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Abstract: With the emergence of various Internet of Things (IoT) technologies, energy-saving schemes
for IoT devices have been rapidly developed. To enhance the energy efficiency of IoT devices in
crowded environments with multiple overlapping cells, the selection of access points (APs) for IoT
devices should consider energy conservation by reducing unnecessary packet transmission activities
caused by collisions. Therefore, in this paper, we present a novel energy-efficient AP selection scheme
using reinforcement learning to address the problem of unbalanced load that arises from biased AP
connections. Our proposed method utilizes the Energy and Latency Reinforcement Learning (EL-RL)
model for energy-efficient AP selection that takes into account the average energy consumption and
the average latency of IoT devices. In the EL-RL model, we analyze the collision probability in Wi-Fi
networks to reduce the number of retransmissions that induces more energy consumption and higher
latency. According to the simulation, the proposed method achieves a maximum improvement of 53%
in energy efficiency, 50% in uplink latency, and a 2.1-times longer expected lifespan of IoT devices
compared to the conventional AP selection scheme.

Keywords: AP selection; energy efficiency; latency; internet of things; reinforcement learning

1. Introduction

The Internet of Things (IoT) is transforming our lives and workplaces, presenting
unparalleled opportunities to improve efficiency, reduce costs, enhance safety, and drive
innovation across a broad range of industries and applications. From smart homes and
cities to healthcare, transportation, and industrial automation, IoT is reshaping how we
engage with the world. One promising application of IoT technology is the use of un-
manned aerial vehicles (UAVs) for effective data collection, enabling real-time monitoring
and analysis in various contexts [1,2]. In particular, the healthcare industry is poised to
experience significant economic growth worldwide by 2025, with estimates projecting
annual growth between USD 1.1 trillion and 2.5 trillion due to the adoption and integration
of IoT technology [3].

As the traffic on a Wi-Fi network increases, the cells covered by the network’s access
point (AP) become smaller and more crowded. As a result, mobile terminals (MTs), in-
cluding IoT devices, are present within multiple overlapping cells in Wi-Fi networks [4].
In this scenario, MTs typically connect to the AP with the strongest signal, which can
result in contention and packet collisions during transmission due to the concentration of
the devices on particular APs. Consequently, these repetitive transmissions can disrupt
energy efficiency and increase latency at the device. Additionally, non-crowded APs are
underutilized, which leads to lower overall network performance. Therefore, it is important
to address the issue of selecting the optimal AP that considers IoT devices’ energy efficiency
and latency in a multi-coverage Wi-Fi network environment.
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There are two types of AP selection schemes in Wi-Fi networks: distributed and
centralized. In a traditional distributed scheme, an MT selects an AP based on the received
signal strength indication (RSSI) values between the MT and several available APs [5].
However, biased AP connections can occur when many MTs want to connect to a particular
AP, which leads to load imbalance and poor quality of service (QoS) for MTs, including
low throughput and latency performance [6]. Some studies have attempted to solve this
problem by using the combination of RSSI values and other parameters [7,8], but distributed
AP selection methods have limitations in addressing load balancing due to the limited
information that MTs can obtain [9–11].

To address these issues, centralized AP selection methods have been proposed [12–14].
The centralized approach for AP selection involves the AP choosing the most suitable AP
based on factors such as RSSI value and achievable throughput. This method can help
to reduce the problem of unbalanced load and enhance network performance. However,
this approach does not take into account the uplink traffic and the energy efficiency of IoT
devices. When aiming to provide IoT services, it is crucial to consider the uplink traffic and
the energy efficiency of IoT devices because the performance (e.g., reliability, durability, etc.)
highly depends on the transmission activity of the IoT devices. For example, in healthcare
IoT services, uplink traffic, including sensed IoT data, is frequently transmitted to the
server, and the amount of uplink traffic is much more significant than that of downlink
traffic. Therefore, rather than considering downlink traffic, the consideration of uplink
traffic is more important. In addition, the frequent replacements of IoT devices due to the
limited battery capacity is the most significant challenge for implementing good quality
IoT service.

To solve the problems mentioned above, in [15] (our previous study on the iAP
system), we proposed the iAP system that increases the energy efficiency of IoT devices
when transmitting uplink IoT data after the AP connection procedure. However, we have
recognized that the procedures for the initial AP selection and connection establishment
also cause a large energy consumption of IoT devices, especially in crowded network
environments. Such real-time connection dynamics between MTs and APs occur without
the knowledge of future connections. The selection of an AP has a significant impact on
network performance, specifically in terms energy efficiency, as it is influenced by factors
such as the uplink traffic of APs and the distance between APs and their connected MTs.
However, relying solely on the received signal strength indicator (RSSI) between the MT
and AP is inadequate for achieving optimal connections. Moreover, the number of possible
cases for connections between MTs and APs grows exponentially with the number of MTs,
resulting in a large search space. To effectively explore this space while considering the
influence of the current AP selection on future network performance, the adoption of a
reinforcement learning algorithm is essential.

Therefore, in this paper, we propose an energy-efficient AP connection method using
an intelligent AP (iAP) system [15] to increase the lifespan of IoT devices; particularly, we
focus on an AP selection and connection method before transmitting uplink IoT data to
achieve much better energy efficiency for IoT devices.

The main contributions of this paper are as follows:

• This paper proposes a novel energy-efficient AP selection scheme to increase the
lifespan of IoT devices. To achieve this, we design an AP control system architecture
that selects the optimal AP and controls operating parameters.

• We propose a new Energy and Latency Reinforcement Learning (EL-RL) model for
optimal AP selection. The EL-RL model utilizes RSSI values and the number of
connected IoT devices as input sequences for the AI model, with the aim of addressing
the load-unbalancing problem and enhancing the energy efficiency of IoT devices.
To the best of our knowledge, this represents the first attempt to consider the real-time
connection dynamics and energy efficiency of IoT devices in the context of optimal
AP selection.
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• Based on the newly defined collision probability considering the retransmission of
IoT devices, we design the energy consumption and latency estimation model of the
overall IoT devices in Wi-Fi networks.

• We also analyzed the energy consumption and latency of IoT devices using a proposed
energy-efficient AP selection scheme with an EL-RL model. Through extensive simula-
tions, the proposed scheme achieved significant improvements, including a maximum
of 53% in energy efficiency, 50% in uplink latency, and a 2.1-times improvement in the
expected lifespan of IoT devices, compared to legacy AP selection schemes.

