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Abstract: Bridges are vital components of transport infrastructures, and therefore, it is of utmost
importance that they operate safely and reliably. This paper proposes and tests a methodology for
detecting and localizing damage in bridges under both traffic and environmental variability consider-
ing non-stationary vehicle-bridge interaction. In detail, the current study presents an approach to
temperature removal in the case of forced vibrations in the bridge using principal component analysis,
with detection and localization of damage using an unsupervised machine learning algorithm. Due to
the difficulty in obtaining real data on undamaged and later damaged bridges that are simultaneously
influenced by traffic and temperature changes, the proposed method is validated using a numerical
bridge benchmark. The vertical acceleration response is derived from a time-history analysis with
a moving load under different ambient temperatures. The results show how machine learning
algorithms applied to bridge damage detection appear to be a promising technique to efficiently
solve the problem’s complexity when both operational and environmental variability are included in
the recorded data. However, the example application still shows some limitations, such as the use of
a numerical bridge and not a real bridge due to the lack of vibration data under health and damage
conditions, and with varying temperatures; the simple modeling of the vehicle as a moving load; and
the crossing of only one vehicle present in the bridge. This will be considered in future studies.

Keywords: bridge damage detection; non-stationary; PCA; K-means; operational-environmental
variability

1. Introduction

Aging, material degradation, deterioration, fatigue, and corrosion are some of the
reasons structures lose their performance. They can sometimes cause structures to fail
unexpectedly. The research in this area [1] has increased as major disasters have occurred
worldwide [2], resulting in the death of a considerable number of people and large economic
consequences. In this regard, structural health monitoring (SHM) systems are becoming an
important tool to prevent structural failures with direct and indirect losses.

A useful classification of SHM was proposed by Rytter [3], who categorized four levels
of damage assessment depending on the characteristics of damage that a particular SHM
system can achieve.

• Level 1: Indication of damage existence (Detection);
• Level 2: Information of damage position (Localization);
• Level 3: Damage intensity (Assessment);
• Level 4: Prognosis (Remaining life prediction).
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With the advancement of machine learning (ML) algorithms, a new level that corre-
sponds to the type of damage can be introduced above [4]. This new level stands between
Levels 2 and 3.

Vibration data has typically been used to detect bridge deterioration based on changes
in modal parameters brought on by the presence of damage. It is rather easy to obtain dy-
namic parameters as modal ones and damping properties using traditional time-frequency
signal processing techniques such as fast Fourier transform (FFT) and short-time Fourier
transform (STFT) [5,6]. Such signal processing techniques, however, are predicated on
the idea that the signal is stationary and linear, which may be argued in general to be
valid for the duration of the short time window, but is not valid over the entire timespan
of the observation. In addition, FFT presents a few intrinsic limitations that can hin-
der the effectiveness of the system identification and the following damage detection [7].
For instance:

(i) The structural health state may be lost during the data reduction procedure, which is
specifically retrieved by FFT [8].

(ii) FFT cannot identify the time dependence of the dynamic parameters, and when using
signals from naturally excited structures, it is unable to capture the evolutionary traits
that can be observed in these signals [9].

The higher frequencies are poorly excited and closely spaced, and they typically
represent damages that are local events [10,11]. As a result of the linearity and stationarity
assumptions, damage detection methods using FFT show relevant limitations. The signals
derived from vehicles crossing a bridge, however, do not exhibit these properties because
the frequency spectrum of the response shifts along the crossing due to the vehicle-bridge
interaction and because the signal’s amplitude is modified by the vehicle’s position on the
bridge in relation to the location where the response is recorded.

It becomes clear that the recorded vibration’s frequency and amplitude are time
dependent. As a result, techniques for modal parameter extraction (such as FFT) that rely
on the linearity and stationarity of the process are inapplicable for obtaining trustworthy
and precise damage indicators.

Wavelet-based methods, addressed in the literature and applied to bridges, allow for
valuable insights with respect to modal identification. However, the developed techniques
are aimed at the identification of general time-varying systems, while it is known that other
critical conditions such as the vehicle-bridge interaction contain closely spaced spectral
components due to the vehicle–bridge dynamic coupling, which instead requires alternative
approaches [12].

Two major limitations of SHM during continuous monitoring are also present. First, by
applying increasingly sophisticated algorithms to monitoring data, the number of features
that are sensitive to degradation are estimated rather than being measured directly. Natural
frequencies, for instance, are determined through measurements of vibrational reactions,
such as accelerations, which are subject to estimation mistakes. In addition to changes
brought on by structural degradation, the features discovered through monitoring are also
sensitive to operational (traffic load) and environmental (temperature, humidity, and wind
speed) conditions. As a result, in order to properly apply SHM, it is necessary to consider
the accuracy of the predicted features as well as environmental and operational variability.

In conclusion, since environmental and traffic effects always have an impact on dy-
namic response in real bridges in use (causing non-linearity and non-stationarity in the
recorded signals), there are two main challenges when using damage detection techniques
in active bridges: how to eliminate ambient effects and extract precise damage features
that are practical for damage detection, location, and quantification from short non-linear
and non-stationary vibration produced when vehicles cross the bridge. This paper will
demonstrate how relevant damage features derived from vibration records and machine
learning techniques can deliver a relevant answer to the query.
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2. Damage Detection Method

It is generally recognized that a number of external elements, including the environ-
ment and operational circumstances (traffic), do have effects on the efficiency of SHM
systems when adopted for bridges. Several SHM works from the literature are focused on
the use of machine and statistical learning techniques to address this issue. For instance,
when the temperature is constant, Santos et al. [13] suggested an online unsupervised
detection technique for early damage identification. Additionally, Soo et al. [14] proposed
a procedure for distinguishing environmental effects from damage in close to real-time
using principal component analysis, although without taking the operational loading into
account. They do not, however, offer a complete solution for bridges that are subject to
both traffic loads and temperature fluctuations. Tenelema et al. [15] showed that principal
component analysis (PCA) is efficient for differentiating environmental effects from selected
data when traffic data are used. They used instantaneous phase differences as damage-
sensitive features on a steel bridge and demonstrated that the first principal component
(PC) is purely related to temperature effects. Even though the temperature effect was
clearly shown, the bridge FEM model did not accurately represent a real bridge structure.
Moreover, the damage detection was based on the variance changes in the second PC of
PCA, which cannot guarantee certainty in real cases because of excessive noise.

