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Abstract: Biometrics-based authentication has become the most well-established form of user recog-
nition in systems that demand a certain level of security. For example, the most commonplace
social activities stand out, such as access to the work environment or to one’s own bank account.
Among all biometrics, voice receives special attention due to factors such as ease of collection, the
low cost of reading devices, and the high quantity of literature and software packages available
for use. However, these biometrics may have the ability to represent the individual impaired by
the phenomenon known as dysphonia, which consists of a change in the sound signal due to some
disease that acts on the vocal apparatus. As a consequence, for example, a user with the flu may not
be properly authenticated by the recognition system. Therefore, it is important that automatic voice
dysphonia detection techniques be developed. In this work, we propose a new framework based on
the representation of the voice signal by the multiple projection of cepstral coefficients to promote
the detection of dysphonic alterations in the voice through machine learning techniques. Most of
the best-known cepstral coefficient extraction techniques in the literature are mapped and analyzed
separately and together with measures related to the fundamental frequency of the voice signal, and
its representation capacity is evaluated on three classifiers. Finally, the experiments on a subset of
the Saarbruecken Voice Database prove the effectiveness of the proposed material in detecting the
presence of dysphonia in the voice.

Keywords: dysphonia detection; voice disorder detection; pattern recognition; cepstral analysis;
machine learning

1. Introduction

User authentication systems can be defined by objects that an individual has, such as
an access card; or records, such as login data [1]. Despite being successfully used in many
applications, these systems have weaknesses in their operation, since the user may lose the
access object or forget the information necessary for authentication. Alternatively, biometric
authentication systems (BASs) [2] conduct user recognition based on their physiological
and behavioral properties, which are known as biometrics [3], and hence are not trivially
lost or forgotten. Voice, for example, is a biometric with great potential for applications
in BASs [4], which defines voice-based authentication systems (VASs) [5]. Among the
advantages of its use, we can highlight its uniqueness with the user, since each individual
has a voice characterized by their unique vocal tract [6]; its ease of collection [7], since the
biometrics reading is performed in a completely noninvasive way and without any physical
interaction with devices, which also guarantees asepsis; a large quantity of literature [8]
and computational packages [9] available for use; and the low cost of devices [10] used
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for collection, since any electronic system connected to a microphone can be used for
this purpose [11]. For example, we can mention cell phones, which, due to their recent
cheapening, are used by a large part of the world’s population [12], and consequently, can
be used in voice recognition and authentication [13]. In addition, smart assistance devices
that respond to voice commands from registered users such as Amazon AlexaTM [14],
Google HomeTM [15], and Apple SiriTM [16], among others [17], are becoming popular.

Associated with the voice, there is a clinical phenomenon known as dysphonia [18–20],
which corresponds to changes in the voice of individuals caused by some disease that disturbs
the human vocal tract. As an example, we can highlight very common diseases, such as colds
and flu [21], and more complex diseases such as Parkinson’s [22,23] and Alzheimer’s [24].
Specifically, according to Hur et al. [25], nearly 8% of the US adult population is affected
by some form of dysphonia. In addition to all the physiological damage and the decrease
in quality of life [26] that this phenomenon can cause, it is also known that dysphonia can
compromise the performance of voice-based recognition systems. Rohlfing et al. [27], for
example, found that the command recognition performance presented by Google VoiceTM

was reduced from 93.8% to 68.7% when individuals with voice dysphonia started to use
the system, which corresponds to a reduction of more than 1/4 in accuracy. To get around
this adversity, automatic detection methods for voice dysphonia have been proposed in the
literature [28], since the prior detection of dysphonia can be useful in the sense that the
system makes use, for example, of specific routines for filtering to improve recognition of
an affected speaker. Among such methods, the most common are those that make use of
strategies based on machine learning [29,30] and analysis of handcrafted features [31,32],
which are obtained from the voice signal, the most common in the subject being those defined
by mappings and perturbations of the fundamental frequency (F0) of the signal [33,34] and
those based on cepstral coefficients (CCs) [35] such as Mel-frequency cepstral coefficients
(MFCC) [36] and linear prediction cepstral coefficients (LPCC) [37], among others [38,39]. In
most works that use CCs to detect voice dysphonia, only one cepstral technique is considered
to compose the sound signal representation model, and there are few works in which more
than one type of cepstral feature is used. Furthermore, CCs are originally defined by a matrix
M ∈ Rnceps×nframes , with nceps being the number of CCs and nframes the number of temporal
windows considered in the signal splitting, which must be calculated for each sample that we
intend to represent, which can result in a high memory cost in the developed model. To get
around this adversity, a commonly used strategy consists of projecting this matrix through
some statistical mapping, such as sum or average on the frame axis. However, to the best
of our knowledge, there is no work that demonstrates the efficiency of certain mappings on
the CCs, especially when considered together, in the representation of a voice signal in the
dysphonia detection problem.

In this work, a new framework based on the representation of a voice signal by the
multiprojection of sets of CCs is proposed in order to detect the presence of dysphonia in
the speech signal. In detail, massive experimentation is conducted on a set of eight CC
extraction techniques, in which these features are analyzed in isolation and together, and
their ability to represent the speech signal is evaluated against well-established classification
techniques. In addition, the classification performance of the proposed framework is also
analyzed considering the use of traditional features of voice signal representation such as
those based on the Fundamental Frequency. Finally, results are obtained from a subset of
the Saarbruecken Voice Database [40] with specific voice signals of individuals affected
by dysphonia. In this way, the main scientific advances contained in this work can be
summarized in the following:

• A new framework for detecting dysphonia in voice signals;
• The formalization of a process involving the fusion and multiple projections of CCs to

represent the voice signal;
• An extensive number of experimental results were conducted on the Saarbruecken

Voice Database with respect to diverse configurations involving various techniques



Sensors 2023, 23, 5196 3 of 36

of extracting CCs and other measurements of the speech signal, such as fundamental
frequency measurements.

The remainder of the text is divided as follows: Section 2 contains a detailed review
of related works on the topic of voice dysphonia detection using artificial intelligence,
providing an overview of the state of the art of the subject; in Section 3, a tutorial review of
the general procedure for extracting CCs in their matrix form is carried out; in Section 4, the
methodology adopted in this study is presented, emphasizing our contributions and how
they are validated; in Section 5, a generalization for the vector representation of CCs through
mappings is proposed, in addition to a multistep framework specialized in improving
the representation of voice signals for the problem; in Section 6, practical instances of
the proposed generalizations are given; the results that demonstrate the effectiveness of
the proposed material are presented in Section 7, offering a careful analysis of the data
collected and the conclusions obtained; the work concludes with final considerations and
suggestions for future developments in Section 8.

2. Related Works

Dysphonia, which is the phenomenon analyzed in this work, is a disorder in the human
voice caused by a morphological and functional disturbance of the pneumophonoartic-
ulatory apparatus [41]. It is possible to analyze and detect this type of disorder through
clinical procedures such as laryngoscopy and laryngeal stroboscopy [42,43]. However,
examinations of this type are known to be very invasive to the individual [44]. An alter-
native to these procedures takes the form of analyzing the voice signal—collected by a
reading device with a microphone—and some of its acoustic parameters in order to infer
its normality, or on the contrary, to detect a possible pathology in the voice. As an example,
the “Italian Society of Phoniatrics and Speech Therapy”, or Società Italiana di Foniatria e
Logopedia (SIFEL) [45], classifies the quality of an individual’s voice based on the analysis
of characteristics associated with the signal, namely the fundamental frequency [46], the
jitter and shimmer variations [47], and the harmonic-to-noise ratio (HNR) [48]. However,
the manual classification of voice quality through the analysis of these parameters is very
dependent on the algorithm performance that estimates these metrics and the clinical
professional responsible for examining them [49,50], which makes the scalability of this
procedure difficult, making it subjective, and consequently, reducing its accuracy. Thus, in
view of the increased accuracy in detecting the presence of a disorder in a patient’s voice
through the investigation of parameters associated with the sound signal, techniques based
on the extraction of signal features and the classification of these features with machine
learning methods have become popular on the topic in recent years, as demonstrated in the
review works of Al-Hussain et al. [29] and Hegde et al. [30].

It is possible to computationally estimate many characteristics associated with the
human vocal tract and the respective voice produced that can be used to infer the presence
of dysphonia in an individual’s voice. For example, the characteristic known as pitch [51],
which consists of a metric that estimates the opening and closing frequency of the vocal
cords during speech production, was used by ElBouazzaoui et al. [52] to define a descriptor
composed of up to 49 metrics extracted from this feature. Abnormalities in the vocal
apparatus may present disturbances and instabilities associated with the sound signal in
terms of frequency, defining the metric known as jitter; and amplitude, defining the metric
known as shimmer, and these characteristics were used in the definition of pathology
detection systems in the voice [53]. Metrics associated with estimating the proportion of
noise that makes up the voice signal, such as the HNR, have also been successfully used
in these systems. Teixeira et al. [54], for example, propose to represent the voice signal
with four jitter characteristics, four shimmer characteristics, and the HNR measure for
training an artificial neural network (ANN), which achieves an accuracy of up to 100% for
classifying female voices. Still in this sense, Fernandes et al. [55] propose the use of a voice
pathology detection system with low computational cost, whose operation is based on the
autocorrelation metrics of time series, HNR, and on the noise-to-harmonic ratio (NHR).
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Features that aggregate time–frequency information of a signal, such as entropy, energy,
and zero crossing rate (ZCR), were used to adjust a methodology based on paraconsistent
discrimination engineering (PDE) to classify speech samples with different pathologies [56].

A category of features that have been used for a long time in voice pattern recognition,
especially considering disorders, are those based on the wavelet concept [57,58]. Specifically,
the discrete wavelet transform (DWT) is traditionally used for making features based, for
example, on the signal energy in the frequency domain, as performed by Tsanas et al. [59]
to detect the presence of Parkinson’s by speech analysis. Similarly, the DWT was used to
compose a representation proposed by Fonseca et al. [60] that takes into account a version
filtered by an inverse linear predictive filter (ILPF) of the voice signal to detect laryngeal in-
fections from samples from a Brazilian database. Hammami et al. [61] also used parameters
obtained by DWT with the application of the concept of empirical mode decomposition
(EMD), together with high-order statistics (HOS), to detect voice pathologies in a two-step
classification scheme. Saeedi and Almasganj [62] propose a representation version of the
voice signal by measurements based on the energy of a wavelet transform whose param-
eters are optimally adapted by a genetic algorithm (GA), being evaluated positively in
the classification of six voice disorders. In addition, frequency domain sub-band analysis
using the stationary wavelet transform (SWT) performed by Gidaye et al. [32], proved to be
effective in representing voice pathologies in several databases. Similarly, Shrivas et al. [31]
constructed energy-based features and SWT statistical mappings to detect speech dyspho-
nia. Furthermore, Kassim et al. [63] considered as characteristics of the signal the entropy
of Tsallis [64] of dual-tree complex wavelet transform (DTCWT) [65].