2. Related Works

Enhancing the energy efficiency of IoT devices is of paramount importance as it en-
ables the provision of a diverse range of IoT services while simultaneously minimizing
energy consumption. Significant research efforts have been devoted to this area, as evi-
denced by notable studies [16–20]. These works have made significant contributions to
the understanding and development of energy-efficient solutions for IoT devices, offer-
ing valuable insights and strategies for improving their performance in terms of energy
consumption and sustainability.

When multiple access points are overlapped, the selection of an appropriate AP
becomes a critical concern. An energy-efficient AP selection method is required to address
this challenge and enhance the energy efficiency and QoS for IoT devices in IoT services.
As a result, numerous studies have focused on investigating AP selection schemes in both
decentralized and centralized approaches [5–14]. These research endeavors aim to provide
effective solutions for optimizing AP selection and improving the overall throughput and
QoS of IoT devices in diverse IoT services (Table 1).

Table 1. Comparison of related works.

Related Work AP Selection Scheme Description Advantages Disadvantages

[5,9] Distributed Use RSSI Simple Load unbalancing problem
No consider energy consumption

[7] Distributed Use RSSI and Enhance downlink throughput Load unbalancing problem
multi-armed bandits No consider energy consumption

[11] Distributed Use RSSI and Enhance downlink throughput Load unbalancing problem
achievable throughput No consider energy consumption

[12] Centralized Use RSSI and Enhance downlink throughput No consider uplink traffic
achievable throughput No consider energy consumption

[13] Centralized Use RSSI and Enhance downlink throughput No consider uplink traffic
LSTM Reduce computational load No consider energy consumption

Proposed Centralized Use RSSI and Enhance energy efficiency -number of IoTs Reduce latency

In legacy distributed AP selection schemes, the MT selects the AP with the strongest
signal [5,9], which causes an unbalanced load across the network. In [9], the authors used
an RSSI interval overlap degree determination method to improve positioning accuracy,
but it did not address the load-unbalancing problem. Other AP selection schemes that
utilize RSSI value and achievable throughput parameters also have limitations in AP load
balancing and network utilization [7,11]. While in [7] the authors used a multi-armed
bandits algorithm to enhance downlink throughput, it did not consider uplink traffic.
In [11], the authors increased downlink throughput using RSSI value and achievable
throughput, but the authors did not consider uplink traffic and energy consumption of MTs.
Even centralized AP selection approaches primarily focus on downlink throughput [12,13],
without considering uplink performance and collision probability. In [12], the authors
used RSSI value and achievable throughput to select the optimal AP using a centralized
approach, but the authors did not consider uplink traffic and energy efficiency. In [13],
the authors used estimated RSSI values, which are obtained by a long short-term memory
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(LSTM) algorithm to improve positioning accuracy while reducing computational load
and enhancing noise robustness, but the authors did not consider uplink traffic and energy
efficiency. In general, AP selection studies have mainly emphasized increasing downlink
performance rather than considering the uplink traffic and energy efficiency of IoT devices.

For more robust and durable IoT services, new AP selection proposals are necessary
because IoT devices, which are the main component of the service, are sensitive to energy
and uplink delay [15]. Therefore, a new energy-efficient AP selection scheme is required to
overcome the problem of biased connection to a particular AP, which increases the collision
probability of the network. Particularly, the biased connection can result in an increased
amount of retransmissions at IoT devices, leading to higher energy consumption and uplink
latency. Therefore, in this paper, we propose a new method that considers such problems
to improve the performance of Wi-Fi networks.

3. System Description

In this section, we introduce a novel intelligent access point (iAP) control system for
energy-efficient AP selection in uplink environments for IoT services. The proposed iAP
control system is an advanced centralized AP selection scheme that considers the energy
consumption and latency of IoT devices. The legacy AP selection scheme chooses the
closest AP based on the highest RSSI value, which is not the best AP selection for the energy
efficiency of IoT devices, as it causes the retransmission problem due to load unbalancing.
In contrast, the proposed iAP control system selects the optimal AP by using not only the
RSSI values of the IoT device but also the number of IoT devices in the AP coverage as
input sequences for reinforcement learning. Additionally, the proposed iAP control system
addresses the collision issue based on the formulation of collision probability considering
the uplink transmissions of IoT devices aiming to minimize the number of collisions in
the network. The proposed iAP control system solves the load-unbalancing problem and
improves energy efficiency and uplink latency of IoT devices, as demonstrated by Figure 1,
which shows an example of AP selection of IoT devices under overlapping APs. For
example, from an IoT device perspective, the device can achieve more energy efficiency
gain by balancing the energy consumption for uplink and retransmission. In other words,
the IoT device may spend a little more energy to connect the sparse AP (AP2) located far
from the device, but it can significantly reduce retransmission energy consumption by
avoiding collisions to connect the dense AP (AP1) located closer from the device.

Figure 1. An example of AP selection of IoT devices.

3.1. Architecture of iAP Control System

An overview of the proposed iAP control system is depicted in Figure 2. The software-
based iAP controller is designed to facilitate energy-efficient AP selection for IoT devices.
The iAP controller comprises the proposed Energy and Latency Reinforcement Learning
(EL-RL) model, which is a reinforcement learning model that considers energy and latency
factors to achieve optimal AP selection, as well as a transmission (Tx) power model and a
location estimation model for better estimation and recommendation. The iAP controller
interacts with the iAPs via an application programming interface (API) to ensure energy-
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efficient AP selection and load balancing. The selected iAP is responsible for managing the
operational parameters of IoT devices to improve their energy efficiency.

Figure 2. A overview of iAP control system.

The process of the proposed iAP control system for performing energy-efficient AP
selection and deciding Tx power of IoT devices is illustrated in Figure 3. To begin, an IoT
device initiates the process by transmitting a “probe request” message to iAPs. Upon receipt
of the probe request message, the iAPs forward the message to the iAP controller along
with the received RSSI value. Additionally, the iAPs periodically send local information,
such as the number of connected IoT devices, to the iAP controller. The iAP controller
utilizes global information, updated with the local information from the iAPs and various
learning models, to select the optimal iAP and recommends the Tx power value for the IoT
device. The selected iAP is then instructed to respond to the probe request with information
on the recommended optimal transmitting power value of the IoT device. Upon receiving
the probe response message from the selected optimal iAP, the IoT device establishes
a connection with the optimal iAP and transmits IoT data with the recommended Tx
power. The iAP controller employs an EL-RL model for optimal AP selection, which
takes into account both energy and latency factors, to determine the energy-efficient AP
selection. Additionally, the iAP controller employs a location estimation model to estimate
the location of the IoT device and calculates the optimal transmit power value of the IoT
device based on the estimated location.

