recTt{R′ i(k)} vector construction.

After that, the power- and occupation-reconstructed vectors were multiplied column
by column, resulting in the Power_Occupation vector of 1024 samples. In this last vector,
locations with estimated noise had a value of 0, and those with the possible transmission of
one or several PUs had a value corresponding to the average power of detected windows.
A downsampling of the Power_Occupation vector was performed to reduce it to only
10 samples and to combine it with the coordinates of the SUs (to which the analyzed vectors
correspond) and the time Tx at which the signal OccupationTt

{
R′ i,l(k)

}
was sensed, thus

finally integrating the input vector for NN1. It should be noted that the time parameter is
extremely important since the spectrum behaves differently over time.

Figure 9 shows the construction of the vector Edge_recTt{R′ i(k)}. Here, the occupancy
and the frequency bands vectors corresponding to the frequency interval perceived by the
corresponding SU were reconstructed. This vector was also multiplied column by column
with the occupation vector, resulting in the Freq_Occupation vector being 1024 samples in
length. This latter vector was assigned zeros where it corresponded to noise and nonzero
values for the samples that corresponded to one or several PU transmissions. Again,
downsampling was applied to reduce this vector to only 10 samples and join it with
the coordinates of the SUs and the time Tx corresponding to the sensing period. This
concatenation drives the input of NN2 and NN3.
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Figure 9. Edge_recTt{R′ i(k)} vector construction.

The NN1 output corresponds to the power of each PU detected by each SU. When
the PU power value was less than −80 dBm, it was interpreted as no transmission, corre-
sponding to noise. The output of NN2 resulted in the carrier on which a possible PU was
located. Finally, the NN3 output delivered the transmission bandwidths corresponding to
each detected PU in the analyzed spectrum.

The resulting outputs from NNs for each SU are shown in Figure 10. These outputs can
be classed into three large blocks: powers, carrier frequencies, and transmission bandwidths
of each PU detected by the corresponding SU. The information collector block analyzes the
output of each SU making up the network and sends it to the module permitting the REM
estimate. For example, Figure 10a shows that the power of PU1 is less than −80 dBm;
the information collector interprets that PU1 does not correspond to a transmission and,
by sharing the information delivered by SU1 with the estimator of REM, assumes that
SU1 observes (j− 1) PUs (where j represents the number of possible PU transmissions).
Figure 10b shows that the carrier frequencies of PU1 and PUj are outside the monitored
space, so the information collector shares with the REM estimator that SU2 only observes
(j− 2) PUs. In Figure 10c, the B of PU1 is a very small value (possibly corresponding to
impulse noise); thus, the information collector shares with the REM estimator module that
the SUn observes (j− 1) PUs. It is important to point out that any of these combinations
shown in Figure 10 may change the number of observed PUs, i.e., if the power of a first PU
does not exceed the threshold of −80 dBm, the carrier of a second PU is not in a correct
frequency range, and the B of a third PU tends to zero; then, these three PUs will be
considered as noise.

The proposed methodology has been implemented in a real wireless communication
environment. This controlled environment is explained in the next section.



Sensors 2023, 23, 5209 15 of 28

Figure 10. (a). The SU1 observes j PUs, but PU1 is discarded because it does not meet the threshold.
(b) The SU2 observes j PUs; nevertheless, PU1 and PUj are discarded because they are not in the
correct frequency range. (c) The SUn observes j PUs, but the PU1 is discarded for not having a large
enough bandwidth to be considered a transmission.

5. Real Wireless Communication Environment

Figure 11 shows the real, controlled environment implemented in our research. In
this proposed scenario, we considered two PUs collocated at the center of the studied area
while, at the same time, eight SUs were sensing their behavior in their geographical zone
of influence. It is important to note that the SUs and PUs did not share the geographic
coordinates among themselves, nor was that information used in spectrum sensing. PUs
were located at the center, hoping most SUs could receive part of the Pus’ signal. SUs were
set randomly in the area of study.

Figure 11. The real implemented scenario.

Table 3 specifies the involved parameters of both SUs and PUs. These SUs shared the
channel occupancy with the database and the central entity in order to determine (i) how
many PUs on average were observed in this environment, (ii) the B and the FC in which
they located the detected PUs, and (iii) finally the area occupied by the detected PUs.
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Table 3. PU and SU main parameters.