Delgadillo and Casas [16] demonstrated on a real steel truss bridge that instantaneous
frequencies (IF) are reliable damage-sensitive features by applying the Hilbert-Huang
transform and mode decomposition, performing unsupervised cluster-based machine
learning (K-means) on symbolic data. As a result, K-means proved to be efficient to detect
and localize the damage, but temperature effects were not considered. Therefore, the
K-means algorithm is a promising tool to be tested in further developments that include
temperature effect removal.

More recent contributions from the literature can also be reported. Wang et al. [17]
proposed a hybrid method for damage detection under environmental changes. Specifically,
they used a PCA and Gaussian mixture method to cluster the data into damaged and
undamaged states.

Huang et al. [18] presented a “train-based performance warning method” for bridge
main girders using long-term data, considering temperature, wind, and traffic load. However,
their objective is more focused on removing the traffic effects from the analyzed vibration
record rather than on using the capability of vibration due to traffic for damage detection.

Meixedo et al. [19,20] considered together different environmental and operational effects
on bridges, i.e., temperature, wind, and train load. In particular, they used the portion of the
vibration response when the load is on the bridge for damage detection purposes.

Zhang et al. [21] proposed a steady-state data baseline model for bridges by eliminating
the non-stationary effects of the temperature by employing PCA directional projection.
Strain data at the different points of the bridge were used.

Wang et al. (2022) [22] discussed the displacement model error-based performance
warning to detect structural anomalies using PCA to eliminate traffic loads, assuming the
first PC only to be related to the traffic loads.

This paper’s goal is to provide an SHM methodology for a bridge under operational
(traffic loading) and environmental (temperature) effects. Therefore, in this study, both
conditions are considered together, while the contributions by Tenelema et al. and Del-
gadillo and Casas [15,16] do not deal completely with both effects and do not provide an
appropriate threshold to define the presence of damage. With respect to Wang et al. [17],
who argued that the main components carry information about the state of the structure,
this paper reconstructs the data by removing first the PC, related to temperature effects,
and then identifies damage by using an advanced machine learning approach. Conversely,
Huang et al. [18] adopted PCA to remove wind and traffic effects, while temperature was
eliminated using a canonically correlated method. Zhang et al. [21] applied a machine
learning approach to the second PC for damage detection without considering other PCs
and environmental effects, while the present work employs K-means for detecting and
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localizing damage. Moreover, considering the contribution by Wang et al. (2022) [22],
where long-span bridges and static data only are considered, this paper focuses on standard
and frequent bridges with short and medium spans and uses dynamic response.

Finally, with respect to Meixedo et al. [19,20], where the vibration due to trains was
used to obtain autoregressive (AR) and autoregressive exogenous input (ARX) models as
feature extractors and used for damage detection only by fusing the data from different
sensors, the main novelty of the present work is the vibration decomposition to deal with
the intrinsic non-stationarity of the dynamic response induced by highway traffic to define
instantaneous damage indicators in the frequency domain, with the main advantage that
they may be used for both detection and localization of damage based on the results of
different sensors.

This study treats recorded non-stationary signals of the vehicle-bridge interaction
in a comprehensive way, proposing PCA analysis for the removal of temperature effects
and instantaneous frequencies as damage features. Furthermore, it includes the use of a
damage index, based on a machine learning approach, as a clear threshold for differenti-
ating damaged and undamaged scenarios. Figure 1 shows a flow chart of the proposed
methodology, which is summarized as follows:
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Figure 1. Flow chart of the proposed SHM methodology.

1. Acceleration records under traffic loads and at different ambient temperatures are
collected from sensors.

2. Variational mode decomposition (VMD) and Hilbert transform (HT) are applied to
recorded data in order to choose a damage-sensitive feature for the following step. This
step aims to deconstruct the non-stationary signal into intrinsic mode functions (IMFs).
In this study, instantaneous frequency is considered as the relevant damage feature.

3. Principal component analysis is performed to remove the environmental effects
(temperature).

4. Symbolic data analysis is performed, and a cluster-based moving window K-means
algorithm is applied to selected scenarios for damage detection and localization.

5. In the following subsections, the above-mentioned numerical tools are described
in detail.

2.1. Variational Mode Decomposition (VMD)

Since Dragomiretskiy and Zosso’s 2014 [23] proposal, variational mode decompo-
sition (VMD) has been extensively utilized in a variety of applications. By concurrently
extracting modes, they devised a variational mode decomposition model that is completely
non-recursive. It was developed to overcome empirical mode decomposition’s (EMD)
limitations of sensitivity to noise and sampling.

VMD is frequently used in structural engineering for modal identification by means
of the recorded dynamic response. For instance, Bagheri et al. [24] used a variety of case
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studies (numeric, experimental, and on site) to show the effectiveness of the VMD method.
A field study of a pedestrian bridge looked at the structural response to ambient vibrations
input, while a laboratory investigation focused on the vibratory response of a multi-story
structure. In addition, the shear frame’s modal characteristics were calculated using an
analytical method and then compared to the modal parameters computed by laboratory
tests. As a result, compared to conventional signal decomposition techniques such as EMD,
the VMD-based system identification was shown to be robust against noise signals and
sampling frequency.