IoT1

iAP1
iAP controller

iAP2

iAP3

Receive 𝑅𝑆𝑆𝐼1,1

Receive 𝑅𝑆𝑆𝐼1,2

Receive 𝑅𝑆𝑆𝐼1,3

EL-RL
model

Recommend 
Tx power 

model
DB

Energy Latency Fingerprinting

map

Location 
Estimation 

model

① probe request
② Deliver probe request 
with 𝑅𝑆𝑆𝐼 (𝑒𝑥: 𝑅𝑆𝑆𝐼1,2) 

④ Assign optimal iAP to selected iAP and 
recommend transmitting power for the IoT device

Figure 3. Process of iAP control system.
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3.2. Procedure of iAP Control System

The procedure of the iAP controller is presented in Figure 4. The summary of key
symbol definitions is presented in Table 2 for reference. The iAP controller updates the
global network status information that includes the number of IoT devices (NIoT) connected
to each iAP (NAP) and the signal strength (RSSIi,j) between the IoT device i and iAP j.
Using the received RSSIi,j information from several iAPs, the iAP controller calculates
the candidate iAP set Ci based on the RSSI of IoT device i and the global network status.
Then, the iAP controller employs the revised ideal CSMA (Carrier-Sense Multiple Access)
network model to compute the energy consumption (Ei,j) and latency (Li,j) of IoT device i
in set Ci. Subsequently, the iAP controller trains the EL-RL model to optimize the objective
function based on the average energy consumption and the average latency of IoT device i
in the candidate iAP set Ci. Using the model, the iAP controller selects the iAP with the
highest expected reward (considering the average energy consumption and average latency)
for IoT device i. Moreover, the iAP controller determines the recommended transmitting
power of IoT device i based on the fingerprinting map and assigns an iAP for the IoT
device i, following which the iAP controller sends the control message to the selected iAP.
Subsequently, the selected iAP transmits a “probe response” message to the IoT device i,
which contains the recommended Tx power value. Upon receiving the “probe response”
message, the IoT device i performs a connection handshake and transmits uplink data to
the selected iAP with the recommended Tx power.

Table 2. Key notations.

Notation Definition Notation Definition

NIoT Number of IoT devices NAP Number of iAP

RSSIi,j Signal strength between IoT i and iAP j Ci Candidate iAP set of IoT i for connection

Ei,j Energy consumption of IoT i when connecting to iAP j Li,j Uplink latency of IoT i when connecting to iAP j

Eavg Average energy consumption of overall IoTs Lavg Average uplink latency of overall IoTs

Pc(n) Collision prob. of the nth transmission attempt Pa(n) Transmission prob. of the nth transmission attempt

an Number of IoTs attempting nth transmission attempt PA Sum of all attempted transmission probs.

E(n) Consumed energy by the nth transmission attempt Padaptive
tx Adaptive Tx power of IoT device

Ttx(n) Total Tx mode time of nth transmission attempt Trx(n) Total Rx mode time of nth transmission attempt

Tsleep(n) Total sleep mode time of nth transmission attempt Prx Receive mode power of IoT devices

Psleep Sleep mode power of IoT devices Ndata Amount of data transmitted at one time

NL2data Amount of L2ACK message at one time B Bandwidth for uplink channel

γ Target SINR TACKtimeout Time set for ACK timeout

TACKtime Time for receiving ACK message Tbeacons Time for receiving beacons

Iperiod Transmission period σ(n) Average backoff time of nth transmission attempts

The functional architecture of the iAP system, consisting of IoT device, iAP, and iAP
controller, is presented in Figure 5. Upon achieving the optimal iAP connectivity, the IoT
devices wirelessly transmit IoT data to the iAP via the MQTT (Message Queuing Telemetry
Transport) application layer using the TCP (Transmission Control Protocol) transmission
method to ensure the protection and reliability of the data [15]. The iAP receives and stores
the IoT data in its local cache before forwarding the data to the iAP controller, which is
located on a cloud server and responsible for storing and analyzing the data in a database.
Using the analyzed data, the iAP controller trains various AI models that are subsequently
deployed to the iAP. The device energy management module in the iAP manages the energy
consumption of the IoT devices by sending control messages to the IoT devices, which
contain operating variable values. The IoT devices, in turn, adjust their data transmission
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period, DTIM (Delivery of Traffic Indication Map) value, Tx power, and other parameters
based on the received control message, thus improving their energy efficiency.

IoT device 𝒊 iAP iAP controller

Broadcast “probe-request’ 
message.

Send the local network status 
information (number of connected 
IoT devices and RSSI of IoT devices) 
to the iAP controller with periodic T.

Update the global network status information, which contains the 
number of IoT devices of iAPj and the signal strength RSSIi,j between 
IoTi and iAPj.

Receive the “probe-request” message 
and send the information (RSSIi) of 
the IoT device 𝒊 to the iAP controller.

Receive the RSSIi,j information of the IoT device 𝑖 from several iAPs (iAPj), 
and get the candidate iAP set Ci based on the RSSIi,j of IoT device 𝑖
and global network status.

Calculate the avg. energy (𝑬𝒊,𝒋) and the avg. latency (𝑳𝒊,𝒋) of the IoT 

device 𝑖 in the candidate iAP set Ci based on the proposed model.

Train the Energy and Latency reinforcement learning (EL-RL) model 
to minimize the objective function 𝒇(𝒊) using the the avg. energy (𝐸𝑖,𝑗) 

and the avg. latency (𝐿𝑖,𝑗) of the IoT device 𝑖.

Select the iAP with the best reward (considering avg. energy and avg. 
latency) of the IoT device 𝑖.

Calculate the recommended Tx power of the IoT device 𝒊 based on 
the location estimation model, and assign the iAP for the IoT device 𝑖
and send the control message to the selected iAP.

