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Abstract: Fast convergence routing is a critical issue for Low Earth Orbit (LEO) constellation networks
because these networks have dynamic topology changes, and transmission requirements can vary
over time. However, most of the previous research has focused on the Open Shortest Path First
(OSPF) routing algorithm, which is not well-suited to handle the frequent changes in the link state of
the LEO satellite network. In this regard, we propose a Fast-Convergence Reinforcement Learning
Satellite Routing Algorithm (FRL–SR) for LEO satellite networks, where the satellite can quickly
obtain the network link status and adjust its routing strategy accordingly. In FRL–SR, each satellite
node is considered an agent, and the agent selects the appropriate port for packet forwarding based
on its routing policy. Whenever the satellite network state changes, the agent sends “hello” packets to
the neighboring nodes to update their routing policy. Compared to traditional reinforcement learning
algorithms, FRL–SR can perceive network information faster and converge faster. Additionally, FRL–
SR can mask the dynamics of the satellite network topology and adaptively adjust the forwarding
strategy based on the link state. The experimental results demonstrate that the proposed FRL–SR
algorithm outperforms the Dijkstra algorithm in the performance of average delay, packet arriving
ratio, and network load balance.

Keywords: LEO satellite networks; satellite routing; multi-agent reinforcement learning;
distributed routing

1. Introduction

Terrestrial communications already meet much of our daily communication needs,
but for users in remote areas and at sea, their communications needs cannot be met.
Unlike terrestrial communication, satellite communication has a longer range and better
communication quality [1]. It meets the communication needs of users in remote areas and
at sea, and can also be used to complement terrestrial communications to serve urban users.
Therefore, satellite communication research has attracted much attention.

Based on the distance of the orbital plane from the Earth’s surface, satellite systems can
be classified as geostationary Earth orbit (GEO), medium Earth orbit (MEO), and low Earth
orbit (LEO) satellite systems. Unlike GEO and MEO, LEO satellites are usually located in
the orbital plane, at an altitude of 500 to 2000 km [2]. Because of low latency, low path
loss, and low launch costs, LEO satellite networks are a major research direction for the
industry. At present, there are many large LEO satellite constellations in operation, such
as Starlink and Oneweb. The link status of the satellite network LEO is volatile due to the
complex space environment and frequent satellite laser failures. In addition, satellites move
at high speeds, resulting in frequent changes in satellite topology. These two characteristics
are the main differences between satellite networks and terrestrial networks. Therefore,
traditional routing algorithms are not suitable for direct use for satellite networks. New
routing algorithms need to be designed to solve the LEO satellite routing problem.

Typically, the routing problem of the LEO satellite is mainly divided into two parts:
how to obtain the network topology, and how to generate the route paths based on the
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network topology [3]. Mauger [4] first proposed the concept of virtual node. When the
satellite moves to the virtual node location, its logical address becomes the logical address
of that virtual node. The routing method is to give priority to the path with the highest
latitude. The authors in [5] proposed the dynamic virtual topology routing (DV–DVTR),
which divided the system period into time slices. For each time slot, the network topology
was considered to be fixed [6], and then packets were forwarded according to the shortest
path first algorithm. Although DV–DVTR is easy to implement, the division of time
intervals is a very difficult task. Smaller time intervals require more storage space, and
larger time intervals affect the performance of the algorithm. The authors in [7] proposed
the Temporal Netgrid Model (TNM) to portray the time-varying topology of LEO satellite
networks, in which the Dijkstra algorithm was used to generate forwarding policies. The
Dijkstra algorithm needs to obtain global network information to operate, which can cause
an increase in the communication load on the satellite network. Also, the link state of the
satellite network changes very quickly and, by the time the node has collected the global
information, much of it may be invalid. The authors in [8] proposed a distributed routing
method, in which the surface was divided into several spaces with corresponding logical
areas. In [9], each node sent congestion information to neighbor nodes, including queue
length and available resources. Therefore, satellite nodes could route packages based on
congestion information to achieve load balancing.