Representations obtained from the cepstral domain or computed from features known
as cepstral coefficients of a voice signal were used to detect patterns [66], in particular
the presence of pathologies [67], with MFCC [68] the most well-known technique in this
category. The work of Godino-Llorente and Gómez-Vilda [69], for example, is one of the
first advances that proposes the use of cepstral characteristics calculated from the MFCC
and its first- and second-order derivatives, in the case of ∆ and ∆∆, to detect the presence
of voice disorders. Arias-Londoño et al. [70] used the cepstral coefficients of an MFCC
to train a Gaussian mixture model (GMM), and used information from the modulation
spectrum of the signal to train a support vector machine (SVM) and be able to form an
ensemble of classification and detection of voice disorder. Cordeiro et al. [71] analyzed the
speech signal’s MFCC together with their spectral line frequencies and used these features
to train three classifiers: a GMM, an SVM, and a discriminant analysis machine. In [72]’s
work, the Mel-scale spectrogram and the chroma features were used together with the
signal’s MFCC to train a deep neural network (DNN), which enabled the development of a
framework capable of detecting the presence of cordectomy in speech with an accuracy of
96.77%. In this sense, Lee [37] conducted a robust experimental analysis on HOS features
together with cepstral features extracted from MFCC and LPCC to adjust a feedforward
neural network (FNN) and a convolutional neural network (CNN). As an extension to the
last work, Lee and Lee [73] added experiments considering data balancing techniques on
the Saarbruecken voice database.

In summary, in Table 1, similarities and differences are presented about the main
voice disorder detection works discussed in this section. Specifically presented are the
analyzed work; the features used in the work to represent the voice signal; the method of
dimensionality reduction or feature selection employed; the classifiers used to define the
model; the considered voice database; the best accuracy percentage obtained by the model
in some specific voice database selection, for example, with respect to gender or vowel; and
the work publication year.
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Table 1. Comparison between the main studies on voice disorder detection addressed in this section. Accuracy is given as a percentage. The symbol “-” means that
the information is not available in the cited work. The meanings of abbreviations in the text that are not yet defined, as well as those already defined, can be found in
the final section of this work.

Work Features Reduction Classifier Database Accuracy Year

[53] Jitter, shimmer, F0 metrics All possible combinations of features are considered LDA MEEI 96.5 2001

[69] MFCC - MLP, LVQ MEEI 96 2004

[70] MFCC, modulation spectral features Singular value decomposition GMM, SVM MEEI, UPM 95.89 2011

[62] Energy-based features of GA-adaptive wavelet - SVM MEEI 100 2013

[54] Jitter, shimmer, HNR PCA ANN SVD 100 2017

[60] DWT, ILPF - - USPD 85.94 2017

[71] MFCCs, line spectral frequencies - GMM, SVM, discriminant analy-
sis MEEI 98.7 2017

[32] SWT-based energy and statistical features Information gain SVM, SGD, ANN tSVD, PdA, AVPD, MEEI 99.99 2020

[56] Energy, entropy, ZCR Paraconsistent engineering Paraconsistent discrimination,
SVM SVD 95 2020

[61] HOS, EMD-DWT - SVM SVD 99.26 2020

[63] DTCWT - Tsallis entropy - KNN, SVM MEEI, SVD 93.32 2020

[37] MFCC, LPCC, HOS - CNN, FNN SVD 82.69 2021

[52] Pitch-based
Fisher discriminant ratio, stepwise discriminant analysis,
scatter measure, ANOVA statistical test, divergence mea-
sure, relief F-measure, run filtering

KNN, SVM, RF, NB DPV 91.5 2022

[31] SWT-based energy and statistical features Probability density plots, information gain SVM, SGD tSVD, PdA, AVPD, MEEI 99.99 2022

[72] MFCC, Mel-spectrogram, chroma - DNN SVD 96.77 2022

[55] Autocorrelation, HNR, NHR - - SVD, USPD - 2023

[73] MFCC, LPCC - CNN, FNN SVD 98.89 2023

Proposed
F0, HNR, jitters and shimmers variations, formant
frequencies measures, CQCC, MFCC, iMFCC, BFCC,
LFCC, LPCC, GFCC, NGCC

Singular value decomposition SVM, RF, LR SVD 100 2023
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Given the above, it is clear that much has been carried out to overcome the problem
of voice dysphonia detection through the analysis of handcrafted features and the use of
machine learning techniques. However, this problem still remains open, since none of the
existing methods presents 100% accuracy in all situations. In fact, some methods obtain
such performance, but only in situations specific to the gender or to a section of the database,
among others. Thus, developments on this topic are still needed. In addition, most studies
that use cepstral features consider only one CC extraction technique, usually the MFCC,
thus making analyses involving more than one cepstral feature in the representation of the
voice signal scarce. Furthermore, it is not rare that the projection method used to convert
the CCs used from their matrix form to their vector form is omitted in current works. In
this work, we will analyze a set of eight cepstral feature extraction techniques and observe
their operations along with an extensive set of noncepstral characteristics. Specifically, we
will formalize the experimental analysis by considering various projection techniques over
the cepstral domain and comparing each performance with respect to the problem of voice
dysphonia detection. Thus, we highlight that the main differential of our work consists of
the definition of a process that promotes the analysis of a set of CC extraction techniques
in order to evaluate their ability to represent voice signals on the dysphonia detection
problem. For this, we propose a new framework composed of stages of the multiprojection
of CCs, fusion with noncepstral features, dimensionality reduction, data balancing, and
model classification training to make possible the detection of dysphonia in speech signals.

3. Cepstral Features Extraction Fundamentals

To define a classification model based on the representation of the voice signal, it is
necessary to use techniques that extract important characteristics of the analyzed signal
for the considered problem. This usually involves a feature extraction step that highlights
patterns from inherent features in the raw signal. In the area of audio processing and
analysis, it is common to use features extracted directly from the temporal version of the
sound signal, the most used being those based on energy [74], entropy [75], ZCR [76], and
energy Teager operator (ETO) [77]. However, for problems that require a higher level of
detail in the representation of the signal, as is the case of the problem of detecting dysphonia
in the user’s speech, it may be more appropriate to use a category of features capable of
representing harmonic characteristics and associated sidebands to the signal and its spectral
domain. Examples of its techniques include those based on the use of the cepstral features
of the signal, such as the MFCC and the LPCC, which are the representations analyzed in
depth in this work. These techniques involve a pre-emphasis step to compensate for high-
frequency suppression, followed by steps of splitting and filtering the signal to represent it
in the frequency domain through some specialized transformation, such as the fast Fourier
transform (FFT). Finally, CCs are calculated using a filter bank scale. Figure 1 presents a
general outline of the CC calculation process in sound signals.

We can use the Φ technique to extract nceps CCs from each sound signal x ∈ Rn,
considering nframes frames of time. Mathematically, these CCs can be represented as a
matrix CΦ

x ∈ Rnceps×nframes , according to Equation (1).

CΦ
x =



| ~c1 |

| ~c2 |

...

| ~cnceps

|

 ∈ Rnceps×nframes , (1)

in which~ci ∈ Rnceps , for all i, are the CCs extracted from x using the technique Φ. More
information about the mathematical foundation and implementation of these methods can
be found in the works of Prabakaran and Shyamala [66], Alim and Rashid [78].
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Audio signal x

Pre-emphasis

Framing

Windowing

Transform on
frequency domain

Filter bank scaling

CCs’ features: C

Figure 1. Generalization of cepstral feature extraction process based on CCs from an audio signal x.

4. Methodology

Solutions for dysphonia detection can act according to different methodologies. How-
ever, two more common methodologies involve the definition of a user recognition system:
the one that counts with all the steps of a BAS, and the one that defines only the voice
disorder check step. In this work, we adopt the second. That is, the proposed material
is only responsible for answering whether a voice signal belongs to a healthy individual
or if it was obtained from an affected one. Thus, our operation must be restricted to the
solution of a binary classification problem composed of vectors that can be added to two
different classes: the group of users with a healthy voice; and the group of users with
voice dysphonia. A representation of the acting of the proposed material is schematized
in Figure 2.

Figure 2. Scheme of the operation of the proposed material. Our method was developed to detect the
presence of dysphonia in a user’s voice. Thus, user recognition routines are not part of our proposal.

In detail, the proposed methodology is defined by the four steps described below:

• M1—problem domain definition: It is necessary to provide a voice signal recorded
with a microphone device, in which we can suppose that there is a possibility of use
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from an affected individual. Thus, the problem domain is formed by voice signals that
are usually defined in a time domain, that is, vectors in the space Rn.

• M2—proposed method: As mentioned, in this work, the advances are contained in
the dysphonia detection in a voice signal. Then, our contributions must compose or
define specialized models to provide an answer to the VAS with respect to the type
of voice signal that was provided to the system. For this, two new technologies are
proposed to perform this task:

– C1—multiprojection of cepstral features set: This contribution consists of a
mathematical formalization of representing a set of cepstral features that must be
defined by matrices. Thus, this contribution is a generalization of representing
a voice signal in a feature space, therefore configuring a handcrafted feature
technique. Therefore, to circumvent the VAS performance loss problem caused
by the possible presence of dysphonia in the signal, this contribution needs other
operational steps, such as the use of a classifier.

– C2—framework to increase the accuracy of dysphonia detection using machine
learning: Unlike C1, this contribution corresponds to all dysphonia detection
routines in the voice signal, as the use of a classifier is one of its steps. In this case,
the framework is a proposal of steps that a dysphonia detection solution must
perform. Furthermore, the proposed framework can be configured in different
ways, as it is defined in a generalized way.

• M3—method output: The developed tool must be able to point out if a given voice
signal presents a sample recorded from a healthy person or from a dysphonic user.
Thus, the method must work according to a binary classification routine, assigning
one of the following values to the input signal: “healthy voice” or “dysphonic voice”.

• M4—validation: To prove the effectiveness of the proposed material, analysis situa-
tions will be conducted considering the most used benchmark in the area, which is
the Saarbruecken Voice Database. This database, which will be presented in more
detail in the Experiments section, is formed by voice samples obtained from healthy
individuals and from individuals affected by diseases that act directly on the human
vocal tract. Specifically, for this work, we will consider voice samples from healthy
individuals and voice samples from individuals classified as affected by “dysphonia”.
In all test situations, what must determine whether a technique succeeds in the classi-
fication task are performance measures that are associated with the accuracy of the
model. Furthermore, as the two contributions of this work allow for different configu-
rations, several specific instances of the proposed material will be considered in all test
scenarios. In detail, bearing in mind that the proposed model is a generalization, and
consequently allows several specific instances, comparisons are conducted between
many proposed instances.

5. Proposed Multicepstral Framework Based on Multiprojection Strategies for Voice
Dysphonia Detection

In this section, we describe the elements that constitute the method developed to iden-
tify dysphonia in a voice signal. We thoroughly explain the operation of all the employed
techniques through algorithms and flowcharts that aim to facilitate the understanding
and reproduction of the developed material. In particular, we highlight the following
innovations obtained with this work:

• A new framework for extracting and classifying the features of voice signals, with the
aim of discriminating the samples into two distinct groups: the first group consists
of speech samples from healthy individuals, while the second group contains speech
samples from individuals suffering from of dysphonia;

• An experimental analysis of several configurations of the proposed generalization is
conducted in this work. Furthermore, an important contribution is a computational
evaluation of the performance of the representation of several features based on CCs,
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projected by different types of mappings, to solve the voice dysphonia detection
problem, using three different classifiers.