The selected iAP sends “probe-
response” message to the IoT device 
𝑖 which contains the recommended 
Tx power of the IoT device 𝑖.

Receive the “probe-response” 
message and proceed to 
perform a connection
handshake, and transmit a 
uplink data to the selected 
AP with the recommended Tx 
power.

Figure 4. Procedure of iAP controller.
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Figure 5. Functional architecture of iAP system.

4. Energy and Latency Reinforcement Learning (EL-RL) Model

The proposed Energy and Latency Reinforcement Learning (EL-RL) model is illus-
trated in Figure 6. The model is designed for iAP selection, where the environment sends
state information in the form of st to the EL-RL agent. The state st is determined based on
the RSSI between the IoT device and the candidate iAP, as well as the number of MTs cur-
rently connected to the iAP. At this stage, action at represents the candidate iAP to connect
the IoT device. The numerical solver then computes the reward rt, taking into account the
number of connected IoT devices and their distances from the chosen iAP. Additionally,
the reward is calculated based on the average energy consumption and latency of IoT
devices. Thus, the EL-RL model aims to minimize the average energy consumption and
latency of all connected IoT devices, which is set as the objective function. The EL-RL agent
receives the reward rt and selects a new action, and this process continues iteratively until
the agent obtains the maximum reward through reinforcement learning. The notations
used in the EL-RL model are defined as follows:
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• State, st

– Global network information (RSSIi,j, nj) where i ∈ (1, 2, ..., NIoT), j ∈ (1, 2, ...,
NiAP).

– Candidate iAP set Ci of the IoT device i where Ci =
(
iAP1, iAP2, ..., iAPcj

)
.

• Action, at

– Select iAPs of the IoT device i where Ci =
(
iAP1, iAP2, ..., iAPcj

)
.

– where subscript cj is the number of candidate iAPs for connecting the IoT device
i among all iAPs.

• Reward(penalty), rt

– α · Ei,j + β · Li,j.
– where α is the weight for avg. energy consumption and β is the weight for

avg. latency.

• Policy

– Minimize the objective function J(i) = argmin
{

α · Eavg + β · Lavg
}

.

EL-RL Agent

for iAP selection

Environment

Action at

State 𝑠𝑡

Reward 𝑟𝑡

𝑠𝑡+1

Numerical solver

Simulator

𝑟𝑡+1

Number of 

associated 

IoT devices

Distance of 

associated 

IoT devices

Figure 6. Energy and Latency Reinforcement Learning (EL-RL) model.

In addition, the proposed iAP control system includes a location estimation ML model.
This model employs a fingerprint method, which estimates location based on RSSI values
by comparing them with reference point values stored in the database. The fingerprint
method is widely recognized as the most suitable method for indoor positioning [21,22].
Once the location is estimated, the distances to each candidate iAP are calculated, and the
recommended Tx power values are determined according to the adaptive Tx power equa-
tion (Equation (A1)) in the Appendix A [15]. The iAP controller selects the optimal AP
based on the EL-RL model and sends the recommended transmitting power to the IoT
device. The iAP controller then updates the localization ML model and EL-RL model.

In the training procedure of the EL-RL model, each training data instance is obtained
whenever a new connection is established between a MT and an AP. Each training data
instance consists of the state st, which includes information such as the RSSI between
the MT and AP and the number of already connected MTs for each AP. Additionally, it
contains the action at representing the selected AP for the connection and the reward rt
associated with the chosen action in terms of network performance, such as latency and
energy efficiency. To facilitate the training process, the training data is constantly stored
in the iAP controller’s storage as new connections are made. From this dataset, a batch of
training data is randomly selected for training the EL-RL model. This random selection
helps ensure a diverse and representative sample of the training instances. To further
enhance the learning process, the reward for each action in the selected training data
is adjusted using the Proximal Policy Optimization (PPO) algorithm [23]. By adjusting
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the rewards, the model can better estimate the impact of each action on future network
performance. During each epoch of training, the model’s parameters are iteratively updated
using randomly chosen training data. This iterative process allows the model to gradually
improve its performance and adapt to various network conditions. The training continues
for several epochs until the total reward converges, indicating that the model has learned
an optimal policy for AP selection.

4.1. Collision Probability

The energy consumption caused by traffic retransmissions resulting from packet
collisions is demonstrated in Figure 7. When an IoT device and any other IoT devices try to
simultaneously transmit a packet during the first transmission attempt from the IoT device
perspective, a collision occurs between the transmitted packets, and a timeout for the IoT
device occurs because an ACK(Acknowledgement) packet has not been received. Once the
channel becomes idle again, the IoT device attempts a second transmission using a random
backoff time within the double contention window size. The same process applies to the
collisions encountered during the second through sixth transmission attempts. If a collision
happens even on the seventh transmission attempt, the packet is discarded, and there is no
further retransmission attempt.

Tx

Rx

DIFSBackoff TimeoutTransmission Sleep

Tx

Rx

DIFSTransmission

CH. Idle

Tx

Rx

TimeoutTransmission

CH. IdleCH. Idle Packet 
Drop

Initial 
Transmission

1st
Retransmission

6th 
Retransmission

Sleep DIFS Sleep

Packet
collision

Backoff Backoff

(Time)

(C
o
n
su

m
e
d
 P

o
w

e
r)

Packet
collision

Packet
collision

Figure 7. Energy consumption according to retransmissions.

To examine the energy consumption attributed to retransmissions, we conduct mathe-
matical calculations of collision probabilities based on realistic collision simulations. As per
the IEEE 802.11 standardization, we consider that the IoT device could transmit the same
packet a total of seven times, which includes the initial transmission attempt. Hence,
the maximum number of retransmission attempts (m) is six [24,25], the minimum con-
tention window size CWmin is 31 time slots, the maximum contention window size CWmax
is 1023 time slots, and the maximum number of recursive attempts to increase CW is
6 [24,25]. We define the collision probability for each transmission attempt as Pc(n) and the
transmission attempt probability as Pa(n) in follows.

• Pc(n): Collision probability of the nth transmission attempt

– Pc(1): Collision probability of the 1st transmission attempt.
– Pc(2): Collision probability of the 2nd transmission attempt after 1st transmis-

sion failure.
– Pc(3): Collision probability of the 3rd transmission attempt after 2nd transmis-

sion failure.

–
...