Label Device FC Tx (MHz) FC Rx (MHz) Bandwidth (MHz) Location Coordinate
(X,Y) (m)

PU1 Mini LimeSDR 699.5 - 0.5 (0, 0)

PU2 HackRF ONE 700.5 - 1 (0, 0)

SU1 RTL-SDR - 700 2.4 (−1.5, 0)

SU2 RTL-SDR - 700 2.4 (0, 1.5)

SU3 RTL-SDR - 700 2.4 (1.5, 0)

SU4 RTL-SDR - 700 2.4 (0, −1.5)

SU5 RTL-SDR - 700 2.4 (−3, 2)

SU6 RTL-SDR - 700 2.4 (3, 3.5)

SU7 RTL-SDR - 700 2.4 (3, −2.5)

SU8 RTL-SDR - 700 2.4 (−3, −2.5)

PUs and SUs were deployed in an area 12× 12 m2, containing structures such as walls,
doors, windows, columns, etc., as indicated in Figure 11.

6. Results

This section outlines the results of implementing the proposed methodology in a
real wireless communication environment. They are divided into two subsections; the
first corresponds to the central entity based on digital signal processing, and the second
concerns the central entity based on NNs.

6.1. Results with a Central Entity Based on Digital Signal Processing

This section shows the results of the implemented scenario presented in Figure 11.
Figure 12 shows the reconstruction of the occupation of each SU by the central entity. In
this case, we can highlight the following important points:

Figure 12. Spectrum occupancy for each SU.

• There were SUs who failed to perceive both PUs;
• The central frequency FC of each PU was perceived at a different frequency by each

SU;
• The bandwidth size B for each PU varied for each SU;
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• SUs that were the farthest from the PUs failed to detect both PUs.

Figure 13 shows the result of constructing an approximation of the PSD for each SU,
considering only mean power values for each spectrum section. These approximations
were used for the estimation of the REM.

Figure 13. Approximated PSD for each SU.

Figure 14 shows the result of applying the module for estimating the average oc-
cupancy of each SU in addition to the result of the FC and B estimation for each PU.
The first value obtained was FC1 = 699.48 MHz with a bandwidth of B1 = 0.4 MHz.
FC2 = 700.49 MHz with a bandwidth of B2 = 0.825 MHz was also obtained. Given that the
exact values were FC1 = 699.5 MHz, B1 = 0.5 MHz, FC2 = 700.5 MHz, and B2 = 1 MHz,
the values we obtained here show a good occupancy estimation of the MBSS method in
conjunction with the central entity for a specific geographical zone covered by the PUs.

Figure 14. Average occupancy obtained by the central entity.

Figures 15a and 16a show the REM of PU1 and PU2, respectively. These maps
were created based on the information collected by the SUs in their different locations.
Figures 15b and 16b show the respective areas occupied by PU1 and PU2. Values of the
occupied area for each PU are areaPU1 = 60.76 m2 and areaPU2 = 56.39 m2. These results
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were obtained by placing a threshold L = −80 dBm in the obtained REM. In this way, the
area with a power greater than this threshold was considered a space occupied by the PU.

Figure 15. Primary transmission in the 699.48 MHz band with a B of 0.4 MHz: (a) REM and (b)
occupied area.

Figure 16. Primary transmission in the 700.49 MHz band with a B of 0.825 MHz: (a) REM and (b)
occupied area.

Figure 15b shows that SU6 and SU8 did not observe the transmission of PU1 (i.e.,
both SU6 and SU8 did not appear in this area of influence). This effect was a result of
the structural distribution in which the implementation of the real scenario occurred.
Nevertheless, an expected collaboration between SUs might improve this result.
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6.2. Results with a Central Entity Based on NNs

This section details the results obtained using a central entity and NNs. First, the NN
training is presented, and then the results obtained by applying ML algorithms to this stage
are shown.

6.2.1. Training

For the NN1 training, NN2 and NN3, the backpropagation algorithm, the Levenberg–
Marquardt activation function, 1000 epochs, the mean square error as loss function, and a
low learning rate were used. In addition, 9000 vectors of inputs and their corresponding
outputs were used. To determine the best NN?, the number of layers that should be used,
and how many neurons, 12 NNs were studied to carry out the work of NN1, NN2, and NN3.
Each NN was considered with the number of layers la = 1, 2, 3, 4 and with the number
of neurons ne = 16, 32, 64. For each NN, there were 12 possible combinations between
neurons and layers. They were performed to find the most convenient NN configuration
for this work.

The results are presented for both the entity that uses digital signal processing and the
one that uses the three NNs. As the first parameter, the training time used by each NN is
shown in Table 4, indicating the time each NN spent in the training stage. Additionally,
Figure 17 shows that the more neurons and layers an NN had, the longer its training time
was. All the processing was carried out using the same computer (MacBook Pro with 8 GB
RAM and a 1st-generation M1 processor), and the training time for each NN in its different
versions tended to follow similar behavior.

Table 4. The training time of (a) NN1, (b) NN2, and (c) NN3.