5.1. Cepstral Feature Multiprojection

Mapping patterns given in their matrix form using a set of various functions have
already been explored in other classes of pattern recognition problems. For example, in the
case of spoofing detection problem in fingerprints, Contreras et al. [79] proposed a vector
representation of statistical measures of the pattern descriptor dense scale-invariant feature
transform (Dense-SIFT) [80] using five different mappings, even though it was originally
given in matrix form. Furthermore, in a later work, Contreras et al. [81] generalized this
concept to any matrix-based texture descriptor, using a set of mapping functions. In this
work, we generalize this concept for the case of patterns described by CCs, which are
also defined in a matrix form. It is also worth mentioning that this type of strategy is
already used frequently in the area of sound processing. However, to the best of our
knowledge, no work has formalized the concept of multiprojection and experimented with
the problem of detecting voice dysphonia considering cepstral features. Thus, to enable
such experimentation, we define the setM of mapping functions given in Equation (2):

M = {m1, m2, ..., mnM}, (2)

in which mi : Rnceps×nframes → Rnceps , ∀i ∈ {1, 2, ..., nM} is a function that projects the nceps
CCs, originally belonging to the Rnframes space, to the R space.

In Figure 3, we present an example of the projection process of a CC extracted from a
voice signal x. In this case, the mapping function is the sum of the columns of the cepstral
feature extracted by the constant Q cepstral coefficient (CQCC) [82] technique (Φ), which is
originally given in the form of a matrix CΦ

x ∈ R20×80, as in Equation (1).
So, if we have a matrix CΦ

x of CC features generated by a technique Φ from the signal
x, as shown in Equation (1), and their first- and second-order differentials represented,
respectively, by ∆Φ

x and ∆∆Φ
x . The definition of the cepstral features of x through the pro-

posed multiprojection strategy, and with respect to the setM and method Φ, is expressed
by the vector ~vM,Φ

x , defined in Equation (3):

~vM,Φ
x :=A1

(
m1

(
CΦ

x

)
, m1

(
∆Φ

x

)
, m1

(
∆∆Φ

x

)
, m2

(
CΦ

x

)
, m2

(
∆Φ

x

)
, m2

(
∆∆Φ

x

)
, ...,

mnM

(
CΦ

x

)
, mnM

(
∆Φ

x

)
, mnM

(
∆∆Φ

x

))
,

(3)

in which A1 is an information fusion strategy, such that ~vM,Φ
x ∈ Rnproj . For the case of A1

being a concatenation, which is the case evaluated in our experiments, the value of nproj is
equal to 3 · nceps · nM.

It is important to point out that using the proposed technique, it is possible to reduce
the number of coordinates of the cepstral feature. Originally, this feature has nceps · nframes
coordinates; however, with the proposed technique, we can reduce it to nceps · nM coordi-
nates. This reduction is generally efficient, since it is common for the number of frames
considered in the representation of CCs to be very large, and therefore, much greater than
nM, which is the number of mapping functions that we will consider. In our method, this
saving tends to be even greater, as we consider not only the static characteristics of the CCs,
but also the dynamic characteristics, such as ∆ and ∆∆.
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Cepstral Coefficients Extraction

Cepstral Coefficients Projection

Figure 3. Tutorial scheme for the extraction of CCs from a voice signal considering the CQCC
technique followed by the projection of these features by the sum mapping function. We can see, in
this case, that the feature, originally belonging to the R20×80 space, was projected to the R20 space.

5.2. Extraction of Cepstral Features Set

CC extraction techniques are fundamental for the analysis and processing of speech sig-
nals. Several techniques can be used to extract CCs, and the choice of the most appropriate
technique depends on the purpose of the application and the characteristics of the speech
signal in question. Among the most common techniques, the MFCC and LPCC stand out.
The MFCC is a widely used technique, which uses the Mel scale to map the frequencies of
the speech signal, and employs the discrete Fourier transform (DFT) to extract the CCs. The
LPCC, on the other hand, uses a linear predictive model to estimate the spectral coefficients,
which are then transformed into CCs. Both techniques have advantages and disadvantages,
and the choice between them depends on the characteristics of the speech signal and the
needs of the application. The MFCC, for example, is considered more robust in noisy envi-
ronments and has been widely used in speech recognition applications, while the LPCC is
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more sensitive to changes in the frequency spectrum, and has been used in applications
for detecting changes in the signal. In summary, CC extraction techniques are essential
for the analysis and processing of speech signals, and each technique is more suitable
according to the characteristics of the speech signal and the needs of the application in
question. Therefore, each technique has the capacity to more accurately represent a certain
characteristic inherent to the voice signal, which can be better used for the representation
and detection of a pattern that is determinant in each analyzed situation, since different CC
extraction techniques can capture different aspects of the speech signal. The aggregation of
CCs obtained through multiple techniques allows the speech recognition model to be more
robust and generalizable since the relevant information is captured in a more complete and
complementary way. In this context, in this work, we propose a voice signal representation
step that consists of extracting and aggregating the cepstral features obtained from a set of
nP CC extraction techniques, denoted by P , as shown in Equation (4).

P = {Φ1, Φ2, ..., ΦnP }, (4)

in which Φi : Rn → Rnceps×nframes,i is a technique that extracts nceps CCs from the signal
x ∈ Rn considering nframes,i time frames.

Specifically, considering M as in Equation (1) and P as in Equation (4), we can
generalize the procedure of the proposed framework for extracting multiprojected cepstral
features from a voice signal x ∈ Rn by the following steps:

1. Calculate the CCs of x using the techniques of P . That is, CΦi
x := Φi(x), ∀Φi ∈ P ;

2. Calculate the first- and second-order differentials of each CC CΦi
x defined in the

previous step, these being represented, respectively, by ∆Φi
x and ∆∆Φi

x ;
3. Carry out the multiprojection of the calculated cepstral features using Equation (3),

and consequently, defining nP vectors ~vM,Φi
x ;

4. Aggregate the vectors ~vM,Φi
x using the information fusion strategy A2 according to

Equation (5):

~vx,cepstral := A2

(
~vM,Φ1

x ,~vM,Φ2
x , ...,~v

M,ΦnP
x

)
. (5)

Even though the proposed generalization allows us to use any aggregation
strategy for A2, we will keep our experiments considering vector concatenation. Thus,
~vx,cepstral ∈ RnP ·3·nceps·nM .

5.3. Voice Signal Vector Representation

As seen in Section 2, there are noncepstral measures that are extremely useful in
speech pattern recognition systems, especially in the case of voice pathology detection.
This is due to the fact that noncepstral measures provide additional information about
speech characteristics that may not be captured by cepstral measures. For example, jitter
and shimmer measures are noncepstral measures that provide information about speech
amplitude and frequency variation, respectively. These measures are important because
they can be indicators of speech disorders, such as dysphonia. Other noncepstral mea-
sures, such as mean formant measures, can be used to characterize the pronunciation of
different phonemes and help distinguish between different words. In addition, intensity
and duration measurements can provide information about speech emphasis and rhythm,
respectively, which can also be useful in detecting voice pathologies. By combining these
noncepstral measures with cepstral measures, it is possible to obtain a more complete view
of the features of the voice signal, and consequently improve the accuracy and reliability
of the dysphonia detection process. Therefore, we propose that the voice signal is also
represented by metrics obtained through noncepstral features. For this, let us consider
the set N formed by nN metrics, not necessarily cepstral, that are able to represent some
specific characteristic of a voice signal:
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N := {µ1, µ2, ..., µnN }, (6)

in which µi : Rn → Rni , ∀i ∈ {1, 2, .., nN }.
Let us also define the feature vector ~vx,non-cepstral of a speech signal x ∈ Rn built from

the fusion of information from the metrics of N applied to x:

~vx,non-cepstral := A3(µ1(x), µ2(x), ..., µnN (x)), (7)

in which A3 is a general information fusion strategy, but for experimentation level, let us
consider it to be the concatenation of vectors. Finally, to represent the voice signal with
its cepstral and noncepstral features, we propose the use of the vector ~vx as defined in
Equation (8) below:

~vx := A4

(
~vx,cepstral,~vx,non-cepstral

)
, (8)

in which A4 is another information fusion strategy, but which will also be considered a
vector concatenation.

5.4. Dysphonia Detection Model Definition

If we consider that A1, A2, A3, and A4 are fusion strategies that consist of the con-
catenation of vectors, then ~vx has nP · 3 · nceps · nM coordinates from cepstral features and
∑nN

i=1 ni coordinates from noncepstral features. Thus, in many configurations of the pro-
posed framework, it is expected that the vector ~vx has a high dimension, which can result
in the curse of dimensionality for this representation. Consequently, the accumulation of
noise and redundant information can affect the representation capability of ~vx. To work
around this situation, it is suggested the addition of a step in which some technique of data
dimensionality reduction is employed, represented by the transformation REDUCTION(·),
which maps data from a space Rnhigh to a space Rnlow , where nlow << nhigh.

Finally, it is necessary to establish a dysphonia detection model using a classifier. In
this case, it is necessary to use a base BTrain of features extracted from voice samples related
to training, as presented in Equation (9), to fit a classification algorithm. Furthermore,
it is common to apply a normalization strategy on the feature vectors along with the
classification algorithm. For this, we consider in our framework that the normalization
strategy NORM(·) is used.

BTrain :=
{
~vx1 ,~vx2 , ...,~vxnTrain

}
, (9)

where xi, i ∈ {1, 2, .., nTrain}, is a sample in the considered training voice database and
nTrain is the total number of samples.

Furthermore, we must also take into account that in many situations involving voice
pathology detection, most of the available databases scarcely present us with a balanced
distribution of examples belonging to each class. As an example, the Saarbruecken voice
database itself presents us with a number of distinct examples of voices from healthy
individuals and individuals affected by dysphonia, as detailed in Section 7. Therefore, we
also propose that a data balancing routine be adopted on the feature vectors database BTrain
prior to dimensionality reduction and normalization processes. Therefore, these processes
will be applied directly to a balanced database, that is, a database containing the same
number of feature vectors of healthy and pathological individuals.

In summary, we describe in Algorithm 1 the operation of the voice dysphonia detection
model in the proposed framework using a base of feature vectors extracted from speech
samples with and without the presence of dysphonia.
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Algorithm 1 Classifier training stage and definition of the dysphonia detection model in
the proposed framework.

Input:
BTrain Training database with nTrain feature vectors.

REDUCTION(·) Dimensionality reduction strategy.
NORM(·) Normalization function.

1: Application of a data balancing strategy on BTrain.
2: for i ∈ {1, 2, 3, .., nTrain} do
3: v̂xi := NORM(REDUCTION(~vxi )) . Reduce the dimension of feature vectors and

normalize them.
4: end for
5: B̂Train :=

{
v̂x1 , v̂x2 , ..., v̂xnTrain

}
. Define a training database normalized with feature

vectors with smaller dimension.
6: Train a classifier with B̂Train.
Output: The proposed dysphonia detection model.

5.5. Proposed Algorithm

The proposed framework involves the sequential and combined use of all the steps
described in the previous subsections. In detail, the execution of the following processes is
established:

1. Establish the necessary parameters for the execution of the framework. For example,
the mapping functions that will compose the setM, the CC extraction techniques,
and the used classifier, among other configurations.

2. Extract the CCs and their first- and second-order differentials from each available
voice sample using all the techniques in the P set.

3. Conduct the proposed multiprojection process to build the cepstral feature vector
vx,cepstral for each speech signal x.