...
– Pc(7): Collision probability of the 7th transmission attempt after 6th transmis-

sion failure.

• Pa(n): Transmission probability of the nth transmission attempt

– Pa(1) =
(
1− e−λ

)
: Transmission probability of 1st transmission attempt.
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– Pa(2) =
(
1− e−λ

)
Pc(1): Transmission probability of the 2nd transmission at-

tempt after 1st transmission failure.
– Pa(3) =

(
1− e−λ

)
Pc(1)Pc(2): Transmission probability of the 3rd transmission

attempt after 1st and 2nd transmission failure.

–
...

...
– Pa(7) =

(
1− e−λ

)
Pc(1)Pc(2)Pc(3)Pc(4)Pc(5)Pc(6): Transmission probability of

the 7th transmission attempt after 6th transmission failure.

Therefore, the transmission probability of the nth transmission attempt, Pa(n) is given by
Equation (1),

Pa(n) =
(

1− e−λ
) n

∏
1

Pc(n− 1), s.t. Pc(0) = 1. (1)

In this paper, a collision occurs when more than one IoT devices share the same time
slot for attempting uplink transmissions. For example, when one device among N devices
is trying to transmit within a certain time slot, another device among N − 1 devices may
try to transmit simultaneously. We take into account the concurrent transmission attempt
in the following collision model. The transmission collision probability is formulated from
a new perspective in Equation (2),

Pc(n) = ∑
a1,a2,a3,a4,a5,a6,a7

Ps
( N−1

a1

)
Pa(1)a1

( N−1−a1
a2

)
Pa(2)a2 . . .

( N−1−(a1+a2+...+a6)
a7

)
Pa(7)a7(1− PA)

a0

= ∑
a1,a2,a3,a4,a5,a6,a7

Ps
(N − 1)!

a1!a2!a3!a4!a5!a6!a7!a0!
Pa(1)a1 Pa(2)a2 . . . Pa(7)a7(1− PA)

a0

= ∑
a1,a2,a3,a4,a5,a6,a7

Ps
(N − 1)!

∏m+1
n=0 (an)!

m+1

∏
n=1

Pa(n)an(1− PA)
a0 , s.t.N−1=∑m+1

n=0 an , (2)

– where Ps =

{
1, when there is another transmission,
0, when there is no other transmission,

– where N − 1 = ∑m+1
n=0 an

– where PA = ∑m+1
n=1 Pa(n)

This collision probability is calculated by considering the packet collision probability
within a single arbitrary time slot. Additionally, this collision probability considers the
actual collision probability for ML, which can be solved numerically. Concerning the
transmitting devices at an arbitrary time slot, the number of devices attempting the first
transmission in that time slot is represented by a1, and the number of devices attempting
the second transmission is expressed as a2. Likewise, an describes the number of devices
attempting nth transmission in that time slot for n = 0, 1, 2, ..., 7. In addition, a0 is the
number of devices with no transmission attempt in the same time slot.

The collision probability is defined as the sum of the values multiplied by the number
of cases in which collision can happen and the transmission attempt probability. Here,
if there is no transmission from any device at that time slot, the Ps has a value of 0, and it
is considered that no collision has occurred. Furthermore, PA is defined as the sum of
all attempted transmission probabilities. The collision probability based on these actual
collisions was calculated with numerical techniques.

4.2. Energy and Latency of IoT Devices

In this subsection, we present the average energy consumption and the average
latency model of IoT devices based on the collision probability. The average energy
consumption of IoT devices can be obtained as the sum of the product of the probability
of all transmission attempts, the probability of successful transmission without collision,
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and the energy consumption value according to the nth transmission attempt. The average
energy consumption of IoT devices is given as Equation (3),

Eavg =
n

∑
1

Pa(n)
1− e−λ

[1− Pc(n)]E(n). (3)

The energy consumed by the nth transmission attempt is the sum of the product of
the operation time of each operation mode and the power used in that operation mode as
follows in Equation (4).

E(n) = Padaptive
tx · Ttx(n) + Prx · Trx(n) + Psleep · Tsleep(n). (4)

The total Tx mode time according to the transmission attempt consists of data trans-
mission time and ACK transmission time in Equation (5). The data transmission time can
be obtained by multiplying the number of transmission attempts by the time required to
send one transmission data, and the ACK transmission time can be obtained by the time
required to send an L2ACK message once.

Ttx(n) = n · Ndata
Blog2(1 + γ)

+
NL2ack

Blog2(1 + γ)
, (5)

where Ndata is a 104 bytes, NL2ack is a 54 bytes, B is a 160 kHz, and γ is a 40 dB [15].
The total Rx (Receive) mode time according to the transmission attempt is given by

Trx(n) = (n− 1) · TACKtimeout + TACKtime + Tbeacons, (6)

where TACKtimeout is a 337 µs, TACKtime is a 44 µs [12], and Tbeacons is a
∣∣∣ Iperiod

ndtim ·Ibeacon

∣∣∣ · tbeacon

µs [15]. The time calculated in Rx mode is the sum of the ACKtime time value, the beacon
reception time value, and the product of the number of times sent so far and the time set
by ACKtimeout.

The total sleep mode time according to the transmission attempt is given by

Tsleep(n) = Iperiod − Ttx(n)− Trx(n), (7)

where Iperiod is a 1 s of the transmission period. The total sleep mode time per transmission
attempt can be obtained by subtracting the Tx mode time and the Rx mode time from
the period.

In addition, the adaptive Tx power according to the distance, Padaptive
tx , can be obtained

as Equation (A1) in the Appendix A [15]. The average uplink latency of IoT devices is
calculated by the below Equation (8). The average latency is composed of the average
backoff time, the average transmission time for successful delivery, and the average collision
time for transmission failure according to the nth transmission attempts,

Lavg =
n

∑
1

Pa(n)
1− e−λ

[σ(n) + (1− Pc(n))Ta(n) + Pc(n)Tc(n)]. (8)

The average backoff time of nth transmission attempts is given by

σ(n) =
2n−1 ·Winitial

2
· timeslot, (9)

where timeslot is a 20 µs, and Winitial is a 16 as a default value [12]. The average transmission
time for the successful delivery of nth transmission attempts is given by

Ta(n) = (n− 1)Tc(n) +
Ndata

Blog2(1 + γ)
+ SIFS + TACKtime + DIFS, (10)
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where SIFS is a 10 µs, TACKtime is a 44 µs, and DIFS is a 50 µs [12]. The average collision
time for transmission failure of nth transmission attempts is given by

Tc(n) = n ·
(

Ndata
Blog2(1 + γ)

+ TACKtimeout + DIFS
)

, (11)

where TACKtimeout is a 337 µs, and DIFS is a 50 µs [12].
To calculate the average consumed energy of an IoT device, we use the RSSI values

and the number of IoT devices that are connected to the iAPs. Moreover, to calculate the
average latency of an IoT device, we use the number of IoT devices that are connected with
iAPs for load balancing. The objective function of the proposed EL-RL model has defined
below in Equation (12),

J(i) = argmin
{

α · Eavg + β · Lavg
}

, (12)

where α and β are the weight of average energy consumption and average latency, respec-
tively. The goal of the objective function is to minimize the weighted sum of the average
energy value and average latency value.