There has been a significant amount of research on the application of Software Defined
Network (SDN) technology to address satellite routing challenges. For example, a study
conducted in [10] investigated a LEO satellite routing algorithm in a software-defined space
terrestrial integrated network, where SDN technology was applied to the LEO satellite
network. The lattice-like topology of the satellite network created a shared bottleneck
problem, which was addressed in the study. To tackle these issues, ref. [11] proposed an
SDN-coordinated Multipath TCP (scMPTCP) architecture and related algorithms. In [12],
the authors aimed to introduce an SDN-based terrestrial satellite network architecture and
estimate the mean time required to transport data of a new traffic flow from the source
to the destination while considering the time required to transfer SDN control actions. It
should be noted that the proposed algorithms in these studies were centralized routing
algorithms, which require frequent communication with the ground station and may cause
some latency, presenting a significant disadvantage.

The above approaches mainly consider how to shield network dynamics and then
run traditional routing algorithms for static network topology. These methods take up a
certain amount of storage space and do not yield accurate satellite network topology. In
recent years, a lot of research has started to use machine learning methods to solve routing
problems. The difference between machine learning methods and traditional methods
is that the former are data-driven, while the latter are model-driven. If the model does
not describe the problem accurately, the performance of the model-driven method will be
poor. Recently, machine learning has been applied in network areas, such as regulating
congestion at the transport layer [13], optimizing video stream transmission [14], allocating
resources [15], and so on.

The most suitable machine learning method for solving routing problems is the rein-
forcement learning technique. In [16], they used the Q-routing method to decide how to
forward packages in the LEO satellite network. In [17], deep reinforcement learning was
used to solve the routing problem; they used the neural network to replace Q-tables to
store Q values. They both use centralized routing algorithms that viewed all satellite nodes
as the agent that learned packet forwarding policies as it interacted with the network. The
disadvantages of this approach are the need to collect global link state information and
the high signaling overhead. The authors in [18] proposed a dynamic distributed routing
scheme based on reinforcement learning; they considered each satellite node as an agent,
and agents trained and executed routing operations. However, this did not consider the
problem of the convergence speed of the algorithm, but simply provided the approximate
running process of the algorithm.
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Even though many researchers have applied reinforcement learning to routing prob-
lems [19], few of them have improved the convergence speed of the algorithm to face the
dynamically changing link state. In this paper, we propose a distributed reinforcement
learning method named FRL–SR, which not only learns routing and forwarding policies
by distributed reinforcement learning, but also accelerates the convergence speed of the
algorithm and senses the satellite network state faster. Our main contributions can be
summarized as follows:

• We propose a distributed reinforcement learning method named FRL–SR; it has lower
end-to-end latency and lower signaling overhead than traditional algorithms;

• We propose a learning mechanism that allows the algorithm to converge faster in the
face of changes in the network link state;

• We compare the impact of different reward functions on the performance of reinforce-
ment learning algorithms. The experimental results show that the design of reward
functions is crucial for reinforcement learning algorithms.

The remainder of this paper is organized as follows. In Section 2, we describe the
system model and Q-routing algorithm. In Section 3, we give the details of our FRL–SR
method. We discuss the experimental results in Section 4. Finally, Section 5 concludes
our work.

2. System Model

In this section, we first give a model of the LEO satellite constellation and its character-
istics, based on which research scenario is depicted. After that, we describe the traditional
Q learning algorithm and its application in routing problems. The definition of the routing
problem is given in the last sub-section.

2.1. LEO Satellite Constellation

Currently, LEO satellite constellations can be divided into two types based on the
number of satellite orbital planes: single-layer and multi-layer constellations. The Irid-
ium system is representative of single-layer constellations, while Starlink is a multi-layer
constellation with satellite orbital planes mainly distributed between 300 and 600 km. To
facilitate the analysis, this paper uses the Iridium system as the satellite environment.

As shown in Figure 1, the Iridium constellation consists of multiple satellite orbits
that are evenly distributed which intersect at the pole position. The area at the ends
of the constellation is known as the polar region, where satellites are prohibited from
communicating. The direction of motion of the satellite changes as it passes the pole, and
the relative positions between the satellites change, which leads to periodic changes in
the topology of the satellite. There are two satellite-to-satellite links within the satellite
network. The link with an orbiting satellite is an intra-satellite link, and the link between
adjacent orbiting satellites is an inter-satellite link [20]. Thus, each satellite has up to four
neighbor nodes with which to communicate, leaving little decision space for the satellite
when considering packet forwarding.
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Figure 1. LEO satellite constellation.