4. Construct the vector of non-cepstral features for each voice sample.
5. Aggregate cepstral and non-cepstral information for each voice signal, building a

feature vector database.
6. Conduct balancing of the training feature vectors such that the number of vectors asso-

ciated with pathological individuals should be the same number of vectors associated
with healthy individuals.

7. Reduce the dimensions of the made-up feature vectors.
8. Normalize the reduced-dimensional feature vectors defined in the previous step.
9. Train a classifier based on normalized and reduced-dimensional feature vectors.

Finally, in Figure 4, a flowchart is presented that gathers the processes described in
this section and represents the execution of the proposed method steps.

Due to the general nature of the proposed contributions, the parameters of the method
detailed here can be adjusted in order to represent some techniques from the specialized
literature. For example, the work of Dankovičová et al. [34] is a special case of our modeling,
which can be obtained according to the following specific configuration:

• The set N of noncepstral features is represented by the following measures: energy,
low-short time energy ratio, ZCR, Teager–Kaiser energy operator, entropy of energy,
Hurst’s coefficient, F0, formants, jitter, shimmer, spectral centroid, spectral roll-off,
spectral flux, spectral flatness, spectral entropy, spectral spread, linear prediction
coefficients, HNR, power spectral density, and phonatory frequency range.

• The cepstral features are defined solely by the static CCs calculated by the MFCC
technique. In other words, P = {MFCC}.

• The CCs are projected using mean. Thus,M = {MEAN}.
• All the features are fused using concatenation. Thus, A1 = A2 = A3 = A4 = CON-

CATENATION.
• No data balancing strategy is cited, so this procedure should be disregarded.
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• Two dimensionality reduction strategies are considered: one based on feature selection
by mutual information, and another based on the PCA.

• As no data normalization routine is mentioned, the NORM function must be the
identity function. That is, NORM(y) = y, for all y.

• Three classifiers are considered: SVM, RF, and KNN.

Definition of parameterizations

Input: sound sample x ∈ Rn

~vx,non-cepstral := A3(µ1(x), µ2(x), ..., µnN (x)) CΦi
x :=

Φi(x), ∀Φi ∈ P

∆Φi
x :=

dCΦi
x

dt

∆Φi
x :=

d2CΦi
x

dt2 , ∀i

Calculate ~vM,Φi
x , ∀i, using Equation (3)

~vx,cepstral := A2

(
~vM,Φ1

x ,~vM,Φ2
x , ...,~v

M,ΦnP
x

)

~vx := A4

(
~vx,cepstral,~vx,non-cepstral

)

Balancing data on the
training feature vectors

Dimensionality reduction in ~vx using REDUCTION

Normalize REDUCTION(~vx) using NORM

Train a classifier using the reduced and
normalized versions of the ~vx feature vec-

tors of all samples in the training base

Output: Model specialized in de-
tecting dysphonia in a voice signal

Figure 4. Flowchart of the proposed framework. The colors represent the steps of the method. Specifi-
cally, the white color defines setup and procedure input and output steps; yellow represents the step
of extracting noncepstral features from the voice signal; red represents the extraction of multiprojected
cepstral features from the signal; blue represents the aggregation of all calculated features; and the green
color represents the definition step of the dysphonia detection model in a speech signal.

Thus, we can see that the proposed method has a great capacity for generalization and
adaptation, being able to define a wide variety of techniques from the adjustment of its
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parameters. Therefore, in the next section, we will define some practical instances of the
proposed material to make it possible to evaluate the dysphonia detection problem.

6. Parameters for the Proposed Method and Practical Instances

It is worth noting that all proposed contributions—both the operation of multiprojec-
tion of cepstral features and the stages of the voice dysphonia detection framework—were
presented in the form of generalizations. That is, the proposed representation is dependent
on a set of mapping functionsM, a fusion strategy A1, and a CC extraction technique.
Similarly, the framework is dependent on sets of CC extraction techniques, feature fusion
strategies, and data balancing methods, among other parameters. Therefore, it is neces-
sary to establish a specific configuration for both contributions in order to obtain a usable
instance. To carry out the experiments, the objective was to define the simplest possible
parameterization for each case, in order to evaluate the effectiveness of the proposed strate-
gies with elementary and accessible methodological additions. Therefore, we will establish
below the techniques that, in fact, define the functioning of the contribution stages:

• Fusion strategies: As already mentioned in the description of the steps of the proposed
method, all information fusion strategies will be defined as the concatenation of
vectors. Therefore, A1 = A2 = A3 = A4 = CONCATENATION.

• Mapping functions: For our experiments, we will consider four matrix projection
strategies, as defined in Equation (3): the projection of columns by PCA (mPCA); the
sum of columns (mSUM); the standard deviation of columns (mSTD); and the skewness
of the columns (mSKEW). We will also consider some combinations of these mappings
to employ the proposed multiprojection concept. Specifically, let us consider the sets
of mappings defined in Table 2.

Table 2. Considered configurations for the sets of mappings used in the experiments.

Set Mapping Functions

M1 mPCA
M2 mSUM
M3 mSTD
M4 mSKEW
M5 mPCA, mSUM
M6 mSUM, mSTD
M7 mSTD, mSKEW
M8 mSUM, mSTD, mSKEW
M9 mPCA, mSUM, mSTD, mSKEW

• Noncepstral features: As noncepstral measures are associated with the voice signal
that must compose the set N , the following will be considered [23,83–89]:

– “Statistical moments of the fundamental frequency”: In this work, we will use
only the mean and standard deviation of F0.

– “HNR”: As mentioned in Section 2, this is an acoustic measurement that compares
the energy ratio of harmonic and noise components in a speech signal. Generally,
the HNR is used as an indicator of voice quality, with higher values indicating a
clearer, less noisy voice.

– “Local Jitter”: This is the time difference between the actual duration of each
audio frame and the expected average duration of each frame.

– “Local Absolute Jitter”: This is a measure of time variation similar to Local Jitter
that is calculated from the absolute differences between the time intervals between
consecutive voice frames and the average of these intervals.

– “Relative Average Perturbation (RAP) Jitter”: This is a measure that describes the
relative variation between the durations of the time intervals between consecutive
speech signal cycles. In other words, Rap Jitter is calculated as the ratio between
the standard deviation of the time intervals and the average of the time intervals.

– “Local dB Shimmer”: This is used to assess variability in sound wave amplitude
during speech. The Local dB Shimmer measure is calculated as the local frame-
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by-frame variation in the amplitude of the sound wave, expressed in decibels
(dB). Specifically, it is the difference between the maximum and minimum value
of the sound wave amplitude in a specific voice frame, expressed in dB.

– “Amplitude Perturbation Quotient 3 (APQ3) Shimmer”: Calculates the change
in the amplitude of the sound wave during speech using the difference between
the amplitude values at three equally spaced points in a speech cycle. The
APQ3 Shimmer is calculated as the mean of the absolute differences between
the amplitude values at three consecutive points divided by the mean amplitude
value at those three points.

– “APQ5 Shimmer”: This is similar to the APQ3 Shimmer, but uses five equally
spaced points on a voice cycle to calculate the change in the amplitude of the
sound wave.

– “APQ11 Shimmer”: A measure similar to APQ3 Shimmer and APQ5 Shimmer,
but considering 11 equidistant points.

– “DDA Shimmer”: This is calculated as the average of the absolute differences
between the sound wave amplitude values in a voice cycle, divided by the number
of samples in the cycle. The difference between the amplitude values is calculated
as the absolute difference between the maximum and minimum amplitude values
in the voice cycle.

– “Jitter PCA projection”: A one-dimensional PCA projection of all Jitter-based
features that were used.

– “Shimmer PCA projection”: A one-dimensional PCA projection of all Shimmer-
based features that were used.

– “Fitch Virtual Tract Length (FVTL)”: This involves analysis of the acoustic spec-
trum of the sound produced during speech and the comparison with mathemati-
cal models that relate the acoustic properties with the length of the vocal tract.

– “Mean and median of the four formant frequencies”: F1, F2, F3, and F4 are the four
main formant frequencies that are measured and analyzed in speech processing.
F1 is the lowest frequency of the first formant, which is determined by the position
of the jaw and tongue. F2 is the frequency of the second formant, which is
mainly influenced by the position of the tongue in the mouth. F3 and F4 are
the frequencies of the third and fourth formants, respectively, and are mainly
influenced by the opening of the lips and the position of the soft palate.

– “Formant Dispersion”: One-third the value of the difference between the medians
of the fourth and first formants.

– “Arithmetic mean of formant frequencies”: Mean between the medians of the
first four formant frequencies.

– “Formant Position”: Standardized mean of the medians of the first four formant
frequencies.

– “Spacing between formant frequencies (∆F)”: Estimation of minimum spacing
between formant frequencies using linear regression.

– “VTL of ∆F”: The spacing between any two consecutive formants in the frequency
spectrum, which can be estimated by the speed of propagation of sound in air
divided by twice the spacing between the formant frequencies.

– “Mean formant frequency (MFF)”: Fourth root of the product between the medi-
ans of the first four formant frequencies.

• Cepstral features: For CC extraction techniques, the following methods will be con-
sidered: CQCC, MFCC, inverse MFCC (iMFCC), linear-frequency cepstral coefficients
(LFCC) [90], gammatone-frequency cepstral coefficients (GFCCs) [91], bark-frequency
cepstral coefficients (BFCCs) [92], LPCC [93], and normalized gammachirp cepstral
coefficients (NGCC) [94], all of which are defined with nceps = 20 static coefficients,
20 first-order dynamics (∆) and 20 s-order dynamics (∆∆), being normalized by mean
and variance, which configures the strategy of cepstral mean and variance normal-
ization (CMVN). These techniques are considered separately and in combination
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according to the sets defined in Table 3. Due to text space limitations, it was not
possible to consider all existing combinations of the eight CC extraction techniques.
However, the most important combinations were analyzed to evaluate the perfor-
mance of the developed material. We consider versions of P1 to P8, in which each
representation of P has only one element. These versions allowed for an evaluation
of how much the framework is enhancing the capacity of the techniques to detect
dysphonia in voice signals. In addition, the other versions of CC extraction techniques
should serve to confirm the ability of the proposed material to represent different
features in the sound sample, which should contribute to improving its ability to
detect dysphonia in these samples.

Table 3. Considered configurations for the sets of CC extraction techniques used in the experiments.

Set CC Extraction Technique

P1 CQCC
P2 MFCC
P3 iMFCC
P4 BFCC
P5 LFCC
P6 LPCC
P7 GFCC
P8 NGCC
P9 CQCC, MFCC
P10 CQCC, BFCC
P11 CQCC, LFCC
P12 MFCC, BFCC
P13 MFCC, LFCC
P14 CQCC, MFCC, LFCC
P15 CQCC, MFCC, BFCC

• Balancing data: As a data balancing technique, we chose to adopt an oversampling
strategy on the minority set of samples in order to balance the number of representa-
tives of each class. Specifically, we use one of the simplest techniques for this purpose:
the synthetic minority oversampling technique (SMOTE).