The limitation of this method is that the number of modes K must be set in advance [25].
If the selected mode number is not accurate, the VMD will cause the loss of important
modes. In order to determine the number of intrinsic mode functions (IMFs) different
methods have been proposed such as the correlation coefficient method [26], the normalized
mutual information method [27], and, the most common, the center frequency observation
method [28].

VMD’s objective is to discreetly divide an input signal with real values, f, into quasi-
orthogonal band sub-signals with band limits, uk (modes). Each mode is condensed
around the central pulsation ωk, and the bandwidth is calculated using the shifted signal’s
H1 Gaussian smoothness [28]. The constrained variational problem form of the VMD is
as follows:

min
{uk},{ωk}

{
K

∑
k=1
‖∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt‖2

2

}
(1)

s. t.
K

∑
k=1

uk = f (2)

where uk and ωk are the kth intrinsic mode function, and it is the center frequency, respec-
tively; ∂t is the time derivative; δ(t) is Dirac’s delta function; and j is an imaginary number.

L({uk}, {ωk}, λ) = α ∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖2

2

+‖ f (t)−∑
k

uk(t)‖2
2 + 〈λ(t), f (t)−∑

k
uk(t)〉

(3)

where the data fidelity constraint’s balancing parameter, α, is also known as the
penalty factor.

2.2. Hilbert Transform (HT)

The HT is a linear operator that transforms a real signal x(t) into another real signal,
indicated by H[x(t)]. It is defined as the convolution of x(t) with the function 1/(πt) :

H[xk(t)] =
1
π

P.V
∫ +∞

−∞

xk(τ)

t− τ
dτ (4)

P.V is Cauchy’s principal value of the integral, and xk(t) corresponds to the kth IMF
component obtained from the mode decomposition technique. For simplicity purposes, the
notation xk(t) is used instead of IMFk(t) in all equations below. The HT allows defining
the complex analytic signal zk(t), from which instantaneous amplitude and phase can
be computed. An analytic signal represents rotation in the complex plane with the rota-
tion radius ak(t) and the instantaneous function θk(t) [25]. This implies that the analytic
signal becomes:

zk(t) = xk(t) + i H[xk(t)] = ak(t)eiθk(t) (5)

where H[xk(t)] represents the Hilbert transform of IMFk(t), ak(t) is the instantaneous
amplitude, and θk(t) is the instantaneous phase function.

ak(t) =
√
{xk(t)}2 + {H[xk(t)]}2 (6)
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θk(t) = arctan
(

H[xk(t)]
xk(t)

)
(7)

The instantaneous amplitude ak(t) describes the envelope of the denoised IMFk(t),
while θk(t) describes the number of rotations.

The concept of the frequency and phase carry significant importance when applying
IMFs [29]. If the IMFs can be considered local, then the instantaneous angular frequency
ωk(t) can be defined as:

ωk(t) =
dθk(t)

dt
= 2π fk(t) (8)

Cohen [30] stated that each IMF is a mono-component signal with a monotonically
increasing phase and a positive instantaneous frequency. Therefore, each selected IMF can
be defined as:

xk(t) = Re(zk(t)) = Re(ak(t)eiθk(t)) = ak(t) cos[θk(t)] (9)

The sum of the instantaneous phases for the chosen IMFs can be used to determine
the overall instantaneous phase:

θ(t) = ∑
k

θk(t) = ∑
k

arctan
(

H[xk(t)]
xk(t)

)
(10)

where xk(t) are physically meaningful (i.e., closer to the natural frequencies) IMFs selected
for spectral analysis, and θ(t) is the total number of rotations in the complex plane, in
radians (rad), of a significant part of the original measured signal with xk(t).

2.3. Clustering Algorithm

The study of grouping or clustering things based on measurable or perceived intrinsic
features or similarities is known as cluster analysis. Data clustering (unsupervised learning)
differs from classification or discriminant analysis since it lacks category information
(supervised learning). Clustering techniques do not require defining reference/training
data, in contrast to supervised algorithms. By looking for the smallest and most distinct
group of clusters, they may “understand” the structure of a data set [31].

The primary objective of clustering algorithms is to identify a structure or a pattern in
the data. It is an effort to increase the dissimilarity between objects assigned to various clus-
ters while simultaneously minimizing the distinction between data objects mathematically
associated with the same cluster [31]. There is no univocal belief on the whole definition of
clustering, although a traditional one is provided below [32]:

1. Instances, in the same cluster, must be similar as much as possible.
2. Instances, in the different clusters, must be different as much as possible.
3. Measurement for similarity and dissimilarity must be clear and have practical meaning.

K-means is taken into account in this work. It is a partition-based clustering approach.
This class of algorithms’ fundamental principle is to treat each data point’s center as the
center of its associated cluster [32].

Let PK = {CK, . . . , CK} be partitioned into K clusters. Then, the overall within-cluster
W(PK) dissimilarity can be defined as [31]

W(PK) =
1
2

K

∑
k=1

∑
c(i)=k

∑
c(j)=k

dij (11)

where c(i) is a many-to-one allocation function that assigns object i to cluster k, with respect
to a dissimilarity measure, dij, defined between each pair of data objects, i and j.
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The overall dissimilarity of a data set, OD, is given below.

OD =
1
2

N

∑
i=1

N

∑
j=1

dij (12)

where N is the total number of objects. The between-cluster dissimilarity is obtained by
subtracting the previous two equations, B(PK) = OD−W(PK).

The goal of the K-means is to minimize the overall within-cluster dissimilarity, W(PK),
of a given partition, PK, by the iterative optimization scheme. The K-means requires that
the number of K < N clusters be initially defined [31] with a randomly defined set of K
cluster prototypes from the same type of data. This step is called initialization. Following
the initialization, each iteration starts by assigning objects to clusters by allocating rule, c(i).
The second step of the K-means algorithms is to find the best prototypes that represent
clusters defined before. It is called the representation step. K-means represents the clusters
by finding their centroids. The process of allocation and representation is continued until
an objective function that is dependent on the compactness and separation of the clusters
reaches its global minimum value [31].