5. Performance Evaluation

The simulator uses Python and the PyTorch library for the PPO algorithm implemen-
tation [26]. The parameter settings for simulation are shown in Table 3.

Table 3. Simulation parameters.

Parameters Value

Distance between IoT and AP 1 m∼15 m
Distance between APs 20 m
Cell coverage of an AP radius 15 m (circle)

Number of APs 3 iAPs (triangle position)
Number of IoT devices 50, 100, 150, 200

Sensing Data 64 bytes
TCP/IP header 40 bytes

Ndata 104 bytes
ACK 14 bytes
NL2ack 54 bytes

Bandwidth, B 160 kHz
SINR, γ 40 dB

Maximum retransmission number, m 3
Transmit mode power of IoT devices, Ptx 0.45 W

Adaptive Transmit power of IoT devices, Padaptive
tx <0.45 W

Receive mode power of IoT devices, Prx 0.15 W
Sleep mode power of IoT devices, Psleep 0.00009 W

ACKtime 44 µs
ACKtimeout 337 µs

Transmission period, Iperiod 1 s
DTIM value, ndtim 3

Beacon interval, Ibeacon 100 ms
SIFS 10 µs
DIFS 50 µs

Slot time 20 µs
Initial contention window size, CWmin 16

Maximum contention window size, CWmax 128
Distribution ratio of the [AP1:AP2:AP3] [1:1:1], [1:9:9], [1:10:3]
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For the simulation, we assume the total number of APs is three, the distance between
the APs is 20 m, and the cell coverage is 15 m. In addition, it is assumed that the IoT devices
in each APs are normally distributed with respect to the iAP location, which is placed at
the center of the cell. The distribution ratio of IoT between APs are assumed to be [1:1:1],
[1:9:9], and [1:10:3]. These represent hotspot scenarios: balanced scenario, two hotspots
scenario, and one hotspot scenario, respectively. The total numbers of IoT devices applied
to the simulation are 50, 100, 150, and 200. Reinforcement learning of the EL-RL model
is performed based on the PPO algorithm, which shows the best performance and fastest
learning in various fields [27] (Figure 8).

Case 3.
Distribution ratio: [1:10:3]

AP1

AP2

AP3

Case 1.
Distribution ratio: [1:1:1]

AP1

AP2

AP3

Case 2.
Distribution ratio: [1:9:9]

AP1

AP2

AP3

AP

P
ro

b
a
b
ili

ty
 d

e
n
si
ty

Standard normal distribution

Figure 8. EL-RL model environment setting.

The reason for using the PPO algorithm is as follows. First, it is rare for a sequence to
produce a similar state because the state in a sequence is defined by the distance between
the IoT device and the AP and the number of devices connected to the AP. Second, in order
to train EL-RL model from numerous amount of various sequences, we must carefully
consider the effect of current actions on future actions, i.e., the final return value. Therefore,
we implement an advantage actor-critic-based PPO algorithm as a value-based algorithm
that can efficiently consider the return value for the current action.

The agent of the proposed EL-RL model is based on the PPO algorithm. The state, action,
reward weight values, and epoch of the EL-RL model for the simulation are as follows.

• State: (RSSI(AP1), RSSI(AP2), RSSI(AP3), N(AP1), N(AP2), N(AP3) )

– RSSI(APn) represent the RSSI value of the IoTx,y at the APn.
– N(APn) represent the number of connected IoT devices in the APn.

• Action: {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
– (1, 0, 0) represent selection to AP1.
– (0, 1, 0) represent selection to AP2.
– (0, 0, 1) represent selection to AP3.

• Reward weight value: −1000× Ex,y − 1000× Lx,y

– Ex,y: Average energy consumption of IoTx,y.
– Lx,y: Average uplink latency of IoTx,y.

• Epoch: 200

We compare three AP selection models for performance evaluation. First, the legacy
AP selection model that only uses RSSI value to select AP is presented as ‘legacy AP with
RSSI’. Second, the proposed iAP selection model that only uses RSSI value to select iAP
with an adaptive Tx power is expressed as ‘proposed iAP with RSSI’. Last, the proposed
iAP selection model that uses the EL-RL agent to select iAP is denoted as ‘proposed iAP
with EL-RL’. With three AP selection models, we consider three cases regarding distribution
ratios of IoT devices between APs as follows.

• Case 1: refers to the balanced case (the distribution ratio between APs is [1:1:1]).
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• Case 2: refers to the two hotspots case (the distribution ratio between APs is [1:9:9]).
• Case 3: refers to the one hotspot case (the distribution ratio between APs is [1:10:3]).

The results for each model in all experiments are the average value obtained from
500 simulations.