• Dimensionality reduction: The singular value decomposition [95] technique will
be used as a REDUCTION(·) function, as it is considered one of the simplest and
most representative techniques of the dimensionality reduction methods. It is worth
mentioning that this technique, which is very similar to the well-known PCA, is based
on the representation of the data through a new basis constituted by the eigenvectors
associated with the eigenvalues of larger modules, which represent the variances of
the original data in the directions of these vectors. This reduced-dimensional repre-
sentation tends to decrease the covariance, and consequently, the redundancy [96,97]
between the considered data, which can be beneficial in the~vx representation, since the
feature fusion strategies we are using are based on the concatenation of vectors. For
each considered version, four dimensions will be evaluated to compose the reduced
feature space. This includes a version reduced to 10% coordinates, another reduced to
half coordinates, another reduced to 75% coordinates, and a version without reduction.
These dimensions represent different levels of feature space dimensionality reduction,
allowing us to evaluate how the reduction affects the technique’s ability to detect
dysphonia in voice signals.

• Normalization: Four different strategies were used to normalize the feature vec-
tors, considered the most common in the addressed problem. For each considered
version, four different normalizations were evaluated: the Min–Max normalization
(NORMMM), standard normalization (NORMSTD), robust normalization (NORMROB)
and nonuse of normalization (NORMUnS). Mathematically, the training basis of the fea-
ture vectors in the reduced space Rm is represented by B̂Train :=

{
v̂x1 , v̂x2 , ..., v̂xnTrain

}
,

where each vector v̂xj =
(

v̂xj ,1, v̂xj ,2, ..., v̂xj ,m

)
. Specifically, the four considered nor-

malization functions are:
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1. Min–Max scale (MM):

NORMMM(y) :=

(
y1 −minj{v̂xj ,1}

maxj{v̂xj ,1} −minj{v̂xj ,1}
, . . . ,

ym −minj{v̂xj ,m}
maxj{v̂xj ,m} −minj{v̂xj ,m}

)
;

2. Standard scale:

NORMSTD(y) :=
(

y1 − µ1
σ1

, . . . ,
ym − µm

σm

)
,

where µi = ∑nTrain
j=1

v̂xj ,i

nTrain
and σi =

1√
nTrain

√
∑nTrain

k=1

(
v̂xk ,i − µi

)2;

3. Robust scale (NORMROB): Robust normalization is an adaptation of standard normal-
ization that handles extreme values in the data more efficiently. This approach replaces
the mean of the values (µi) with the median, which is less sensitive to these extreme
values; and the standard deviation (σi) with the interquartile range, which is the difference
between the first and the third quartile of the distribution. This makes normalization more
resistant to outliers that can degrade model performance.

4. No scale: this is the strategy represented by the identity function. That is,
NORMUnS(y) = y.

• Classifiers: We will evaluate the three most used classifiers in the addressed problem. Specifi-
cally, let us consider a Gaussian kernel SVM [98], also known as a radial basis function (RBF)
kernel, an RF [99], and a linear logistic regression (LR) [100]. All of these classifiers are flexible
in the sense of allowing an unbalanced data-resistant configuration. We will consider this
configuration even in situations where we do not use SMOTE on the feature vector database.

7. Results and Experiments

In this section, we will carry out the necessary tests to evaluate the performance of the
advances presented in Section 5. For this, a benchmark is defined, described in detail in
Section 7.1, which is widely recognized in the field in question. In the specific case of this
study, it is necessary to perform an internal analysis of the proposed content to evaluate the
effectiveness of the proposed method in relation to the various configurations mentioned in
Section 6. To make comparisons between the performances of the various instances of the
proposed material, it is necessary to establish some performance metrics that represent the
amounts of errors and successes of the method in relation to the samples of voice signals
from the test bases. In this study, the following metrics [101] were used:

• Error in Healthy (EH): represents the rate of healthy voice signals classified as pathological.
• Error in Pathological (EP): represents the percentage of pathological voice signals

classified as healthy.
• Equal Error Rate (EER): the average between the false-positive and false-negative rates

of the method. Mathematically,

EER =
EH + EP

2
.

• Accuracy (ACC): the rate of correctly classified voice signals.
• F1-score: the harmonic mean between the sensitivity and accuracy of the model.
• K-fold Cross-Validation Score (KFCV): Average accuracy score of a 5-fold cross-

validation over the training dataset.

All the implementations presented in this work were coded in Python (https://www.
python.org/ (accessed on 22 May 2023)) programming language, more specifically with the
use of scikit-learn [102], Spafe [103], and Praat-Parsemouth [104], on a personal microcomputer
equipped with 8 GB of RAM and an Intel (R) Core (TM) i5-4460 of 3.20 GHz frequency.

7.1. Benchmark

To compose the benchmark of the experiments carried out in this work, we used the
well-known Saarbruecken Voice Database [40], one of the most used and most challenging

https://www.python.org/
https://www.python.org/


Sensors 2023, 23, 5196 19 of 36

voice sample databases in voice pathology detection problem. In detail, this database has voice
signals collected from more than 2000 individuals, which are sampled at a frequency of 50kHz
with 16-bit resolution and with 1 to 2 s. The database was created and is maintained by the
Institute of Phonetics of the University of Saarland (https://stimmdatenbank.coli.uni-saarland.
de/help_en.php4 (accessed on 22 May 2023)). For each individual, their speech is recorded by
reproducing the vowels \a\, \i\, and \u\ at normal, high, and low pitch. Moreover, a varying
low–high–low pitch is considered. Also available in this database is a recording of a sentence in
German and the individual’s electroglottograph signals, but these will not be considered in this
work. Specifically, for our experiments, we exported a section of this database referring only to
the signals associated with the pathology classified as “dysphonia”, which is the voice disorder
addressed in this study. Requiring only individuals over 18 years, the database provided us
with the exact following distribution of voice signals:

• 384 recordings of healthy male subjects;
• 1524 recordings of healthy female subjects;
• 324 recordings of dysphonic male subjects;
• 492 recordings of dysphonic female subjects.

We can observe that the considered clipping has a much larger set of voice signals
from healthy female individuals than from any other condition or gender, which sets up a
situation of information imbalance, making challenging the problem of defining a robust
model to voice dysphonia detection. Finally, following an existing trend in the works
reviewed in Section 2, we randomly split the obtained dataset into 75% for model training
and fit signals and 25% for method testing and evaluation. It is worth mentioning that this
division is used to analyze the method’s performance according to the ACC, F1 and EER
techniques, since to investigate the KFCV metric, the entire database clipping is analyzed,
and different splittings between the training and test sets are dynamically established.

7.2. Performance Analysis

As described in Section 6, the proposed material allows for multiple configurations, with
around 26,000 variations having been evaluated in this work, which resulted in more than
1 million analysis performance observations on the selected voice database. The complete
record of these evaluations can be found in the complementary materials to this study that are
available in the respective Zenodo repository [105]. In this section, we will present a summary
of all these results, highlighting the best performances in each case and the phenomena that
prove the effectiveness in the use of the proposed material. We started this discussion with the
results arranged in Table 4, in which we present the best values, according to each considered
metric, presented by one of the configurations of our method. For this, we present the results
according to the vowel uttered by the evaluated individual and the respective intonation. We
also sectioned the results according to the gender of the individuals, considering a partition
composed only of male voices, a partition composed only of female voices, and a partition that
considers both groups of voices. In each instance, the following are presented, respectively: the
best value of the analyzed metric among all the configurations considered for the proposed
method for the partition in question; the type of feature that represents the voice signal, and if
applicable, the CC extraction techniques used; the normalization strategy used; the number of
feature vector coordinates after the dimensionality reduction process; the use or nonuse of a data
balancing technique; and the employed multiprojection techniques, if applicable. It is worth
noting that all this information is split by the “|” identifier. For example, when analyzing the
ACC metric for the case in which we consider only the voices of male individuals uttering the
vowel \a\ in the low tonality, we have the following result: “100.0|CQCC, LFCC|Robust|24
|SVM|SMOTE|SUM, STD”, which means that the configuration of the proposed method
that obtained 100% of accuracy makes use of CC extraction techniques based on CQCC and
LFCC (P = {CQCC, LFCC}) and does not use any noncepstral features (N = {}); uses robust
normalization (NORM = NORMROB); reduces the feature vector to 24 coordinates;uses SVM
as classifier; uses the SMOTE balancing strategy; and performs multiprojection with the SUM

https://stimmdatenbank.coli.uni-saarland.de/help_en.php4
https://stimmdatenbank.coli.uni-saarland.de/help_en.php4
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and STD mapping functions (M = {mSUM, mSTD}). Observing the results displayed in Table 4,
some interesting facts can be checked, as highlighted in the following paragraphs.

The proposed material was able to obtain maximum accuracy (100%) for all cases of the
analyzed male voices. That is, regardless of the vowel and speech intonation, the method
was able to correctly detect the presence or absence of dysphonia in all the male voice signals.
Consequently, the EER and F1 values are also the best possible values for this voice base clipping.
On the other hand, if we analyze the values referring to the average accuracy of the 5-fold
cross-validation, or the KFCV, we realize that the method was not as easy to classify for male
individuals. In fact, according to this metric, the method obtained better values when restricted
to female individuals. This serves as an indication of the fact that the division between training
and testing may have possibly favored the representation of male voices, while general random
divisions, as is the case of the procedure considered for the calculation of the KFCV metric, may
result in a greater difficulty in representing the voice signal, and consequently, the performance
of the method may be compromised. However, even under these conditions, the proposed
method was able to present KFCV values between 83% in the case of the high-pitched vowel \u\
and 95% in the case of the vowel \a\ with the intonation low–high–low, which are reasonably
high values for this metric.

We can observe that for the clipping referring to female voices, the proposed method was
also able to obtain maximum accuracy in most of the analyzed cases, having presented 95.35%
as the lowest value for the case of the vowel \u\ uttered in a low tone. A similar analysis can be
noted with respect to the other metrics, highlighting the case of the KFCV values, in which the
method presented values between 95% and 97%. Consequently, we noticed that the clipping
restricted to female voices is more representative, since the division between training and testing
does not seem to drastically affect the performance of the technique. However, this selection is
unbalanced, and in all situations for the KFCV metric, the analyzed configuration was only able
to reach the best value using SMOTE, which indicates that the artificial balancing was effective.

As expected for this type of problem, the worst values of most metrics are associated
with the database in which the voices of individuals of both genders are considered together.
Specifically, with respect to the ACC, F1, and EER metrics, the values presented in this case
are worse than those presented with respect to the female and male voices. For example, the
average between false positives and false negatives (EER) presented by the proposed method
when we consider voices of both genders is between 5.88%, which is the best case that occurs
when the vowel is \a\ and the tone is low–high–low, and 19.26%, which is the worst case
that occurs when the vowel is \u\ and the tone is high. For the case of the KFCV metric, we
noticed that the results are intermediate to the cases referring to each specific gender, which
indicates that in general, the presence of male voices makes it more difficult to characterize
the voice signals, and consequently more difficult to detect dysphonia, since we have higher
KFCV values when we observe only the female voices and we have lower KFCV values when
we only observe the male voices. Still, the values of KFCV presented by the configurations of
the proposed method are relatively high, since they are between 89% and 92%. Thus, as the
KFCV values are higher than the ACC values, we can also infer that there is a possibility that the
division between training and testing chosen for the voice database has not been advantageous
for the proposed method when we consider voices of both genders.
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Table 4. Summary of the performance results of all analyzed configurations of the proposed method. Results are displayed for the metrics ACC (%), KFCV, F1, and
EER (%). Only the best result obtained among all method configurations is presented in each case, and together with the result, details of the respective confirmation
are highlighted. In detail, the term “nonceps” indicates the use of noncepstral features described in the set N , and which define the vector ~vx,non-cepstral. If this
term does not appear in the description of the techniques, then only cepstral features were used. Furthermore, in case the best configuration uses cepstral features,
or the vector ~vx,cepstral, we also highlight the multiprojection strategy employed. Furthermore, the use of balancing technique is indicated by the word SMOTE,
while nonuse is indicated by the symbol “-”. The results are partitioned by evaluated metric, gender of the individuals that make up the voice base, and by the
combination of vowels and intonation, or vowel\pitch (V\P).