2.2. Q-routing Algorithm

Reinforcement learning is one of the areas in machine learning [21]. Inspired by
behavioral psychology, it focuses on what actions an agent should perform to maximize
cumulative rewards when confronted with a given environment. Reinforcement learning
consists of agent, environment, state, action, and reward, where the environment consists
of some states. The agent performs an action based on the current state of the environment,
after which the environment moves to the next state based on the action performed and
provides the agent with a reward value to evaluate the action. In the long run, the agent
learns how to perform the optimal action in a given state [22].

Q learning is a traditional reinforcement learning algorithm; it provides the method
by which the intelligence chooses actions in a given state by maintaining a Q-table. Each Q
value in the Q-table represents the total benefit of taking a certain action in a certain state.
The update of the Q value is mainly realized through the Bellman Equation:

Q(s, a) = (1− α)Q(s, a) + α[r + γ max
d∈A

Q(s
′
, a
′
)] (1)

where s represents the current state of the agent, a is the action performed, α is the learning
rate, r is the reward value by performing action a under state s, γ represents the discount
factor, and A is the action space in state s

′
; α and γ both are in the interval [0, 1]. Therefore,

max Q(s
′
, a
′
) represents the max Q value of state s

′
.

Q routing is the application of the Q learning algorithm to the routing problem. In
the Q routing algorithm, each communication node is treated as an agent which can
independently learn the forwarding policy and forward packets to the next port [23]. As
shown in Table 1, each node maintains a Q-table, which records the Q value of all actions
and states. The agent looks up the Q-table based on the destination node of the packet,
finds the action corresponding to the maximum Q value, and then executes it, which is a
packet forwarding process. Similar to Equation (1), the update of Q-table is as follows:

Qi(s, a) = (1− α)Qi(s, a) + α[r + γ max
d∈A

Qj(s
′
, a
′
)] (2)

where α is the learning rate which determines the updating rate, γ is discount factor, and i,
j represent the index of different nodes. This equation is the essence of agent learning.
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Table 1. Q-table of node I.

State Neighbor

N1 N2 N3 . . .

(i, D1) Qi((i, D1), N1) Qi((i, D1), N2) Qi((i, D1), N3) . . .

(i, D2) Qi((i, D2), N1) Qi((i, D2), N2) Qi((i, D2), N3) . . .

(i, D3) Qi((i, D3), N1) Qi((i, D3), N2) Qi((i, D3), N3) . . .

(i, . . .) . . . . . . . . . . . .

2.3. Problem Statement

The LEO satellite network can be represented as graph G=(V,E), where V represents
the set of satellite nodes and E represents the set of satellite links. Consider an Iridium-like
system with M number of orbits and N satellites per orbit; we use (i, j) to represent the
position of a satellite, where i represents the satellite’s orbit number and j represents the
satellite’s number in orbit (1 ≤ i ≤ M, 1 ≤ j ≤ N). There are intra-satellite links between
satellites in the same orbit and inter-satellite links between satellites in different orbits,
which means that each satellite can communicate directly with up to four satellites. For
clarity, we list the notations and definitions in Table 2.

Table 2. Notations of variables.

Notations Definition

G graph of the LEO satellite network
V set of satellite nodes
E set of satellite links
M number of orbits
N number of satellites per orbit
Dij transmission delay between node i and node j
Ngi the set of neighbors of node i

In this article, we only consider the process of packet transmission between satellites.
The packet starts from the initial node Ni; the node first finds the next hop node Nj from
the set of neighbor nodes Ngi, and then sends the packet out. The transmission delay of the
packet is Dij, and then the next hop node repeats the previous action, sending the packet
to its neighbor node, and then updating the transmission delay of the packet D according
to the delay accumulation rule. The above steps are repeated until the data packet is
forwarded to the destination node. The problem is planning a route which minimizes
D. In a real-world scenario, thousands of packets are passed through the network, so the
algorithm needs to consider the congestion of the link. Firstly, the algorithm must be
able to plan a feasible path from the source node to the destination node, and secondly,
the algorithm should minimize the delay of this path, including propagation delay and
queuing delay. Therefore, the ultimate goal of the algorithm is to minimize the transmission
delay of packets while ensuring the packet arrival rate.