Training Time NN1 [min]

(a)
Neurons

16 32 64

La
ye

rs

1 2 10 60

2 10 25 180

3 120 192 1500

4 162 600 3984

Training Time NN2 [min]

(b)
Neurons

16 32 64

La
ye

rs

1 2 6 16

2 8 33 290

3 15 80 850

4 20 129 7610

Training Time NN3 [min]

(c)
Neurons

16 32 64

La
ye

rs

1 2 5 16

2 5 19 280

3 11 75 875

4 21 145 3628
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Figure 17. The training time for the different versions of the NN3.

6.2.2. Statistics

This section analyzes the statistical results of the three NNs used in this proposal. To
obtain these results, 27,000 entries were considered for each NN. Figure 18a presents the
results of NN1, responsible for granting the power value of the detected PUs, showing the
power difference between the real values and those obtained with the different versions of
NN1. The difference between these values was, on average, −0.01 dBm for each version
of NN1, highlighting the accuracy of the predictive ability of the NN-based approach.
Figure 18b only shows the average value, indicating that the margin of error between the
expected value and those given by the different NNs was very small; the values were
practically the same.

Figure 18. Difference between real values and those obtained by NN1: (a) mean and standard
deviation (STD) and (b) mean.

Figure 19 shows the result of NN2, the network that gives the carrier value of each
PU detected. In the proposed environment, the NN2 detected two PUs, and Figure 19a
shows its precision in detecting each PU carrier, with FC1, on average, at 699.4 MHz,
regardless of the configuration of NN2. Figure 19b shows the precision of NN2 in detecting
the PU2 carrier, indicating that, on average, the carrier value was 700.494 MHz. Even
though the network with 2 layers and 64 neurons per layer deviated slightly from the ideal
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value (700.5 MHz) compared with the other NN configurations, it continued to provide
reasonably accurate results. In both images, the value of applying digital signal processing
can be seen in blue and is quite close to the ideal values of 699.4934 MHz and 700.4935 MHz
for PU1 and PU2, respectively, thus resulting in a comparable level of accuracy of the
NN-based approach.

Figure 19. Mean and STD of the precision in detecting (a) the PU1 carrier of the different NN2

variants and (b) the PU2 carrier of the different networks.

Figure 20 presents the results of NN3, the network in charge of giving the B that each
detected PU in the spectrum frames. In this figure, the average B of PU1 is 0.48 MHz,
regardless of the network configuration (see Figure 20a). Moreover, Figure 20b shows that
notwithstanding the NN structure, the value of the B for PU2 is practically 1 MHz, which
perfectly coincides with the ideal value (see Table 3). The blue dot in the image indicates
the result of digital signal processing, as B1 = 0.425 MHz and B2 = 0.824 MHz. For B1,
the margins of error/precision of DSP and NN were quite similar (only DSP overestimates
while NN underestimates). For B2, however, it seems that the NN was much more precise,
suggesting that the method based on NNs tends to improve DSP or, in the worst case,
provide a comparable absolute error.

Figure 20. Mean and STD of the precision in detecting (a) the B1 of different NN3 variants and (b) the
B2 of the different networks.
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To measure the precision of this methodology, the F1 score (F1) [48] was used as a
common evaluation metric in the ML field for assessing the accuracy of binary classification
models. This metric combines the accuracy and recall of the model into a single measure.

Precision refers to the ratio of true positives (TP) to the sum of true and false positives
(FP), while recall, on the other hand, refers to the ratio of true positives to the sum of true
positives and false negatives (FN). The F1 value expresses the harmonic mean of precision
and completeness, giving more weight to low values. The F1 formula is

F1 = 2
(precision ∗ recall)
(precision + recall)

(14)

A value of F1 equal to 1 indicates that the accuracy and completeness are perfect,
while an F1 of 0 indicates that the model is unable to correctly classify any of the samples.
The F1 metric is valuable for comparing different binary classification models and selecting
the best model for a given classification task. To determine this parameter (i.e., F1), the
following four possible cases were considered (see Figure 21):

Figure 21. Evaluation outputs of detected windows.

1. A window corresponding to a PU transmission and classified as such by the SU is
considered a true positive (TP) value;

2. A frequency window corresponding to a PU transmission classified as noise by the
SU is a false negative (FN) value;

3. A window corresponding to noise classified by the SU as a PU transmission is a false
positive (FP) value;

4. A frequency window corresponding to noise classified by the SU as such is a true
negative (TN) value.

Figure 22 shows the F1 of the NN1, which indicates whether the PUs were correctly
located. In this image, all the NNs have a nearly perfect performance, around 0.98.

In the case of B, the F1 was estimated from the following cases (see Figure 23):

• The resulting NN3 B matching the ideal bandwidth that corresponds to a transmission
is a true positive (TP) case;

• The resulting NN3 B corresponding to an ideal bandwidth close to zero is a true
negative (TN) case;

• The resulting NN3 B much greater than an ideal bandwidth that is close to zero is a
false positive (FP) case;

• The resulting NN3 B that should correspond to an ideal transmission B but is a value
close to zero will be a false negative (FN) case.
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Figure 22. F1 score for NN1.