Metric ACC (%)

Gender V\P High Low Low-High-Low Normal

Both
a 91.23|nonceps|Robust|23|LR|SMOTE 92.98|nonceps|Standard|31|LR|- 96.49|nonceps|Standard|31|LR|SMOTE 94.74|nonceps|Standard|31|LR|-
i 85.96|MFCC, nonceps|Robust|91|LR|-|STD 91.23|NGCC, nonceps|Robust|91|LR|SMOTE|STD 85.96|BFCC|Standard|120|SVM|SMOTE|SUM, STD 87.72|GFCC, nonceps|Robust|91|LR|-|STD
u 85.96|LFCC, nonceps|Robust|91|RF|SMOTE|PCA 92.98|nonceps|Robust|31|LR|SMOTE 87.72|GFCC, nonceps|MinMax|46|LR|-|STD 89.47|iMFCC, nonceps|Standard|91|LR|SMOTE|PCA

Female
a 97.67|iMFCC, nonceps|MinMax|68|LR|-|PCA 100.0|nonceps|Standard|23|LR|SMOTE 100.0|nonceps|Robust|23|LR|SMOTE 100.0|nonceps|Standard|23|LR|SMOTE
i 100.0|iMFCC, nonceps|Standard|68|LR|SMOTE|SUM 100.0|nonceps|MinMax|23|SVM|SMOTE 100.0|CQCC, nonceps|Robust|68|LR|-|SUM 100.0|LFCC, nonceps|Robust|68|LR|SMOTE|SUM
u 97.67|nonceps|Standard|23|LR|- 95.35|nonceps|MinMax|23|SVM|- 100.0|iMFCC, nonceps|MinMax|68|LR|SMOTE|PCA 100.0|nonceps|Standard|23|LR|SMOTE

Male
a 100.0|LFCC, nonceps|MinMax|15|SVM|SMOTE|SUM, STD 100.0|nonceps|Standard|31|LR|SMOTE 100.0|nonceps|Robust|31|LR|- 100.0|nonceps|Standard|16|LR|SMOTE
i 100.0|CQCC, MFCC, BFCC|Robust|720|LR|SMOTE|PCA, SUM, STD, SKEW 100.0|MFCC, BFCC|Robust|120|RF|SMOTE|STD 100.0|CQCC, LFCC|Robust|240|LR|SMOTE|STD, SKEW 100.0|CQCC, BFCC|Unscaled|180|RF|SMOTE|PCA, SUM
u 100.0|CQCC, LFCC|Robust|24|SVM|SMOTE|SUM, STD 100.0|NGCC, nonceps|Unscaled|46|RF|SMOTE|SKEW 100.0|iMFCC|Robust|30|LR|SMOTE|PCA 100.0|CQCC, MFCC|Standard|480|LR|SMOTE|PCA, SUM, STD, SKEW

Metric KFCV

Gender V\P High Low Low-High-Low Normal

Both
a 0.90|CQCC, BFCC|MinMax|240|RF|SMOTE|STD, SKEW 0.90|CQCC, LFCC|Standard|12|RF|SMOTE|SKEW 0.92|CQCC, MFCC, nonceps|Unscaled|136|LR|SMOTE|PCA, SUM 0.89|CQCC, MFCC, LFCC|Unscaled|135|SVM|SMOTE|SKEW
i 0.91|CQCC, MFCC, BFCC|Standard|180|SVM|SMOTE|SKEW 0.90|CQCC, MFCC, BFCC|Robust|36|RF|SMOTE|PCA, SUM 0.90|CQCC, BFCC|Robust|36|RF|SMOTE|SUM, STD, SKEW 0.91|CQCC, MFCC|Standard|180|SVM|SMOTE|STD, SKEW
u 0.90|CQCC, MFCC, BFCC|Unscaled|90|SVM|SMOTE|SKEW 0.91|CQCC, BFCC|Robust|48|SVM|SMOTE|PCA, SUM, STD, SKEW 0.90|CQCC, MFCC, LFCC|Unscaled|180|RF|SMOTE|PCA, SUM 0.90|CQCC, MFCC|Unscaled|270|SVM|SMOTE|SUM, STD, SKEW

Female
a 0.96|CQCC, MFCC, LFCC|Robust|270|SVM|SMOTE|STD, SKEW 0.95|MFCC, BFCC, nonceps|Robust|136|RF|SMOTE|PCA, SUM 0.96|CQCC, MFCC, LFCC|Robust|180|SVM|SMOTE|SKEW 0.95|CQCC, MFCC|Robust|120|SVM|SMOTE|SKEW
i 0.97|CQCC, MFCC, BFCC|MinMax|180|SVM|SMOTE|SKEW 0.96|CQCC, MFCC, BFCC|Robust|360|SVM|SMOTE|PCA, SUM, STD, SKEW 0.96|CQCC, MFCC, LFCC|MinMax|180|SVM|SMOTE|SKEW 0.97|CQCC, MFCC|MinMax|240|SVM|SMOTE|STD, SKEW
u 0.95|CQCC, MFCC, BFCC|Standard|360|SVM|SMOTE|PCA, SUM, STD, SKEW 0.96|CQCC, BFCC|Standard|60|SVM|SMOTE|SKEW 0.96|CQCC, BFCC|Robust|12|SVM|SMOTE|SKEW 0.95|CQCC, MFCC, BFCC|Unscaled|18|RF|SMOTE|SUM

Male
a 0.85|iMFCC, nonceps|Unscaled|68|RF|-|PCA 0.92|MFCC, LFCC, nonceps|Standard|76|LR|SMOTE|STD 0.95|LFCC, nonceps|Standard|15|RF|SMOTE|STD, SKEW 0.88|MFCC, BFCC, nonceps|Robust|256|LR|SMOTE|PCA, SUM, STD, SKEW
i 0.92|CQCC, BFCC, nonceps|Unscaled|136|RF|-|SUM, STD 0.88|MFCC, BFCC|Unscaled|240|RF|SMOTE|PCA, SUM 0.94|CQCC, MFCC, BFCC, nonceps|Unscaled|39|RF|SMOTE|PCA, SUM 0.84|CQCC, MFCC, LFCC, nonceps|Robust|563|RF|SMOTE|PCA, SUM, STD, SKEW
u 0.83|CQCC, nonceps|Standard|91|RF|SMOTE|SUM 0.89|MFCC, nonceps|Robust|9|LR|SMOTE|SUM 0.92|CQCC, MFCC, nonceps|Standard|271|RF|SMOTE|SUM, STD 0.86|CQCC, MFCC, BFCC|Unscaled|270|RF|SMOTE|SUM, STD

Metric F1

Gender V\P High Low Low-High-Low Normal

Both
a 0.94|nonceps|Robust|23|LR|SMOTE 0.95|nonceps|Standard|31|LR|SMOTE 0.98|nonceps|Standard|31|LR|SMOTE 0.96|nonceps|Standard|31|LR|-
i 0.91|MFCC, nonceps|Robust|91|LR|-|STD 0.94|NGCC, nonceps|Robust|91|LR|SMOTE|STD 0.90|BFCC|Standard|120|SVM|SMOTE|SUM, STD 0.92|GFCC, nonceps|Robust|91|LR|-|STD
u 0.91|LFCC, nonceps|Robust|91|RF|SMOTE|PCA 0.95|nonceps|Robust|31|LR|SMOTE 0.92|GFCC, nonceps|MinMax|46|LR|-|STD 0.93|iMFCC, nonceps|Standard|91|LR|SMOTE|PCA

Female
a 0.98|iMFCC, nonceps|MinMax|68|LR|-|PCA 1.00|nonceps|Standard|23|LR|SMOTE 1.00|nonceps|Robust|23|LR|SMOTE 1.00|nonceps|Standard|23|LR|SMOTE
i 1.00|iMFCC, nonceps|Standard|68|LR|SMOTE|SUM 1.00|nonceps|MinMax|23|SVM|SMOTE 1.00|CQCC, nonceps|Robust|68|LR|-|SUM 1.00|LFCC, nonceps|Robust|68|LR|SMOTE|SUM
u 0.98|nonceps|Standard|23|LR|- 0.97|nonceps|MinMax|23|SVM|- 1.00|iMFCC, nonceps|MinMax|68|LR|SMOTE|PCA 1.00|nonceps|Standard|23|LR|SMOTE

Male
a 1.00|LFCC, nonceps|MinMax|15|SVM|SMOTE|SUM, STD 1.00|nonceps|Standard|31|LR|SMOTE 1.00|nonceps|Robust|31|LR|- 1.00|nonceps|Standard|16|LR|SMOTE
i 1.00|CQCC, MFCC, BFCC|Robust|720|LR|SMOTE|PCA, SUM, STD, SKEW 1.00|MFCC, BFCC|Robust|120|RF|SMOTE|STD 1.00|CQCC|Robust|120|LR|SMOTE|STD, SKEW 1.00|CQCC, BFCC|Unscaled|180|RF|SMOTE|PCA, SUM
u 1.00|CQCC, LFCC|Robust|24|SVM|SMOTE|SUM, STD 1.00|NGCC, nonceps|Unscaled|46|RF|SMOTE|SKEW 1.00|iMFCC|Robust|30|LR|SMOTE|PCA 1.00|CQCC, MFCC|Standard|480|LR|SMOTE|PCA, SUM, STD, SKEW

Metric EER (%)

Gender V\P High Low Low-High-Low Normal

Both
a 7.94|nonceps|Robust|23|LR|SMOTE 6.69|nonceps|Standard|31|LR|SMOTE 5.88|nonceps|Robust|31|LR|SMOTE 7.13|nonceps|Standard|31|LR|-
i 18.82|BFCC|MinMax|120|SVM|SMOTE|SUM, STD 13.82|GFCC, nonceps|Robust|91|LR|SMOTE|SUM 14.19|LPCC|MinMax|60|SVM|-|PCA 18.82|LPCC, nonceps|Robust|91|LR|SMOTE|PCA
u 19.26|BFCC|Standard|180|LR|SMOTE|SUM, STD, SKEW 11.76|nonceps|Robust|31|LR|SMOTE 16.76|CQCC, BFCC, nonceps|MinMax|51|LR|SMOTE|PCA, SUM, STD, SKEW 13.82|CQCC, nonceps|MinMax|46|LR|SMOTE|PCA

Female
a 1.56|nonceps|Robust|23|LR|SMOTE 0.00|nonceps|MinMax|23|LR|SMOTE 0.00|nonceps|Robust|23|LR|SMOTE 0.00|nonceps|MinMax|23|LR|SMOTE
i 0.00|MFCC, nonceps|Standard|68|LR|SMOTE|SUM 0.00|nonceps|MinMax|23|SVM|SMOTE 0.00|CQCC, nonceps|Robust|68|LR|-|SUM 0.00|LFCC, nonceps|Robust|68|LR|SMOTE|SUM
u 4.55|nonceps|Robust|23|LR|- 6.11|GFCC, nonceps|Robust|68|LR|SMOTE|STD 0.00|iMFCC, nonceps|MinMax|68|LR|SMOTE|PCA 0.00|nonceps|Robust|23|LR|SMOTE