3. Proposed FRL–SR Algorithm

In this section, we first discuss the design of the reinforcement learning model, in-
cluding states, reward functions, and actions in Section 3.1. Then, we briefly introduce
the neighborhood discovery and explain the propagation range of ‘hello’ packets in rein-
forcement learning in Section 3.2. The training approach and algorithm are proposed in
Sections 3.3 and 3.4. In Section 3.5, we analyze the time complexity and space complexity
of the FRL–SR algorithm and the Dijkstra algorithm.
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3.1. Reinforcement Learning Model Setting

In solving the satellite routing problem using multi-agent reinforcement learning,
we consider each satellite node as an agent. When the data packet arrives at the satellite
node, it observes the current state and forwards the packet based on the present situation.
The node adjusts the forwarding strategy according to the current state of the network.
Once a link is broken or there is congestion present, the reward of this port is decreased,
and packets are forwarded to another path. This is the main advantage of reinforcement
learning compared with traditional routing algorithms.

The entire packet forwarding process can be viewed as a finite-state Markov decision
process (MDP) whose final state occurs when the packets have arrived at the destination
node. We use (S, A, P, R) to represent a state of the MDP, where S is the state of the current
system, A is the action space, P is the probability of state transition, and R is the reward.
Each satellite node only forwards packets to its neighbor nodes, which means that the
action space is up to four. Therefore, we chose reinforcement learning rather than deep
reinforcement learning to achieve this.

When using reinforcement learning to solve problems, it is crucial to design state,
action, and reward functions [24]. For different scenarios, we should follow different design
principles. In our satellite network routing scenario, the states, actions, and rewards are
defined as follows:

• States: Each state st ∈ S = {Nc, Nd, qt
1, qt

2, . . . , qt
P} indicates the present situation in the

satellite network environment, where Nc, Nd represent current node and destination
node for packet, respectively. The parameter qt

p represents the current queue length
of the p-th node for p = 1 to p = P. In multi-agent reinforcement learning, each agent
observes a different state, and they make independent routing decisions based on the
current state;

• Actions: The action at ∈ A = {p1, p2, . . . , pP} represents the agent choosing a node
from its neighborhood nodes for each upcoming packet, where pp represents the p-th
satellite node. In satellite networks, each satellite has up to four neighbor nodes, so
the length of A is up to four [25];

• Reward: The reward function is designed according to the goal we want to achieve,
such as the minimum time delay and the maximum packet arrival rate. In this paper,
the transmission delay consists of two parts, propagation time and waiting time, so
the reward function consists of the following three parts:

– Propagation delay. In satellite networks, the star link often fails and becomes un-
available, which requires frequent inter-satellite reconnections. For convenience,
we consider both reconnection time and propagation time as propagation time
delay. Dij represents propagation delay between node Ni and node Nj;

– Queue length. Each satellite node maintains the receiving queue qr and the trans-
mitting queue qt. Queuing delay occurs when the number of packets received
by the satellite is larger than the length of the satellite receiving queue. The
agent learns to forward data packets to satellite nodes with small queue length
to reduce the waiting time;

– Load growth. To avoid packets being forwarded centrally to individual satellite
nodes, causing network congestion, we record the receiving queue length in
the previous stage as the load growth of the satellite, which is recorded as gi.
Therefore, gi could be seen as the congestion level of nodes Ni. This avoids the
situation that everyone sends data to “high-quality” nodes at the same time.

Equation (3) gives the expression of reward function, where qmax represents the maxi-
mum queue length, and w1 and w2 represent the growth and delay coefficients, respectively.
When the next hop is the destination node, we set the reward to 20N, which ensures that
the packets are transmitted to the destination node as soon as possible.
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rewardj =

{
20N Nj is the destination
qmax − (qr + qt)− w1 ∗ gj − w2 ∗ Dj Otherwise

(3)