The K-means uses squared within-cluster dissimilarity measured across the K clusters
as an objective function [32]. They are usually based on distance metrics. Euclidean distance
is the most widely utilized one (square root of the sum-of-squares). However, it causes
significant false detection occurrences and increases computing complexity when SHM is
applied. The alternate Gowda-Diday distance measure is employed to go through these
issues [31].

2.4. Damage Identification

The last step in the process is the definition of a quantitative value (a threshold value
or detection index) that clearly defines the limit between the undamaged and damaged
situations and minimizes the number of false positives.

The K-means algorithm demands the initial definition of the number of K ≤ N of
clusters, as well as a randomly defined set of cluster prototypes, which are objects of the
same type as those being clustered. The process of choosing which set of prototypes best
depicts the clusters specified during the allocation phase is known as the representation
step of each K-means iteration. There is no way to predict in advance if this number will
match the number of distinct structural conditions identified on site. Clear conclusions
cannot be formed without identifying which of the partitions best capture the data’s
structure. The global silhouette index (SIL) is employed in this study to obtain the number
of clusters since it performed better in prior investigations when its formulation was
thoroughly discussed [13,33]. The ith observation is given a set number of clusters K, with
the following value, to create the silhouette statistic [16]:

s(xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
∈ [−1, 1] (13)

where a(xi) is the average distance between the ith object of cluster C and the remaining j
objects, and b(xi) the distance to the center of the closest neighboring cluster. Below are
shown, accordingly, the average silhouette widths for all samples and the silhouette index
of clusters, where (1 ≤ Mk ≤ N), N is the set of objects, K is the partition for clustering,
and the silhouette coefficient ranges from 0 to 1.

s(x) =
1

Mk

Mk

∑
i=1

s(xi) (14)

SIL =
1
K

K

∑
k=1

s(x) (15)
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For the purposes of the current study, it is significant to note that the partition that,
among the K evaluated, has the highest SIL value is the one that best fits the examined data
set and should therefore be taken into consideration for SHM.

Cluster analysis can automatically distinguish between structural situations without
making any assumptions about the site’s past structural condition. However, user input is
required to determine whether the output is compact or mixed over time.

It creates several difficulties to implement the method in real-time applications. To
overcome this issue, Santos et al. [31] proposed a robust strategy for damage detection using
a cluster-based algorithm with moving time windows. It relies on the average difference
between clusters rather than relying on the allocation of data objects to cluster over time by
defining the following damage index DC [31].

DC =
1

K(K− 1)

K

∑
k=1

K

∑
c=1
c 6=1

dck (16)

c and k are two of the K clusters, K is the number of clusters from the partition
with the highest SIL, and dck is the Gowda-Diday dissimilarity calculated between their
centroids. The K-means clusters are similar and will produce low values of DC if there is
no damage and the structural behavior is stable. Therefore, the K-means algorithm will
produce distinct and independent clusters and high values of the DC if damage is detected.
Santos et al. [31] further contend that DC is particularly sensitive to early damage and
capable of large data fusion because the information gathered from numerous sensors is
referred to as a single-value index.

Ideally, TRUE/FALSE binary information should be provided by the detection strategy.
L is the time duration of each data sample, S is the number of samples per window, and SL
is the fixed length in which the time windows are specified. Santos et al. [31] propose the
statistical testing of the DC values acquired inside each time window’s length because the
value of DC is not informative by itself (it does not provide TRUE/FALSE information).
The statistical testing of the DC values results in the definition of the confidence boundary
(CB), which should be exceeded only in the case the structural system exhibits changes.

The CB is defined at each time window, by statistically testing DCs distribution, under
the assumption that only the random effects influence the residual errors obtained from
unchained structures. Generally, normal statistical distribution is used in SHM works
related to damage detection. To describe small samples taken from a Gaussian population,
the t-student distribution is more suited because there are just a few DC values in each time
window [31].

The confidence boundary at each time window is obtained as follows:

CB = E[DC] + t
s−1, 1

2+
β
2
× E[DC− E[DC]]/

√
S (17)

where t
s−1, 1

2+
β
2

is the 1
2 + β

2 percentile of a t-student distribution with S − 1 degrees of

freedom, and β is the confidence level taken at 99.9%.
E[DC] and E[DC− E[DC]] are expected value and variability estimates of the DC

sample within the analyzed time window, respectively.
Finally, Santos et al. [31] suggested an original detection index, DI, based on DC and

CB values. It is defined to have the following properties: (i) it is dimensionless, (ii) it has
an unsupervised and window-wise character by using only data pertaining to a single
time window, and (iii) it has positive values that indicate damage detection (“TRUE”)
and negative or null values that stand for unchanged structural response (“FALSE”). As
defined by the following, DI (detection index) is defined as the ratio between the median
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DC (damage index) value observed within a time interval and the largest DC deviation
observed above the CB (confidence boundary).

DI =
maxi(DCi − CB)

medi(DCi)
; i = 1, . . . , S (18)

3. Case Study
3.1. Description of the Concrete Bridge Model

The proposed methodology is applied to a numerical model of a two-span continuous
beam bridge’s superstructure component under changing operating and environmental
conditions. The model was developed starting from an original benchmark steel bridge
presented by Tatsis and Chatzi [34] via open-source Python scripts, which were made available
through GitHub (Table 1), with the objective of representing better actual bridge structures.

Table 1. Geometry and mechanical properties of the numerical bridge superstructure.