Figure 23. B assessment results.

Figure 23 shows a ∆B value, which is the difference between real and estimated
bandwidths when there is a PU. When this parameter tends to grow, it provides flexibility
so that the resulting NN3 B matches an ideal B that corresponds to one transmission.
However, when the value of ∆B is very small, the system becomes more inaccurate, since it
only detects as TP those values that are close to the ideal value.

Figure 24 shows the F1 of NN3. The NN with four layers and the NN with two
layers both had an undesirable performance. This result could be explained by ob-
serving Figure 20, which shows the result of B1 is very close to the minimum value
(ideal_value− ∆B). Nevertheless, this undesirable performance was observed only when
a low number of neurons per layer (i.e., 16) were employed. By properly configuring
the number of neurons per layer to a sufficiently high value (e.g., 32 or greater), accurate
performance with F1 values around 0.95 and 0.96 was obtained, as well as with two and
four layers in the NN. Figure 24 also suggests overfitting in the NNs with two and four
layers. This is because the models for the 2-layer and 4-layer NNs, both with 16 neurons
per layer, fit too well to the training data and, as a result, do not generalize well to the new
data. Despite this, they have an F1 of 0.9 and 0.79, respectively.
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Figure 24. F1 of NN3.

Figure 25 shows the ratio of F1 scores between training time for NN1 and NN3
(Figure 25a and 25b, respectively). The value obtained from this relationship indicates
which NN provides the best trade-off based on the F1 accuracy result and the time invested
in training the network to attain such accuracy. As can be noticed, using an NN with a
single layer provides the best F1 performance for the training time required to obtain it.
Further increasing the number of layers will increase the F1 score performance but will
proportionately require a much longer training time, thus leading to a worse trade-off or
relation between benefit (represented by F1 performance) and cost (represented by the
required training time).

Figure 25. F1 and training time ratio of (a) NN1 and (b) NN3.

Finally, Figure 26 shows the behavior of the proposed methodology over time, during
which the sensed spectrum was analyzed in a specific geographic area and where SUs
collaborated to obtain the REM of the different detected PUs. As can be appreciated, the
proposed methodology was able to characterize the dynamic temporal evolution of the
REM in the geographical area of interest, thus providing a valuable tool for the study
of CRNs.
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Figure 26. Result of the central entity.

7. Conclusions

In this work, a real wireless communication scenario was implemented to detect
the occupancy of multiple PUs through several SUs via a central entity, permitting the
determination of the area used by the PUs based on REM estimations. Apart from the REM
constructions, other features, such as power, bandwidth, and central frequency of possible
detected PUs from the multiband spectrum frames, were estimated by the considered SUs.

For this task, we proposed using neural networks to substitute the classical digital
signal processing used in our preliminary work. It was expected that the performance
and processing time would be faster. Clearly, the training stage of the NNs, as shown by
the results, was a factor to be considered. In this work, higher precision was preferred
to locate the PUs and less processing time for the central entity when using the NNs.
However, it must be considered that NN training time was not negligible and could even be
high, depending on the number of layers and neurons each NN contained. The difference
between the real values and that of the NNs was minimal, and it could even be said they
were practically the same. In some cases, the NN showed even better results than the
digital signal processing, for instance, when detecting the PUs’ carriers.

Neural networks are a powerful and useful tool in many applications but are not
always the best option. In some cases, classical digital signal processing may be sufficient,
while in others, neural networks can significantly improve performance and accuracy.
Future work will aim to determine the optimal number of SUs needed to obtain the area
occupied by the PUs, thus avoiding the excessive processing of the central entity.
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Abbreviations

Cognitive radio CR
Primary user PU
Secondary user SU
Spectrum sensing SS
Multiband spectrum sensing MBSS
Machine learning ML
Software defined radio SDR
Universal software radio peripheral USRP
Radio environment map REM
Cognitive radio network CRN
Inverse Distance Weighting IDW
Neural networks NN
Multilayer perceptron MLP
Multiresolution analysis MRA
Rectified linear unit) ReLU
Sample Entropy SampEn
Power Spectrum Density PSD
Step 1.1 S 1.1
Step 1.2 S 1.2
Step 1.3 S 1.3
Step 1.5 S 1.5
Step 1.6 S 1.6
Step 2.1 S 2.1
Step 2.2 S 2.2
Step 2.3 S 2.3
Step 2.5 S 2.5
Step 2.6 S 2.6
Bandwidth B
Carrier frequency Fc
Standard deviation STD
F1 score F1
True positive TP
False positive FP
False negative FN
True negative TN
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