As shown in Figure 2, the system framework consists of three parts: Neighbor Node
Discovery, Offline Training, and Online Training. In multi-agent reinforcement learning,
the learning process of the agent needs the information of the neighboring agents, which
includes Q-table, connection status, and available resources. Therefore, we develop the
neighborhood discovery part for agents to share information. During the offline training
phase, we perform the initial training of the agents in a ground-based network environment.
By randomly generating packets, the agents act by observing the state of the packets and
the state of the neighboring nodes. To avoid local optimal solutions, we use the ε-greedy
strategy to explore a larger unknown space. Static network training results are not fully
suitable for dynamic LEO satellite networks, so online training is required to fine-tune the
Q-table. Agents make routing decisions for satellite networks based on the pre-trained
model and update the Q-table with the feedback results. It is important to note that the
ε-greedy strategy is not used at this stage, as we only need to fine-tune the Q-table. The
advantage of using the pre-trained method is that it saves onboard resources and improves
the performance of the initial phase of the algorithm.

Figure 2. Model framework of FRL–SR.

3.2. Neighborhood Discovery

Since the topology of the satellite network changes dynamically and the links between
satellites are unstable, the neighbor nodes of the satellite change. Therefore, agents must
periodically check the neighbor nodes so that they know where to forward packets when
they arrive.

Satellite nodes receive information about their neighbors by receiving ‘hello’ packets
from neighboring nodes [26]. In addition, the “hello” packet contains a Q-table, link
information, and available resources that nodes can use to calculate reward values and
update their own Q-table. If a node does not receive “hello” packets from a neighboring
node for a long time, it assumes that the neighboring node is down and will not send packets
to it later. In this paper, nodes only send ‘hello’ packets to their neighbors. Compared
to flooding ‘hello’ packets in terrestrial networks, this method saves energy cost for the
satellite and does not burden the network.

3.3. Offline Training

The algorithm proposed in this paper needs offline training before being applied to
satellite nodes. The purpose of this process is to reduce the training time of the algorithm
online and improve its initial performance. The network Gt0 at t0 time is input as the initial
state, and the output is that each satellite node receives a Q-table.
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To simulate the random nature of packet generation, the initial and destination nodes
of packets are randomly selected from the set of satellite nodes. To reduce training time,
if a packet is forwarded to its destination node, a new packet is generated, and its initial
node and destination node are also randomly generated.

To better explore the unknown space, the ε-greedy strategy is used in the offline
training phase. As shown in Equation (4), the agent randomly chooses an action with
probability ε, and, with probability 1− ε, it chooses the action with the maximum q-value.
This strategy prevents local optimal solutions, but the convergence speed is low. To solve
the above problem, the value of ε gradually decreases as reinforcement learning progresses,
which can speed up the convergence of the algorithm without affecting the learning effect.

at =

{
random action w.p.ε
argmaxaQt+1 w.p.1− ε

(4)

Algorithm 1 is the process of offline training. First we need to initialize the training
parameters: numstep is the total number of steps trained, ε is the probability value of the
greedy strategy, lr is the learning rate of reinforcement learning, and γ is the discount factor
of the Q value update function. At each step, the algorithm first cleans up the remaining
packets in the network and then randomly generates a preset number of packets. For
each satellite node, we first determine whether its sending queue qt is empty, and the top
packet pops up when it is not empty. Then, we select the next hop node m according to the
ε-greedy strategy. If the receive queue qr of node m is not full, the packet is forwarded to
m, and the current node will receive the Q-table and reward value of node m. After that,
the Q-table of the current node should be updated according to Equation (2). Otherwise,
the network is congested and packets will be inactive until the next round arrives.

Algorithm 1: FRL–SR offline training algorithm.
Input: Gt0 =< N, E >; numstep; ε; lr; γ
Output: Q-tables for each satellite node

1 initial env, Q-tables;
2 for k=1 to numstep do
3 Clear all data packages;
4 Randomly generate xt data packages;
5 for n=1 to N do
6 if qt in current node n 6= ∅ then
7 Pop a package p from qt;
8 Select an action m according to ε-greedy;
9 if qr of node m is not full then

10 Forward packets p to node m;
11 Node m send Q-table and reward to node n;
12 Update the state and Q-table of node n;
13 Update the state of node m;
14 if m is the destination node of package p then
15 reward = 20;
16 Randomly generate a package;
17 end
18 else
19 Wait a round;
20 end
21 end
22 end
23 end
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3.4. Online Training

In the online training phase, the pre-trained parameter in Section 3.3 is used as the
initial routing decision strategy. The online training algorithm carries out two things: one
is to make routing decisions based on the pre-trained model, and the other is to fine-tune
the Q-table based on the real satellite network environment.