Geometry (Units) Symbol Value

Left-span length (m) L1 10
Right-span length (m) L2 10
Total bridge length (m) L 20

Bridge height (m) h 0.6
Bridge width (m) t 10

Material properties at T = 20 ◦C

Mass density (kg/m3) ρ 2400
Young’s modulus (GPa) E 35

Poisson’s ratio ν 0.2
Shear modulus (GPa) G 14.6

The bridge superstructure (Figure 2) consists of a two-span bridge with equal length
(L1 and L2 = 10 m). The cross-section of the beam is rectangular with a constant width of
10 m and a height of 0.6 m.
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Figure 2. Geometry of the two-span bridge in the longitudinal direction with elastic boundaries.

The bridge is assumed to be made from reinforced concrete with E = 35 GPa. It is a
linear elastic material with density ρ = 2400 kg/m3 at ambient temperature T = 20 ◦C and
Poisson’s ratio ν = 0.2. Table 1 summarizes the geometry and the mechanical properties.

The bridge is supported by nine elastomeric rubber bearings that are modeled as three
evenly spaced elastic supports at each abutment and intermediate pier and put on the
bottommost edge of the bridge superstructure.

Table 2 summarizes the global horizontal stiffness, kx, and vertical stiffness, ky, adopted
for the three spring supports that consider the stiffness of the corresponding elastomeric
bearings designed according to the loads acting on the bridge (self-weight, permanent load,
traffic load, temperature, etc.).

Table 2. Horizontal stiffness, kx, and vertical stiffness, ky, adopted for the three spring supports.

Stiffness (Units) Left Support Mid Support Right Support

kx (N/m) 10,714,200 19,285,500 10,714,200
ky (N/m) 1015 1020 1015
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3.2. Damage Scenarios and Sensors

In order to provide information about the nodal variables in both the x- and y- di-
rections, six sensing points, or “sensors,” are thought of (i.e., displacements, velocities,
accelerations, strains, etc.). Table 3 describes where these sensors are located. Figure 3
displays the six chosen sensors as green points. Furthermore, six damage scenarios (DMG1
to DMG6) are modeled in the bridge. Damages are introduced by assigning lower stiffness
characteristics to selected series of elements. In the following, they are termed “damage-
induced mesh elements” (red elements in Figure 3).

Table 3. Sensor locations along the bridge.

Sensor Characteristics Position on the Beam Neutral Axis
(y = 0.3 m)

S-01 1⁄4 L1 from left-hand support x = 2.5 m
S-02 1⁄2 L1 from left-hand support x = 5.0 m
S-03 3⁄4 L1 from left-hand support x = 7.5 m
S-04 3⁄4 L2 from right-hand support x = 12.5 m
S-05 1⁄2 L2 from right-hand support x = 15.0 m
S-06 1⁄4 L2 from right-hand support x = 17.5 m
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Figure 3. Sensors (in green) and damage locations (in red) in bridge structure.

The first damage region is found in the center of the left span (DMG1, DMG2, DMG3),
starting from the bottommost edge of the beam cross-section, while the second damage
region is found in the intermediate support section (DMG4, DMG5, DMG6), starting from
the uppermost edge of the beam. Moreover, the number of damage-induced mesh elements
also varies, as shown in Figure 3. For instance, DMG1 and DMG4 cover an area of two
damaged elements, DMG2 and DMG5 a zone of four damaged elements, while DMG2 and
DMG6 a zone of six damaged elements. As a result, the damaged elements are 0.05 m wide
and range in height from 0.1 to 0.3 m. Table 4 provides a summary of the descriptions of
these six damage situations.

Table 4. Damage scenarios provided by the benchmark.

Damage Scenarios Damaged Elements Location of Damage

Undamaged Scenario (UND) 0

Damage Scenario 1 (DMG1) 2
At 1/2 L1 from left-hand support,

starting from the bottommost edge
Damage Scenario 2 (DMG2) 4
Damage Scenario 3 (DMG3) 6

Damage Scenario 4 (DMG4) 2
At L1 from left-hand support, starting

from the uppermost edge
Damage Scenario 5 (DMG5) 4
Damage Scenario 6 (DMG6) 6

In addition to the damage scenarios, the model allows controlling the severity of the
damage by setting the reduction of Young’s modulus.
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Stiffness reduction is noted by D, followed by the amount of reduction. For example,
D50% means 50% reduction in Young’s modulus at a given element and damage scenario.

3.3. Loading

To perform a time-history analysis simulating traffic flow, a deterministic moving
load is used. Data processing methods such as the Hilbert Huang transform can detect
these singularities in the signal caused by vibrations created by the moving load and is
the appropriate tool to analyze the non-stationary accelerations produced by the crossing
load along the bridge [29,30]. The passage of a vehicle is modeled as a moving load F with
constant speed v in this case study, as shown in Figure 4. The weight of a standard truck of
about 30 tons is considered.
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In summary, the following parameters are considered for the time-history analysis:

− The first, second, and third bending modes are selected;
− The Rayleigh damping coefficients are α = 0.1654 and β = 5.4333 × 10−6;
− The vehicle velocity is 10 m/s;
− A sampling frequency of fs = 400 Hz in the virtual sensors, a time step in the time

domain analysis of ∆t = 0.001 s, a final time step Tf = 2 s (time to cross the bridge), and
a total number of time samples of 800 are considered.

Simulation of Temperature

To check the ability of the machine learning methodology proposed to overcome the
problems related to the temperature effects in the recorded signals, different responses
are obtained under different ambient temperatures. This is introduced in the numerical
model by taking into account the relationship between temperature and Young’s modulus
of concrete. The work by Jiao et al. [35] was assumed, where a linear relationship between
the modulus of elasticity and temperature was given:

Ec = −0.125T + 29.13 (19)

R2 = 0.9852 (20)

For the present study Ec = 35 GPa is taken at a reference temperature of 20 ◦C, and
the relationship is modified accordingly.