Male
a 0.00|LFCC, nonceps|MinMax|15|SVM|SMOTE|SUM, STD 0.00|nonceps|Robust|16|LR|SMOTE 0.00|nonceps|Robust|31|LR|- 0.00|nonceps|Standard|16|LR|SMOTE
i 0.00|CQCC, MFCC, BFCC|Robust|720|LR|SMOTE|PCA, SUM, STD, SKEW 0.00|MFCC, BFCC|Robust|120|RF|SMOTE|STD 0.00|CQCC, LFCC|Standard|240|LR|SMOTE|STD, SKEW 0.00|CQCC, BFCC|Unscaled|180|RF|SMOTE|PCA, SUM
u 0.00|CQCC, LFCC|Robust|24|SVM|SMOTE|SUM, STD 0.00|NGCC, nonceps|Unscaled|46|RF|SMOTE|SKEW 0.00|iMFCC|Robust|30|LR|SMOTE|PCA 0.00|CQCC, MFCC|Standard|480|LR|SMOTE|PCA, SUM, STD, SKEW
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Even though the selection generated by the Saarbruecken voice base is not necessarily
the same as that of the other works discussed in Section 2, bearing in mind that the proposed
method was able to present maximum accuracy in most of the cases in which we restricted
the analysis of a given gender and that presented high accuracy for the selection in which
we considered both genders, we can infer that the proposed framework is competitive in
relation to the methods that make up the state of the art, according to Table 1.

When we analyze metrics that are directly associated with the division of training and
testing that we employ in the voice database—which is the case of the ACC, F1, and ERR
metrics—we realize that just using noncepstral features is enough to obtain the best metric
value for some analyzed cases. For example, we can see that for the case referring to female
voices, for all vowels uttered in the low tone, only noncepstral features were used in the
configuration that presented the lowest EER. However, this does not occur when we analyze
metrics associated with more generalized cases, as is the case of KFCV. For this metric,
no configuration was able to reach the maximum value using only noncepstral features.
In fact, all configurations make use of at least two CC extraction techniques to compose
the feature vector, being the configuration that considers P = {CQCC, MFCC, BFCC} to
be the one that performs best most of the cases. In Figure 5, we present a histogram that
represents the number of configurations that obtained the best value for EER (Figure 5a)
and KFCV (Figure 5b) metrics in each case referring to gender, vowel and tone. We can see
that the isolated use of noncepstral features is the most common for the EER case. However,
in most cases, at least one cepstral feature was used to obtain the best EER value.

(a) (b)
Figure 5. Histogram representing the number of configurations that used each indicated technique to
obtain the best metric value in each case considering gender, vowel, and intonation; (a) EER metric;
(b) KFCV metric.

We can analyze in greater detail the performance improvement of the technique with
the use of cepstral features from Figure 6, which shows the best KFCV metric obtained by
each combination of cepstral features, or P , considered in this work with and without the
aggregate use of noncepstral features, represented, respectively, by the orange and blue
bars. Also represented by a red dashed line is the KFCV metric obtained by the single
use of noncepstral features (N ). For each technique, the highest value of KFCV obtained
between the intonations of each vowel is presented, and the results are presented by vowel
and by voice gender. Immediately, we can see that there is a strong tendency for the use
of any cepstral feature to be superior to the isolated use of noncepstral features, since in
all cases, most of the blue and orange bars are above the dashed red line. In fact, only a
few combinations of P perform worse than the isolated use of noncepstral features when
we look at the results for male voices with respect to the vowels \a\ and \i\. Thus, we
can infer that the use of cepstral features brings more robustness to the classification model
proposed in the voice dysphonia detection framework. In addition, we can also note that
the bars referring to the joint use of more than one CC extraction technique lead to higher
KFCV values, since the rightmost bars of each chart tend to be larger than the leftmost
bars. We can also observe a difference in the efficiency of the combination of cepstral and
noncepstral features for each observed gender, since, for male voices, we noticed a slight
tendency for the orange bars to be above the blue bars; that is, the cepstral and non-cepstral
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features are more representative than just the cepstral ones, while for female voices, this
trend is very poorly defined, as we have many cases in which the blue bars are greater
than the orange bars, and vice versa. Furthermore, this pattern propagates to the case
where voices of both genders are considered. This phenomenon may be associated with
the fact that male voices are more difficult to analyze in terms of dysphonia detection, and
consequently, the use of features that represent patterns of different natures seems to be
more effective in this process for this gender.

Figure 6. Comparison of the impact of using cepstral and noncepstral features according to the KFCV
metric. The results are presented according to the gender of the analyzed voices and according to each
vowel. Furthermore, only the best value among all analyzed configurations for each combination of
CC extraction techniques was presented.

Still on the joint use of more than one CC extraction technique, we present in Figure 7
the performance of each combination of P with respect to KFCV, considering only cepstral
features, that is,N = {}, for voices of both genders. For each vowel, a bar graph was made,
in which each bar represents the performance of the analyzed version on each intonation
of the respective vowel, in which the intonations of high, normal, low, and low–high–low
are represented, respectively, by the colors blue, orange, green, and red. The lowest and
highest values of KFCV in each vowel are also highlighted, represented, respectively, by
the yellow and blue dashed lines. With respect to all vowels, we can see a trend that
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the bars on the right are higher, and consequently are closer to the maximum value of
KFCV, while the bars on the left are closer to the minimum value of KFCV. This indicates
that proposed material configurations that make use of more than one CC extraction
technique tend to perform more favorably compared to configurations that use only one
of these techniques. We can also observe that this pattern is not restricted to a certain
vowel or a certain intonation, since this pattern is replicated in all analyzed situations.
However, we can note that some CC extraction techniques are efficient in isolated situations.
For example, we can see that the LPCC technique showed a high KFCV value for the
vowel \u\ with low–high–low intonation, and that the CQCC technique showed a high
KFCV value for the vowel \a\ with the intonation low–high–low. However, it is a good
performance that occurs occasionally, unlike the stable performance shown by settings such
as P = {CQCC, MFCC, BFCC} or P = {CQCC, MFCC, LFCC} that obtained high KFCV
values for all vowels in most intonations.

Figure 7. Comparison of the impact of using more than one cepstral feature at the same time according
to the KFCV metric for voices of both genders. For each vowel, a bar graph was made, in which each
bar represents the performance of a technique with respect to each intonation. It is worth mentioning
that only the results of the analyzed versions with cepstral features are shown in this figure. In other
words, for all cases analyzed here, N = {}. Furthermore, only the best value among all analyzed
configurations for each combination of CC extraction techniques was presented.
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Analyzing the configurations in which at least one cepstral feature was used to obtain
the best metric, we also noticed some trends. For example, in the case of the EER metric,
the use of the mapping function based on the PCA projection on the CCs was the most
common strategy in the configurations that obtained lower EER through the use of cepstral
features. In fact, in most configurations, using only one projection function was enough
to obtain the lowest EER. On the other hand, in the case of the KFCV, which represents
the most generalized training and test division approach on the database, we can see that
although the use of the mapping function based on the skewness of the CCs was the most
common function among the configurations, most configurations made use of more than
one mapping function, which indicates that in general, the use of more than one mapping
function, which defines the concept of multiprojection, is superior in representing the CCs
for the problem detection of voice dysphonia. In Figure 8, we present the histogram that
counts the number of configurations based on CCs that obtained the best metrics for EER
(Figure 8a) and for KFCV (Figure 8b) according to each multiprojection set.

(a) (b)
Figure 8. Histogram representing the number of configurations that used each multiprojection
strategy to obtain the best metric value in each case considering gender, vowel, and intonation;
(a) EER metric; (b) KFCV metric.

To carry out a detailing, we present in Figure 9 the best performance results according
to the KFCV metric restricted to the projection techniques used on the cepstral features of
each configuration that are defined on this feature class. Furthermore, only configurations
that do not use noncepstral features were considered, i.e., N = {} in this case. The pre-
sented results refer to the voices of individuals of both genders and are divided according to
vowels, and a bar graph was made referring to each one, and according to the intonations.
Analogously to the analyses referring to the use of more than one CC extraction technique
to represent the voice signal, we noticed that the use of more than one mapping function
to project the CCs also seemed to be associated with higher KFCV values. In fact, except
the mapping function mSKEW, which presents stable high KFCV results, the other mapping
functions employed in isolation present the lowest KFCV values for all intonations of all
vowels, reserving the highest and most stable values for configurations that make use of at
least three mapping functions. However, we noticed that all combinations of functions that
present high KFCV values for all cases use the mSKEW function, which is already a function
associated with high KFCV values. So, we can infer that the other mapping functions enrich
the good representation capacity of mSKEW, and consequently, indicate that the use of more
than one mapping function can serve to bring about stability and improve the results of
mappings that are already effective in the analyzed problem.

The selection obtained by the Saarbruecken voice database is slightly unbalanced for
the case of samples from male individuals, with a proportion of 54.24% of healthy samples
and 45.76% of dysphonic samples, and severely unbalanced for the case of samples from
female subjects, with a ratio of 75.59% of healthy samples and 24.41% of dysphonic samples.
Because of this, in most analyzed cases, the best configuration made use of the SMOTE
balancing technique. In particular, we noticed that for the KFCV metric, in all cases, the
configurations that obtained the best performance on the selection referring to the female
gender required the use of balancing, while for the selection referring to the male samples
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for the vowels \a\ and \i\ and the high intonation, the best-performing settings did not
require balancing. However, as we can see in the histograms in Figure 10, in most of the
analyzed cases, balancing was necessary for the best-performing configurations according
to the EER (Figure 10a) and KFCV (Figure 10b) metrics.

Figure 9. Comparison of the impact of using more than one mapping function on one or more
cepstral features according to the KFCV metric for voices of both genders. For each vowel, a bar
graph was made, in which each bar represents the performance of a certain technique with respect to
each intonation. It is worth mentioning that only the results of the analyzed versions with cepstral
features are shown in this figure. In other words, for all cases analyzed here, N = {}. Furthermore,
only the best value among all analyzed configurations for each combination of mapping functions
was presented.
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(a) (b)
Figure 10. Histogram representing the number of configurations that made use of the SMOTE balancing
strategy to obtain the best metric value in each case considering gender, vowel and intonation; (a) EER
metric; (b) KFCV metric.

The adopted dimensionality reduction strategy proved to be effective in most of the an-
alyzed cases. As detailed in Figure 11, the use of 100% of the feature vector coordinates, i.e.,
the use of all original feature vector coordinates, was associated with the best configuration
for the EER metric in 16 cases and for the KFCV metric in 9 cases, while in the other cases,
the dimensionality reduction was associated with the configurations that obtained the best
performance values. In addition, we can see that for the division into training and testing
adopted on the voice database, the analyzed configurations required a higher percentage
of coordinates in the feature vector to obtain the best EER value, since the most common
values in the histogram of Figure 11a are 100% and 75%, totaling 29 cases. On the other
hand, when we observe random variations of training and testing, which is what happens
when we compute the value of KFCV, most configurations with better performance use
only 50% of the total number of coordinates, as can be seen in Figure 11b.