Unlike offline training, agents in online training do not make decisions according to
the ε-greedy strategy, since agents avoided the local optimal solution in the previous step.
The main purpose of this process is to fine-tune the routing strategy. Moreover, the agents
are already making routing decisions at this stage, and the algorithm must ensure that
these decisions are sound.

We simplify the satellite network routing problem to finding the smallest delay path.
The delay of a packet consists of two parts: propagation delay and queuing delay. The
propagation delay depends on the inter-satellite link distance and link status, and the
queuing delay depends on the available resources. According to Equation (3), we know
that the reward value is linearly related to the delay of the packet. Equation (5) is the
definition of the Q value in reinforcement learning, from which we can conclude that the Q
value represents the estimated total return of an action in the current state, and the larger
the Q value, the smaller the delay. Therefore, the path with the maximum Q is the path with
the minimum delay. According to the greedy algorithm, if each agent chooses the action
with the largest Q value, the latency of the obtained packet is close to the optimal choice.

As shown in Equation (6), we use Qsum to represent the goal of algorithm optimization,
which is a linear combination of the Q values of each agent. Combined with Equation (5),
we can derive the relationship between Qsum and each reward value. If we know that the
reward value and delay are linear, then Qsum and delay are also linear, so we only need to
maximize Qsum to obtain the minimum delay path.

Qi(s, a) = Ri + γ(Ri+1 + Ri+2 + . . . + Rn) (5)

Qsum =
n

∑
i=1

wiQi(si, a) (6)

If we suppose that the link state of a satellite changes, it is obtained first by the two
satellite nodes of this link, followed by the neighboring nodes of the two satellite nodes.
Therefore, the state of links is serial propagation, which causes certain difficulties for the
convergence of the reinforcement learning algorithm. Especially, the state of the satellite
network is prone to change; it is possible that the convergence of the previous stage is not
yet complete and the link state has changed again.

As shown in Figure 3, there are five orbits, each with five satellites. Each satellite is
represented by a dot with a different color. The red node satellite transmits a message
outwards, and the first to receive that message are the yellow nodes around it. The yellow
node then passes the message to the green node, and the white node does not receive the
message until the fourth round of message dissemination. This indicates that the message
transmission in the satellite network is linear. In the traditional Q-routing algorithm, the
agent receives the Q-table and link state information feedback from the neighbor nodes
when and only when it sends a packet to its neighbor nodes. Then, the node updates
its Q-table, which is a learning process. This paper proposes a method named empty
packet convergence method to accelerate the perception of the network state by agents.
Neighboring nodes do not only send status information after receiving a packet, but also
broadcast its message by period t. The traditional learning process only updates a certain
item of the two-dimensional Q-table at a time, while the empty packet convergence method
updates the entire content of a node’s action space at a time. The smaller the t, the more
often agents perceive the network. Therefore, we designed t to be inversely proportional to
the node traffic density; the higher the traffic density, the smaller the t, and the faster agents
perceive the network. This ensures faster awareness of the state of the network without
increasing the network overhead too much.
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Figure 3. Schematic diagram of link state propagation.

Algorithm 2 is the pseudocode of the online learning process of the algorithm. It
differs from the traditional reinforcement learning algorithm in that this paper proposes an
empty packet convergence method, which accelerates the obtaining of network status and
is more suitable for the state-variant satellite network environment.

Algorithm 2: FRL–SR online training algorithm.
Input: Trained routing strategy model; user data request; lr; γ
Output: Real time routing decision

1 while not done do
2 if time mod t == 0 then
3 Neighborhood discovery;
4 Update the Q-table according to Equation (2);
5 end
6 while user data request received do
7 Choose the next hop according to Q-table;
8 if qr of the next hop is not full then
9 Transmit data packets;

10 Calculate the reward;
11 Update the Q-table according to Equation (2);
12 else
13 Wait a round;
14 end
15 end
16 end

3.5. Complexity Analysis

In this paper, we compare FRL–SR with the Dijkstra algorithm in terms of algorithm
complexity. The time complexity of the Dijkstra algorithm is O(n2): it has to obtain global
state information and then compute the shortest path from the current node to any node
through two layers of loops. The FRL–SR algorithm proposed in this paper only queries
the Q-table stored in the satellite when making routing decisions, so the time complexity is
constant. Therefore, FRL–SR is more suitable for solving routing problems for large satellite
constellations. In terms of spatial complexity, both of them store a two-dimensional array.
The spatial complexity of the Dijkstra algorithm is O(E +4N) when using adjacency tables
for data storage, where E is the number of edges in the network diagram. The maximum
action space of the FRL–SR algorithm is 4, so the space complexity is O(4N), which does
not take up more storage space than the Dijkstra algorithm.