Ec = −0.125T + 37.5 (21)

3.4. Results and Discussion

As stated earlier, the main objective of this paper is to propose and test the machine-
learning-based methodology for damage detection in bridges that will be able to distinguish
the real damage from the environmental changes and using the forced vibrations due to
the traffic crossing. To simulate those conditions, it was decided to model a passing of the
truck at two different temperatures and in both damaged and undamaged states.

Therefore, the following extreme scenarios for time-history response due to traffic
action were preliminarily chosen in the present work:
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1. UND, T = −15 ◦C, D0%;
2. UND, T = 20 ◦C, D0%;
3. DMG3, T = 20 ◦C, D90%;
4. DMG3, T = −15 ◦C, D90%.

In all cases, the damage is introduced at the mid-span of the left span.
Figure 5 shows the obtained accelerations at Sensor S01 for the four considered scenarios.
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3.4.1. VMD

VMD is a signal decomposition technique with its own experimental parameters.
Since the IMFs reveal the frequency information contained in the original signal, the peaks
in the Fourier spectrum of this signal give a rough indication of the number of IMFs to be
extracted from a particular signal decomposition technique. Therefore, the single-sided
amplitude spectrum of the decomposed IMFs is also discussed.

There are six parameters that must be set to apply VMD εa, εr, O, α, τ and K. εa and εr
are absolute and relative tolerance, respectively. In this case study, the absolute tolerance is
more restrictive than the relative tolerance, as in the implementation of MATLAB. Therefore,
εa = 0.1 and εr = 10−5. A high number of iterations O = 100, 000 is set to stop the VMD
only when relative tolerance is met.

The efficiency of the VMD method has been demonstrated. The algorithm always
seeks to reconstruct the time series effectively with minimum error. The VMD method
ensures no mixture of modes, as well as the orthogonality of the transformation. Although
this section refers to the signal decomposition for the undamaged state at T = 20 ◦C in
Sensor S-01 (Figure 6), the same procedure is performed for all sensors and compared to the
damage scenarios. This study revealed that the signal decomposition is similar for every
damage scenario using the same VMD parameters as in Sensor S01: εa = 0.1, εr = 10−5,
τ = 0.1, εr = 10−5 and O = 100,000, with the exception of the number of modes K, which
varies from one sensor to another, as shown in Table 5.
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Table 5. VMD parameters for each sensor.

Parameters S01 S02 S03 S04 S05 S06

Number of modes, K 6 5 6 6 5 6
Relative tolerance, εr 10−5 10−5 10−5 10−5 10−5 10−5

Penalty factor, α 1000 1000 1000 1000 1000 1000
Fidelity coefficient, τ 0.1 0.1 0.1 0.1 0.1 0.1

Absolute tolerance, εa 0.1 0.1 0.1 0.1 0.1 0.1
Number of iterations, O 100,000 100,000 100,000 100,000 100,000 100,000

K is found to be 6 for Sensors S01, S03, S04, and S06, which are located at 1
4 from the

spring supports, whereas K is established as 5 for Sensors S02 and S05, which are placed in
the middle of the left span and right span, respectively. In these sensor signal amplitudes,
the second bending mode is far less than in the rest of the sensors, which results in a mix of
the asymmetric and symmetric modes, as shown in IMF3 in Figure 7.
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3.4.2. Hilbert Transform

The Hilbert transform is applied to study the characteristics of different time-varying
parameters obtained from scenarios and to obtain damage-sensitive features. In particular,
the goal is to examine each IMF and obtain instantaneous frequency as a function of time.
It can be achieved by applying the Hilbert transform (HT) to each IMF extracted from the
application of the VMD method.

The instantaneous frequencies fk(t) are obtained by applying the Hilbert transform
to the k physically meaningful IMFs, e.g., Figure 8 for Sensor S-01. It can be noticed how
boundary conditions affect the response: when the load is at the extremities, over the
abutments (time instant of 0 s and 2 s), larger oscillations are generated in the model
because of the load concentration and the elastic properties (no dissipative effects) of the
numerical model. Therefore, it was decided to concatenate the analysis on the instantaneous
frequencies in the interval of 0.1–1.5 s as the appropriate time signal for the analysis
(Figure 9).

3.4.3. Application of PCA (Eliminating Environmental Effects)

When PCA [14,36–38] is applied to the data set, the first principal component (PC1)
represents the factor that creates the greatest variance within the data set, the second
principal component (PC2) represents the factor that creates the second greatest variance
affecting the data, and so on.

According to Soo et al. [37], the data set needs to come from two extreme and opposing
temperature situations in order to accurately depict the impacts of temperature fluctuations
in PC1. As a result, if the data set is standardized, the extreme cases will be displayed
on the opposing sides of the PC1 graph, indicating negative and positive values of the
variance. Therefore, additional minor elements affecting the data set, such as structural
damages, will be represented by the other primary components.

As shown in the flowchart in Figure 10, the PCA methodology to filter the temperature
effects impacting the vibration parameters may be broken down into eight primary steps.
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The basic data set for typical PCA is a 2-D matrix, Xn,m, consisting of n observations
(e.g., temperature variability) and m measured variables (e.g., modes). The correlation
between these variables is examined using the standard PCA method. However, because
the observed variables (e.g., instantaneous frequencies) are continuous in time in this case
study, a third dimension, k, is added, resulting in Xn,m,k.

In this case study, correlations between a particular measured variable (instantaneous
frequency) obtained for each IMF m and several temperature observations, n, are analyzed.
Therefore, each time sample and each sensor are treated independently. As an illustration,
Figure 11 shows the unfolding in time samples of the data set corresponding to a sensor
resulting in a 3-D data matrix, Xn,m,k.
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Moreover, a fourth dimension, l, must be added to the data matrix when various
sensors are examined. As a result, a four-dimensional data matrix Xn,m,k,l with a high
number of connected variables is created, as illustrated in Figure 12.