Figure 9 presents the average energy consumption of IoT devices according to the
distribution ratio between APs. In all cases, the average energy consumption of IoT devices
shows an increasing trend as the number of devices increases. For Case 1, the energy
consumption performance of the two proposed iAP models (namely ‘proposed iAP with
RSSI’ and ‘proposed iAP with EL-RL’) are better than that of the ‘legacy AP with RSSI’
model, but the energy consumption values of the two models are comparable as shown in
Figure 9a. Since Case 1 is already load-balanced, it shows similar performance between the
two proposed models. However, the two proposed iAP models demonstrate lower energy
consumption, at 63∼66%, compared to the legacy AP model because of the adaptive Tx
power and the prompt ACK reception function in the iAP system. In Case 2 and Case 3,
as shown in Figure 9b,c, respectively, the average energy consumption of IoT devices
increases with the increasing number of IoT devices, a similar trend to Case 1. In Case 2,
where there are two hotspot APs, the two proposed iAP models exhibit energy consumption
performance ranging from 62% to 65% compared to the legacy AP model. On the other hand,
in Case 3, where there is only one hotspot AP, the two proposed iAP models demonstrate
better performance in terms of energy consumption ranging from 47% to 64% compared to
the legacy AP model. Especially the ‘proposed iAP with EL-RL’ model performs the best
in Case 3, exhibiting energy consumption of only 47.1% compared to the ‘legacy AP with
RSSI’ model, with a total of 100 IoT devices. This is because the ‘proposed iAP with EL-RL’
model has a better load-balancing effect that reduces retransmission energy.

(a) (b) (c)

Figure 9. Average energy consumption of IoT devices according to the distribution ratio. (a) Case 1.
distribution ratio 1:1:1. (b) Case 2. distribution ratio 1:9:9. (c) Case 3. distribution ratio 1:10:3.

Figure 10 displays the average energy consumption of IoT devices for cases with re-
spect to the different numbers of IoT devices. The results indicate that the two proposed iAP
models outperform the legacy AP model in terms of energy consumption performance. Par-
ticularly, the ‘proposed iAP with EL-RL’ model demonstrates the best energy consumption
performance, achieving an energy reduction of 47.1% in the 1:10:3 distribution of 100 IoT
devices. This outcome is due to the ‘proposed iAP with EL-RL’ model’s load-balancing
scheme, which selects the optimal AP while taking into account both energy consumption
and latency.

Figure 11 presents the average uplink latency of IoT devices according to the distri-
bution ratio between APs. Figure 11a shows the average uplink latency of IoT devices for
Case 1. The average uplink latency of each model increases as the number of IoT devices
increases due to retransmissions resulting from packet collisions. However, the two pro-
posed iAP models exhibit almost the same average uplink latency as the legacy AP model
since the APs are already load-balanced. Figure 11b,c shows the average uplink latency
of IoT devices for Case 2 and Case 3, respectively. In Case 2, where there are two hotspot
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APs, the ‘proposed iAP with EL-RL’ model demonstrates a latency ranging from 71% to
94% compared to the legacy AP model. This is because only the ‘proposed iAP with EL-RL’
model selects the AP, taking into account the latency of IoT devices. Furthermore, in Case 3,
where there is only one hotspot AP, the ‘proposed iAP with EL-RL’ model exhibits better
performance, with a latency ranging from 50% to 82% compared to the legacy AP model.
From this, we can see that the ‘proposed iAP with EL-RL’ model shows better latency
performance as the unbalanced load situation worsens.

(a) (b)

(c) (d)
Figure 10. Average energy consumption of IoT devices according to density. (a) Total 50 IoT devices.
(b) Total 100 IoT devices. (c) Total 150 IoT devices. (d) Total 200 IoT devices.

(a) (b) (c)

Figure 11. Average uplink latency of IoT devices according to the distribution ratio. (a) Case 1.
distribution ratio 1:1:1. (b) Case 2. distribution ratio 1:9:9. (c) Case 3. distribution ratio 1:10:3.

The average uplink latency of IoT devices under each case with the different number
of IoT devices is depicted in Figure 12. The results indicate that in Cases 2 and 3 where load
balancing is required, the ‘proposed iAP with EL-RL’ model is superior in terms of latency
performance to both the ‘legacy AP with RSSI’ model and the ‘proposed iAP with the RSSI’
model. This is because the EL-RL model minimizes the number of retransmissions through
load balancing. Specifically, the ‘proposed iAP with EL-RL’ model demonstrates the best
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latency performance, achieving a latency reduction of 50.5% in the 1:10:3 distribution ratio
of 100 IoT devices. This outcome is due to the ‘proposed iAP with EL-RL’ model’s load-
balancing scheme, which chooses the optimal AP considering the latency of IoT devices.

(a) (b)

(c) (d)
Figure 12. Average uplink latency of IoT devices according to the density. (a) Total 50 IoT devices.
(b) Total 100 IoT devices. (c) Total 150 IoT devices. (d) Total 200 IoT devices.

Figure 13 presents the expected lifespan of an IoT device, under the different distribu-
tion ratios between APs. In Case 2 of the 1:9:9 distribution ratio between APs, the expected
lifespan of an IoT device is shown in Figure 13a. The ‘proposed iAP with EL-RL’ model can
significantly enhance the expected lifespan, with an improvement ranging from 1.6 times
to 1.9 times roughly when compared to the ‘legacy AP with RSSI’ model. Furthermore,
Figure 13b displays the expected lifespan of an IoT device according to Case 3 of the 1:10:3
distribution ratio between APs. The ‘proposed iAP with EL-RL’ model offers an even
more significant improvement in the expected lifespan, roughly ranging from 1.7 times to
2.1 times when compared to the legacy AP model. From this, it can be seen that the ‘pro-
posed iAP with EL-RL’ model shows better energy-saving performance as the unbalanced
load situation deepens. As such, the increased expected lifespan of IoT devices using the
‘proposed iAP with EL-RL’ model can be of great help in providing various IoT services by
solving the problem of frequent battery replacement.

The generalization of IoT device location (i.e., the location of each IoT device has
continuously changed as epoch increased) in the EL-RL model is demonstrated in Figure 14
under three cases, each with a total of 100 devices and different distribution ratios between
APs. In Case 1 where the distribution ratio is 1:1:1, Figure 14a displays the location
generalization. Case 2 with a distribution ratio of 1:9:9 is presented in Figure 14b. Finally,
Figure 14c illustrates Case 3 where the distribution ratio is 1:10:3. As the epoch progresses,
the IoT devices located at the overlapping section tended to select the AP connected with a
smaller number of IoT devices to maintain stable load balancing in terms of energy efficiency
and latency. Therefore, regardless of the distribution of IoT devices, the proposed EL-RL
model can be stably trained under the generalization of IoT device location, and improve
the energy efficiency and latency performance of IoT devices.
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(a) (b)
Figure 13. Expected lifespan of an IoT device according to the distribution ratio. (a) Case 2. distribu-
tion ratio 1:9:9. (b) Case 3. distribution ratio 1:10:3.