Another important indicator is the communication overhead during the execution
of the algorithm. In the Dijkstra algorithm, each satellite node must send its own status
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information in a flood so that each satellite node can receive the global information. The
communication overhead is high and also has some negative impact on the network load.
In the FRL–SR algorithm, each satellite node only needs to send the status information to
its neighboring nodes without forwarding it to the whole network. Even if we increase the
number of communications between neighbor nodes to improve the convergence speed, it
is much lower than the communication overhead of the Dijkstra algorithm.

4. Simulation Results

In this section, we present the simulation results of the FRL–SR algorithm. The
experiment was mainly divided into two parts: First, we simulated different reward
functions in reinforcement learning and found out which one could minimize the delay
for our subsequent experiments. Then, we compared the performance differences between
the FRL–SR algorithm proposed in this paper and the traditional Dijkstra algorithm, both
running in the same network environment and with the same user data requirements.
We compared these two algorithms in terms of average delay, packet arriving ratio, and
network load balance, and explained the reasons for their performance differences. To
make the experimental results more accurate, we repeated all the experiments three times
and took the average of the results as the final result.

In this paper, we chose the Dijkstra algorithm as the comparison algorithm because it
is the most mature and widely used algorithm in satellite routing algorithm, and through
experiments, we verified that the proposed algorithm can effectively improve the satellite
routing strategy and better support communication services [27].

The parameters of the experiment are given in Table 3. The network had a total
of 7 satellite orbits, each containing 7 satellites, for a total of 49 satellites [28]. Because
interstellar links fail frequently and link recovery varies, to simulate a satellite network
more realistically, we set the propagation delay to vary according to a sinusoidal curve.
In the offline training phase, the algorithm ran for 30 episodes—the step for each episode
was 200, which ensured each agent could learn the routing strategy in a limited number
of training steps. In the online training phase, we observed the delivery of packets in the
network every 1 s and recorded it. In order to ensure the stability of the network, we
adjusted the learning rate of this stage to 0.2, and the corresponding learning rate of the
offline training stage was 0.8.

Table 3. Simulation parameters.

Parameters Values

Number of satellites 49
Delay type sinusoidal

Trials 3
Offline training network load 3000

Initial network load for online training 3000
Max queue length 150

Max transmit packages at one time 10
Number of episodes 30

Number of steps peer episode 200
discount factor 0.9

Learning rate for offline training 0.8
Learning rate for online training 0.2

The performance of different rewards is shown in Figure 4. The reward1 function was
designed to be related only to the length of the link between the two nodes, in which Dij
was the distance between node i and node j.

reward1 =

{
980 Next node is the destination
−0.1 ∗ Dij Otherwise

(7)
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The reward2 function was inversely relative to the queue length of the node and the
distance between the two nodes.

reward2 =

{
980 Next node is the destination
300− (qr + qt)− 5 ∗ gj − 0.1 ∗ Dij Otherwise

(8)

Based on the simulation results, we can conclude that the design of the reward function
has a great influence on the performance of the algorithm. The goal of the algorithm
was to obtain the path with the least delay, so we chose the second reward function for
subsequent simulations.

Figure 4. Comparison of different reward performances.

Both Figure 5 and Figure 6 show the relationship between the average delay and time
in operation for the FRL–SR algorithm and the Dijkstra algorithm. To better demonstrate
the actual effect of the algorithm, we took the study time after the network was relatively
stable, rather than when the system was first put into operation. The initial number of
packages in Figure 5 is 3000, and the initial number of packages in Figure 6 is 5000. We
can see that the FRL–SR algorithm showed consistent performance in environments with
different initial packet counts.