(a) (b)
Figure 11. Histogram representing the percentage of coordinates of the feature vectors of the best
configurations according to the EER and KFCV metrics in each case considering gender, vowel, and
intonation. In this case, 100% means that there was no dimensionality reduction; (a) EER metric;
(b) KFCV metric.

Among the three classifiers considered in the configurations of the proposed material,
we noticed when analyzing Figure 12a a strong tendency of the LR classifier composing
most of the versions that presented the best EER result. This pattern makes it clear that
the division into training and test sets made on the voice database is a division that does
not represent the general case, since in most of the works discussed in Section 2, the SVM
and RF classifiers are employed with a higher success rate in solving the voice dysphonia
detection problem. Furthermore, when analyzing the KFCV metric in Figure 12b, we
noticed that these two classifiers become the majority among the configurations with the
best values for this metric. In particular, the well-known SVM is the most used classifier
in the topic addressed, and proved to be the most efficient in most cases, according to
the KFCV.



Sensors 2023, 23, 5196 28 of 36

(a) (b)
Figure 12. Histogram representing the number of times each classifier composed the best configura-
tion according to the EER and KFCV metrics in each case considering gender, vowel, and intonation;
(a) EER metric; (b) KFCV metric.

Finally, when analyzing the occurrences in which each normalization strategy was
present in the composition of the configuration associated with the best EER and KFCV
values, as highlighted in the histograms in Figure 13, we noticed that according to both
metrics, most of these configurations made use of some normalization strategy. For the
case of the EER metric, we noticed that robust normalization was the most common,
which indicates that the division between training and testing made on the voice database
may have counted on the presence of outliers. While, in general, when analyzing the
KFCV metric, we noticed that even though most of the configurations made use of some
normalization strategy, not adopting a normalization strategy was the most common
procedure among the configurations.

(a) (b)
Figure 13. Histogram representing the number of times each normalization strategy composed the
best configuration according to the EER and KFCV metrics in each case considering gender, vowel,
and intonation; (a) EER metric; (b) KFCV metric.

7.3. Complexity Analysis

We can observe that the complexity of the proposed framework is dependent on
the techniques that make up its foundation. In other words, our material has variable
complexity according to the parameterization considered for the sets of techniques for
extracting CCs (P), mappings (M), and techniques for extracting noncepstral features (N ).
Specifically, the complexity of the proposed method is compounded by the accumulated
complexity to compute the cepstral features, the projection of these features, and the non-
cepstral features. Mathematically, the complexity of the method is formed by the complexity
of all the techniques Φi ∈ P and by the complexity of calculating their respective first- and
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second-order derivatives, which are complexities of the order of O
(
nceps · nframes

)
for the

case that the CCs are given according to Equation (1), together with the complexities of all
theMmapping functions used to map each of the nP CCs and each of their derivatives,
plus the complexities of N techniques. Therefore, the complexity of the proposed method
is given by OProposed defined in Equation (10):

OProposed =
nP

∑
i=1

[
OΦi + 2 · O

(
nceps · nframes

)]
+ 3nP

nM

∑
i=1
Omi +

nN

∑
i=1
Oµi , (10)

where OΦi is the complexity of the technique Φi, ∀Φi ∈ P ; Omi is the complexity of the
mapping mi ∈ M, ∀mi ∈ M; and Oµi is the complexity of the technique µi, ∀µi ∈ N .

It is worth mentioning that in this work, we are considering static cepstral features;
in this case, the CCs and dynamic ones, which are ∆ and ∆∆. If we do not consider
the dynamic cepstral features, which is relatively common in the dysphonia detection
problem, the complexity of the proposed material would be reduced, as we would not
have the complexities of calculating these matrices; that is, we would not need to consider
2O
(
nceps · nframes

)
for each technique from P . Furthermore, we would not need to project

these features, and consequently, the complexity accumulated by the projections would be
reduced from 3nP ∑nM

i=1Omi to nP ∑nM
i=1Omi .

In our experiments, we computed the average feature extraction and representation
time for the CC calculation techniques considered in P and with respect to the mapping
functions ofM. Figure 14 shows an average time, in seconds, that the proposed method
takes to represent a voice signal using each configuration evaluated in P and inM. For
example, to represent a voice signal with the CCs extracted by the CQCC technique and
projected by PCA, the proposed method took, on average, 0.12 s. The chart does not
consider the extraction time of noncepstral features, referring to the portions ∑nN

i=1Oµi

of Equation (10), since this amount, which is approximately 0.78 s, is the same value in
all cases.

Figure 14. Average time in seconds for feature extraction from a sound signal considering each CC
extraction technique with respect to each multiprojection strategy. Values have been rounded to
present a maximum of two decimal places.

When analyzing the time used by the method according to its configurations, we
can notice that there is a close correlation with the complexity defined in Equation (10),
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since the configurations that use less computational time are those that make use of only
one cepstral feature and only one projection function. In addition, the configurations that
consume the most resources are those that use more cepstral features—with emphasis on
the configurations defined by the MFCC and LFCC techniques and by the CQCC, MFCC,
and LFCC techniques—and more than one projection function. We also realized that the
projection by the skewness measure entails more computational time when compared
to the other mappings. In fact, the joint mappings formed by functions mPCA and mSUM
and by functions mSUM and mSTD do not entail, in practice, more computational time
compared to its isolated use. Thus, we note that what contributes to a considerable increase
in computational time are the cepstral features, once the use of multiprojection does not
perceptibly change the computational time in the proposed method.

7.4. Limitations

For the proper execution of the proposed method, it is necessary to configure a large
number of parameters, since it is defined in a generalized way. As discussed in this section,
there are many variations of the method that can be configured, but we need to look at
them together to obtain the most accurate results. This implies a series of experimentation
steps that can be quite extensive and time-consuming.

The proposed framework requires a series of processes to be performed to increase
classification accuracy. These processes include the representation of sound signals through
sets of CC extraction techniques, the realization of multiprojections of these CCs, the data
balancing process, the dimensionality reduction, the normalization of the feature vectors,
and the training of classifiers. All these processes are essential for the effectiveness of the
framework, but they require processing time. Therefore, it is essential that these processess
are properly configured to ensure that the voice dysphonia detection system does not slow
down and can function optimally.

8. Conclusions

In this work, two significant advances were presented to improve security in BASs
through the detection of dysphonia in voice signals. The first advance focused on the
generalization of the vector representation of cepstral features, which are originally given
in matrices, through the use of sets of mapping functions. This multiprojection process
allowed for a more accurate and efficient representation of sound signals, improving dys-
phonia detection. The second advance consisted of the creation of a framework that allowed
for the use of these multidesigned cepstral features in conjunction with other noncepstral
features. This made it possible to increase the representation capacity of the sound signal,
and consequently, to improve the accuracy of the classifiers. This framework involved
performing several processes, such as the representation of sound signals through sets of
CC extraction techniques, performing multiprojections of these CCs, the data balancing
process, dimensionality reduction, and normalization of feature vectors, in addition to
training classifiers. These processes were critical to the effectiveness of the framework and
required careful analysis to ensure accurate and reliable results.

The work presented important contributions in general, but it was necessary to define
practical instances of the material to conduct evaluations on its functioning. For this, eight
CC extraction techniques were used, along with the proposed multiprojection representa-
tion strategy. These techniques were employed to establish fifteen different combinations
of cepstral features in P in the proposed framework. Experiments were carried out with all
practical instances defined and compared among themselves according to their results on
the Saarbruecken voice base. Several metrics were analyzed to evaluate the performance of
the proposed framework. Metrics that acted on a specific division of training and testing of
the selection of the Saarbruecken base were considered, such as the metrics ACC, EER, and
F1; as well as metrics that acted on multiple dynamically and randomly defined divisions
on the selection of the base, such as the KFCV metric. The results showed that the proposal
presented competitive numerical values in relation to the state of the art regarding the
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considered metrics. In addition, it was possible to observe the influence of specific stages
of the proposed framework, which had their effectiveness proven by the results obtained
in the analyzed metrics. These results confirm the effectiveness of the proposed framework
and provide a solid basis for its use in BASs. It was also possible to verify that the processes
of fusion of cepstral features and the use of multiprojection strategies with more than
one mapping function proved to be efficient in the representation of the voice signal, and
consequently, in the routine of detecting voice dysphonia.

For future experiments, it is recommended to use more elaborate strategies to compose
the steps of the proposed framework, since until now, only simple strategies have been
considered. Even so, the results obtained were satisfactory. For example, the use of deep
learning networks could be used in three stages of the framework: as one of the projection
functions inM, responsible for nonlinearly extracting the cepstral features of the voice
signal; as a dimensionality reduction technique, reducing the redundancy contained in the
vector ~vx; or as the model classifier. Furthermore, it is possible that the proposal presents
equally good results in problems of detecting other abnormalities in the voice, such as other
pathologies available in the Saarbruecken voice base or in other voice bases. Finally, it is
important to evaluate the proposal in other voice pattern recognition problems, such as
the spoofing detection problem, which also has little experimentation with respect to the
multiprojection strategies of cepstral features.
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ACC Accuracy
ANN Artificial Neural Network
APQ Amplitude Perturbation Quotient
AVPD Arabic Voice Pathology Database
BFCC Bark-Frequency Cepstral Coefficients
CC Cepstral Coefficient
CNN Convolutional Neural Network
CQCC Constant Q Cepstral Coefficient
DFT Discrete Fourier Transform
DNN Deep Neural Network
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DPV Database of Pathological Voices
DTCWT Dual-Tree Complex Wavelet Transform
DWT Discrete Wavelet Transform
EER Equal Error Rate
EH Error in Healthy
EMD Empirical Mode Decomposition
EP Error in Pathological
ETO Energy Teager Operator
F0 Fundamental Frequency
F1 F1-score
FFT Fast Fourier Transform
FNN Feedforward Neural Network
FVTL Fitch Virtual Tract Length
GA Genetic Algorithm
GFCC Gammatone-Frequency Cepstral Coefficients
GMM Gaussian Mixture Model
HNR Harmonic-to-Noise Ratio
HOS High-Order Statistics
ILPF Inverse Linear Predictive Filter
iMFCC Inverse Mel-Frequency Cepstral Coefficients
KFCV K-Fold Cross Validation
KNN k-Nearest Neighbors
LDA Linear Discriminant Analysis
LFCC Linear-Frequency Cepstral Coefficients
LPCC Linear-Prediction Cepstral Coefficients
LR Logistic Regression
LVQ Learning Vector Quantization
MEEI Massachusetts Eye and Ear Infirmary
MFCC Mel-Frequency Cepstral Coefficients
MLP Multilayer Perceptron
NB Naive Bayes
NGCC Normalized Gammachirp Cepstral Coefficients
NHR Noise-to-Harmonic Ratio
PCA Principal Component Analysis
PdA Príncipe de Asturias Database
PDE Paraconsistent Discrimination Engineering
RAP Relative Average Perturbation
RF Random Forest
SGD Stochastic Gradient Descent
SMOTE Synthetic Minority Oversampling Technique
STD Standard Deviation
SVD Saarbruecken Voice Database
SVM Support Vector Machine
SWT Stationary Wavelet Transform
UPM Universidad Politécnica de Madrid
USPD São Paulo University Voice Database
VTL Virtual Tract Length
ZCR Zero Crossing Rate
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