(a)

(b)

(c)

Figure 14. Generalization of the location of IoT devices in EL-RL model. (a) Generalization of Case 1:
distribution ratio 1:1:1. (b) Generalization of Case 2: distribution ratio 1:9:9. (c) Generalization of
Case 3: distribution ratio 1:10:3.

The convergence analysis of the EL-RL model is demonstrated in Figure 15 under three
different distribution ratios between APs, in order to examine its performance in various
scenarios. Figure 15a depicts the convergence behavior of the model when the distribution
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ratio is 1:1:1. The reward of the EL-RL model quickly and efficiently converges after approx-
imately 25 epochs of training, while the energy consumption and latency also gradually
converge as the epochs progress. Similarly, the convergence behavior of the EL-RL model
is presented in Figure 15b when the distribution ratio is 1:9:9. As observed in the previous
case, the reward, energy consumption, and latency of the EL-RL model converge efficiently
after approximately 25 epochs of training. Finally, Figure 15c illustrates the convergence
behavior of the EL-RL model when the distribution ratio is 1:10:3. The reward of the model
gradually converges as the epochs progress, indicating that the reinforcement learning
was successful. Although the reward changes rapidly in some cases, the range of change
decreases as the learning progresses and ultimately converges. Additionally, the energy
consumption and latency of the EL-RL model also converge as the epochs progress.

(a)

(b)

(c)

Figure 15. Convergence of EL-RL model. (a) Convergence of Case 1. distribution ratio 1:1:1. (b) Con-
vergence of Case 2. distribution ratio 1:9:9. (c) Convergence of Case 3. distribution ratio 1:10:3.

To address the training and inference time of the EL-RL model, we provide compre-
hensive information in Table 4, which summarizes the average training time per epoch
and the average inference time per input instance. The simulations were conducted on a
computer system with a 64-bit Intel Core i7-800 CPU, and 16 GB of RAM. The simulation
results reflect the duration required for training the EL-RL model and the inference time
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for making AP selections across different cases. It is noteworthy that the average training
time per epoch increases with a higher number of MTs. Nevertheless, the overall training
duration remains within 25 epochs, equivalent to less than 10 min. Furthermore, the train-
ing and inference procedures can be decoupled. The iAP operates using the most recently
updated EL-RL model, which is redistributed to the iAPs when the model is updated at
the iAP controller with an accumulated training dataset. This approach enables dynamic
and iterative training, enhancing the model’s effectiveness over time. With an average
inference time below 0.5 milliseconds, the EL-RL model has a minimal impact on the overall
time required for establishing connections, typically measured in seconds [28]. Therefore,
the EL-RL model demonstrates its feasibility for real-world AP selection scenarios without
significantly increasing connection setup delays. Finally, while the training and inference
of the EL-RL model primarily utilize the CPU, incorporating GPU acceleration can further
reduce processing time in both the training and inference stages.

Table 4. Training and Inference time of EL-RL model.

Distribution Ratio 1:1:1 1:9:9 1:10:3

Number of IoT devices 50 100 150 200 50 100 150 200 50 100 150 200
Training time (s) 1.88 4.56 7.72 12.4 2.28 4.95 8.23 14.6 2.61 4.67 8.51 14.2

Inference time (ms) 0.255 0.279 0.293 0.275 0.265 0.271 0.239 0.299 0.264 0.235 0.288 0.272

6. Conclusions

In this paper, we propose an energy-efficient AP selection scheme for IoT devices that
uses reinforcement learning to minimize energy consumption and latency. To achieve this
goal, we develop an iAP control system for selecting the optimal AP in Wi-Fi networks. We
also introduce a novel energy-efficient AP selection model, EL-RL model, which utilizes
RSSI values and the number of IoT devices connected to APs to balance the load. Addition-
ally, we design an energy and latency reinforcement learning (EL-RL) model to address the
load-unbalancing problem. Furthermore, we control the adaptive Tx power of IoT devices
by employing a location estimation ML model and a Tx power recommendation model.
We evaluate the proposed scheme by analyzing the energy consumption, uplink latency,
and collision probability in Wi-Fi networks. Our results show that the proposed scheme can
achieve a maximum improvement in energy efficiency of 53%, a 50% reduction in latency,
and a 2.1-times improvement in the expected lifespan of IoT devices.

In future research, it would be valuable to explore the potential limitations and exten-
sions of our proposed scheme. One possible direction is to investigate the applicability of
the EL-RL model and iAP control system for different types of IoT devices or in diverse
environmental conditions, such as an industrial IoT service. Additionally, the proposed
scheme could be adapted to incorporate other relevant factors, such as network conges-
tion or device mobility, to further optimize energy efficiency and latency. By addressing
these aspects, we can continue to enhance the performance and versatility of the proposed
scheme, making it more robust and adaptable for various IoT scenarios.
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Appendix A

Equation of adaptive transmitting power according to the distance between the IoT
device and the AP from the reference [15].

Padaptive
tx = PI+PN

L γ∗ = PI+PN
L

[
exp
(

1 + W
[

A2/A1−1
e

])
− 1
]
,

where A1 = µLo Nm(1+Pe)
Bd−ah (PI + PN), A2 = Nm(1+Pe)Po

B .

(A1)

PI is the measured interference power at the iAP, PN is the measured noise power at the
iAP, and γ∗ is the target SINR at the minimum bound seen by the iAP, respectively. L
is the total loss factor between the IoT device and the iAP, and the loss factor can be
modeled, for example, by using the distance path-loss model with a fading component,
i.e., L = 1

Lo
d−ah [29], where Lo is a constant depending on the transmission frequency and

the antenna gains, d is the distance between transmitter and receiver, B is the bandwidth of
the channel, a is the path-loss exponent, and h is a random variable representing the channel
fading, respectively [29,30]. And µ is the conversion factor of a power amplifier from electric
power to RF power, Nm is a fixed message length, Pe is retransmission probability, and Po
is the electronic power consumption overhead incurred in the communication module to
encode a message, respectively. When using the Lambert-W function, that is, W[z]eW[z] = z,
we can calculate the optimal transmitting power of the IoT device [15].

The adaptive Tx power according to the distance can be obtained by Equation (A1),
and the amount is displayed as a logarithmic graph as the distance increases, as shown in
the below Figure A1.
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Figure A1. Adaptive transmitting power according to the distance.
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