Figure 5. Comparison of the average delay of the FRL–SR algorithm and the Dijkstra algorithm with
3000 initial packages.
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Figure 6. Comparison of the average delay of the FRL–SR algorithm and the Dijkstra algorithm with
5000 initial packages.

The FRL–SR algorithm outperforms the Dijkstra algorithm in terms of average delay
in the same network environment. This is because the FRL–SR algorithm adjusts its
forwarding policy based on the current state of the network and then forwards the packets
to the optimal port, while the Dijkstra algorithm makes forwarding decisions based on
the previously collected global information. The link state of the satellite network changes
rapidly, and the information collected by Dijkstra cannot accurately reflect the state of the
satellite network at that time. As can be observed from the above graph, the average latency
increases slowly with time because the inter-star link is prone to failure, resulting in packet
loss. The algorithm in this paper does not have a data retransmission function, which
means the delay of lost packets will keep increasing, resulting in a rising average delay.

The relationship between cumulative number of packets and time is shown in Figure 7.
We can see that, over time, the advantages of the FRL–SR algorithm over the Dijkstra al-
gorithm gradually become apparent. Each satellite node has limited resources, so the
communication capacity of the whole network is also limited. The FRL–SR algorithm
considers the resource utilization of satellite nodes as an optimization objective. When
a satellite node selects the next hop, it takes the queue length of neighboring nodes as a
consideration parameter and forwards the packets to the satellite with sufficient communi-
cation resources first, which improves the resource utilization of the network and forwards
more packets per unit time.

Figure 7. Comparison of the number of successfully delivered packets by FRL–SR algorithm and
Dijkstra algorithm.

Considering Figures 5–7 together, we observe that the FRL–SR algorithm transmits a
higher number of successful packets in the same amount of time with a smaller average
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delay per packet. This is enough to show the advantages of the FRL–SR algorithm proposed
in this paper over the traditional satellite routing algorithm.

s =

√
∑(x−M)2

n
(9)

Figure 8 shows a comparison of the load balance of nodes in the network. We use
the population standard deviation to express the load balance of the network, as shown
in Equation (9), where M is the mean of the data and n is the total number of nodes in
the network, which is a commonly used parameter to describe the degree of discreteness
of the system. By observing the simulation results, we can observe that, under the same
user request conditions, the FRL–SR algorithm has a better load balancing effect than the
Dijkstra algorithm. The former can make full use of the resources of each node for routing,
while the Dijkstra algorithm is more likely to cause network congestion.

Figure 8. Measure the balance of node load in the network.

Based on the above simulation results, we conclude that the FRL–SR algorithm has
lower network latency and higher data throughput, which is more suitable for satellite
networks with variable network status. In addition, the FRL–SR algorithm also has good
load balancing characteristics, and it considers both satellite link status and satellite load
when making data forwarding decisions, avoiding network congestion. The Dijkstra
algorithm only blindly forwards packets to ports with good link status, causing congestion
on some network links.

5. Conclusions

In this paper, we proposed a fast-convergence reinforcement learning algorithm to
construct the routing issue in the LEO constellation. Aiming at addressing the charac-
teristics of large dynamic satellite network status and unstable inter-satellite links, we
designed a routing method named the fast-convergence reinforcement learning satellite
routing (FRL–SR) for online decision-making. This method is always aware of the network
link status and dynamically adjusts its routing strategy. The FRL–SR algorithm includes
three parts: neighbor node discovery, offline training, and online training. By shortening
the cycle time of agent obtaining network states, we accelerated the convergence speed
of the algorithm, so that the routing decision was more suitable for the current network
state. In addition, we also performed a complexity analysis, and the FRL–SR algorithm was
superior to the Dijkstra algorithm in both time complexity and spatial complexity.

The simulation results showed that the FRL–SR algorithm had a lower average delay
and higher packet arriving ratio compared with the Dijkstra algorithm. In addition, the
FRL–SR algorithm also had a good performance with respect to load balancing. It made
full use of the resources of each node and reduced the probability of network congestion.
Multi-agent cooperation is a promising method to solve the problem of large-scale satellite
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network routing. In future work, we will continue to work on multi-agent reinforcement
learning algorithms to better solve the problem of satellite network routing.
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