On the one hand, the number of observations is n = 9 corresponding to the 8 extreme
temperatures (case observations) to create the baseline plus one new observation. The
number of modes, m, represents the number of IMFs in which the original signal was
decomposed. As seen in the previous section, the number of IMFs m varies from one sensor
to another: m = 6 for Sensors S01, S03, S04, and S06, and m = 5 for Sensors S02 and S05. As
a reminder, the instantaneous modal parameters were obtained for the interval of 0.1–1.5 s
and a sampling frequency of 400 Hz was selected to capture the first three bending modes
of vibration, hence dimension k = 560. The vertical acceleration response obtained for any
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temperature condition was decomposed by means of the VMD-based method with the
following parameters: α = 1000 εa = 0.1, εr = 10−5, τ = 0.1, εr = 10−5 and O = 100,000.
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In the following, the graphical results for the undamaged cases and damaged cases cor-
responding to scenarios at 20 ◦C temperature are presented (black dots) in Figures 13 and 14
(for PC2 only). These represent a representative sample of the results over different sce-
narios. Moreover, to create the baseline, four extreme cases at low temperatures of around
−30 ◦C (blue dots) and four extreme cases at high temperatures of around 70 ◦C (red dots)
are considered.
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Figure 13. PCA of UND T = 20 ◦C, D0%, S01 (black dots); blue dots: extreme negative tempera-
tures (−30 ◦C, −29 ◦C, −28 ◦C, −27 ◦C); red dots: extreme positive temperatures (67 ◦C, 68 ◦C,
69 ◦C, 70 ◦C).

The instantaneous frequency xk(t) of each IMF was determined. Figure 13 illustrates
the six components for the undamaged scenario cases of 20 ◦C for Sensor S01. On the verti-
cal axis, the variance of the principal components (dimensionless) is reported. Furthermore,
it can be noted that the magnitude of the observations in PC1 is much larger than that in
PC2 for all considered scenarios.

As mentioned, PC1 related to the data shows the highest variance related to the
temperature. As scenarios under consideration are at −15 ◦C and 20 ◦C, they both fall
between extreme cases, both in damaged and undamaged conditions, thus making it clear
that PC1 is definitively temperature related.

Moreover, it is important to note that PC2 can reveal some changes in the structure
response as well. If two cases of damaged and undamaged conditions at T = 20 ◦C are
compared (Figure 14), the difference in PC2 can be observed.
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Figure 14. Comparison of PC2: (a) UND T = 20 ◦C, D0%, S01 (black dots); blue dots: extreme negative
temperatures ( −30 ◦C, −29 ◦C, −28 ◦C, −27 ◦C); red dots: extreme positive temperatures (67 ◦C,
68 ◦C, 69 ◦C, 70 ◦C) (b) DMG3, T = 20 ◦C, D90%, S01 (black dots); blue dots: extreme negative
temperatures (−30 ◦C, −29 ◦C, −28 ◦C, −27 ◦C); red dots: extreme positive temperatures (67 ◦C,
68 ◦C, 69 ◦C, 70 ◦C).

As a next step, the damage-sensitive features (instantaneous frequencies) are recon-
structed using the five last principal components (from PC2 to PC6). It is worth noting that
the reconstructed data should be rescaled to have a physical meaning.

In Figure 15 below, the IF from a representative scenario (undamaged: −15 ◦C) at S01
is shown before and after the application of PCA dimensionality reduction. It is worth
noting that IF at 20 ◦C had a lower change in magnitude between, after, and before the
application of PCA with respect to −15 ◦C.
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Figure 15. Instantaneous Frequencies before and after the application of PCA dimensionality reduction.

Figure 16 shows the variation of the instantaneous frequencies at each damage scenario
from S01. As can be observed, although PCA dimensionality reduction was applied at
high frequencies (~48 Hz, ~56.5 Hz, ~98.7Hz, ~110 Hz), the difference between damage
and temperature scenarios in their value is visibly clear. The application of cluster analysis
to such data will not be appropriate, as the goal of the methodology is to distinguish
between damaged and undamaged states when the influence of the temperature is not
easily observed. Moreover, signals from S02 and S05 were disregarded as well, as the
mode mixing problem due to the VMD created data mixing after the PCA analysis, making
instantaneous frequencies unreliable.
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Figure 16. Variation of the instantaneous frequencies of different scenarios related to S01.

In conclusion, only the first instantaneous frequencies (~15.6 Hz) from S01, S03, S04,
and S06 were considered for the clustering algorithm.

3.4.4. K-Means

Before the application of the K-means algorithm, the data must be reduced to more
generic types and less voluminous information in contrast with classical data used in SHM.
The extracted damage-sensitive features, in this case the instantaneous frequency of the
four scenarios with a total time of 5.6 s, are converted into symbolic data by using the
interquartile interval. The resulting total number of points was 2240. A symbolic data
length of L = 112 points was considered, and a respective boxplot for each sensor was
constructed (Figure 17).
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Figure 17. First instantaneous frequency of all scenarios for S01 and corresponding box plot.

Moreover, in the implementation of the K-means algorithm in MATLAB, the suitable
method “Start” to determine the initial clusters centroid positions (or seeds) should be set
among the options (Table 6).

Table 6. Method for choosing initial cluster centroid positions.

“cluster”

Perform a preliminary clustering phase on a random 10%
subsample of X when the number of observations in the
subsample is greater than k. This preliminary phase is
itself initialized using “sample”. If the number of
observations in the random 10% subsample is less than k,
then the software selects k observations from X at random.

“plus” (default) Select k seeds by implementing the k-means++ algorithm
for cluster center initialization.

“sample” Select k observations from X at random.

“uniform” Select k points uniformly at random from the range of X.
Not valid with the Hamming distance.

“numeric matrix”
k-by-p matrix of centroid starting locations. The rows of
Start correspond to seeds. The software infers k from the
first dimension of Start , so you can pass in [] for k.

“numeric array”

k -by-p-by-r array of centroid starting locations. The rows
of each page correspond to seeds. The third dimension
invokes replication of the clustering routine. Page j
contains the set of seeds for replicate j. The software infers
the number of replicates (specified by the “Replicates”
name-value pair argument) from the size of the
third dimension.

For this study, the “sample” case was found as a consistent and appropriate method
for the initial cluster centroid positions.

As explained, the detection method is based on the value of the DC, which is the
difference between clusters. To calculate DC, the clusters of moving windows must be
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defined. In this work, the size of windows was selected as S = 5 symbolic data, each
comprising L = 112 points of the damage-sensitive feature. Figure 18 shows a sequence of
mobile windows, while Figure 19 shows the DC values obtained for each time window.
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Figure 19. DC values obtained for each time window.

The total number of symbolic data equals 20, and the number of mobile windows and
DC values is 16.

It should be noted that if the time window increases, then higher sensitivity to damage
detection is obtained, but the time between damage occurrence and damage detection
increases. Moreover, if the samples within a time window decrease, it is possible to detect
the damage earlier, but the probability of false detections increases (there is less sensitivity
to damage detection). Therefore, it is necessary to find a balance between the two objectives:
detect damage as soon as possible but obtain high confidence in the detection.

After the DC values are obtained, they must be statistically tested by the confidence
boundary test. CB is defined for each time window containing five values of DC.

Finally, using DC and CB values the original detection index, DI is calculated. When
the DI value is negative or zero, there is no damage in the structure, and when it is positive,
it indicates the presence of damage in the structure.

Figure 20 shows the whole procedure for the IF (~15.6 Hz) from S01 for the damage
scenarios. It can be seen that the clustering algorithm exactly detects damage (positive value
of DI) when it crosses the scenarios between UND T = 20 ◦C D0% and DMG3 T = 20 ◦C
D90% (marked with the black dotted vertical line). However, temperature change either in the
undamaged or damaged scenarios does not create a positive DI value, therefore, not warning
on the existence of damage (false detection).

One of the disadvantages of the K-means algorithm is its dependence on initial values.
As the initial cluster centroids are assigned randomly, they may create different outputs
each time the algorithm runs. However, in this case, this disadvantage was found useful to
localize the damage. Specifically, an innovative aspect highlighted by this research is the
following: K-means gives consistent detection of damage when using the data coming from
sensor S01, the closest to DM3. In fact, as presented in Figure 21, four trials (experiments) of
the algorithm gives always detection of damage when it appears, without false detections.
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In the case of sensor S03 (Figure 22), which is the second sensor closest to the damage,
K-means provides early false detection in all cases. However, true damage detection is
always obtained.
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What concerns the results of Sensors S04 and S06 located more far away from the
damage location is that they both provided inconsistent results. With high randomness in
their output, both early false detection and no detection of true damage can be seen in their
results (Figures 23 and 24).
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Focusing on the results of DI (Figures 21 and 22), it can be said that the damage is
located somewhere between Sensors S01 and S03, which is correct as the damage was
introduced at the mid-span of the left span. The results are not conclusive when looking at
sensors far away from where the damage is present. Thus, as a further contribution to the
present study, the proposed methodology is suitable not only for damage detection, but
also for damage localization.
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Figure 24. Experiments with DI for S06 (dashed line- damage introduction with 90% stiffness
reduction).

Finally, the methodology was preliminarily tested out for the case with a smaller
severity of damage (30% of reduction of E), considering Sensor S01 only and the same
damage position already simulated for the previous analysis. In this case, the results are
promising regarding the detection of damage, as reported in Figure 25.

However, it should be pointed out that the percent reduction in modulus of elasticity
to simulate damage is applied to a single, rather narrow, and localized slice of vertical
elements. Thus, the damage is rather sharp on the model, while in reality, the damage,
e.g., by degradation of the mechanical properties of an element, is often more widespread.
In addition, the ability of the method to localize the damage on the bridge when close to
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the measurement point suggests the application of a diffuse monitoring system, such as
distributed fiber-optic sensors.
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4. Conclusions

This paper is focused on a methodology for damage detection and localization in
bridges under both traffic loading and environmental variability by modeling different
damage and temperature scenarios. The presented methodology is based on time-series
data collected from a finite-element model.

Due to the non-stationary nature of recorded data, the fast Fourier transform is not
applicable. Instead, the vertical acceleration measurements obtained from six sensors
spaced along the bridge-like structure were analyzed using the Hilbert–Huang transform
with variational model decomposition.

To remove the temperature effects from the damage-sensitive features, principal com-
ponent analysis with dimensionality reduction was applied. It was observed that the first
principal component with the highest variance in the data matrix was responsible for the
temperature-related effects. As a result, the damage-sensitive features were reconstructed
by removing the first principal component.

Finally, to detect and localize the damage, a machine learning algorithm (K-means)
was applied. Using the symbolic data to reduce the amount of data, a technique of moving
the time window was used for damage-sensitive features. A confidence boundary was
deployed to evaluate damage indices values for each window, and a detection index was
then defined to consolidate a result with high confidence.

Results showed that K-means in combination with principal component analysis
with dimensionality reduction can identify and localize damages even with changing
temperatures and analyze non-stationary vibrations due to traffic in the bridge. The
methodology showed its effectiveness and reliability in the field of bridge structural health
monitoring and damage detection and localization, under both traffic-induced loads and
temperature changes.

This paper is the first step in this direction, but consequently, several limitations are
still present, such as the use of a numerical example and not a real bridge due to the lack
of vibration data under health and damage conditions and with varying temperatures,
the simple modeling of the vehicle as a moving load, and the crossing of only one vehicle
present in the bridge. Therefore, further steps of the research will consider different
damage levels and locations, multiple damage states, and a real-world case study of a
bridge structure to test the proposed methodology in different conditions under operational
and environmental effects.
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