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Abstract: Semantic segmentation with deep learning networks has become an important approach
to the extraction of objects from very high-resolution remote sensing images. Vision Transformer
networks have shown significant improvements in performance compared to traditional convo-
lutional neural networks (CNNs) in semantic segmentation. Vision Transformer networks have
different architectures to CNNs. Image patches, linear embedding, and multi-head self-attention
(MHSA) are several of the main hyperparameters. How we should configure them for the extraction
of objects in VHR images and how they affect the accuracy of networks are topics that have not
been sufficiently investigated. This article explores the role of vision Transformer networks in the
extraction of building footprints from very-high-resolution (VHR) images. Transformer-based models
with different hyperparameter values were designed and compared, and their impact on accuracy
was analyzed. The results show that smaller image patches and higher-dimension embeddings
result in better accuracy. In addition, the Transformer-based network is shown to be scalable and
can be trained with general-scale graphics processing units (GPUs) with comparable model sizes
and training times to convolutional neural networks while achieving higher accuracy. The study
provides valuable insights into the potential of vision Transformer networks in object extraction using
VHR images.

Keywords: vision transformer; hyperparameter; building; self-attention; deep learning

1. Introduction

Semantic segmentation is one of the key image classification tasks in the computer
vision (CV) field. It is the process of classifying each pixel in an image belonging to a
certain class and can be thought of as a classification problem per pixel [1,2]. In recent
years, the success of semantic segmentation using deep convolutional neural networks
(CNNs) has rapidly attracted research interest in the remote sensing community, and Object-
based Image Analysis (OBIA) [3,4] has been transforming traditional image segmentation
methods into semantic segmentation methods using CNNs [5–10]. CNN-based semantic
segmentation is an efficient end-to-end learning approach to image classification at the
pixel level [11–13]. With a large amount of training data, a CNN is able to automatically
extract features from very-high-resolution (VHR) images obtained using aerial or satellite
sensors and then apply them to extract natural or artificial objects [14–17] in VHR images.
CNNs have been shown to perform better than swallow machine learning methods [18–20]
and have become a dominant method in the extraction of objects from VHR images.

With the development of deep learning, a novel neural network architecture, Trans-
former [21], has garnered significant attention in the Natural Language Processing (NLP)
field since 2017 [22–24], and efforts to develop Transformer networks for CV tasks have
been promoted in recent years. Vision Transformer (ViT) [25], a vision model based as
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closely as possible on the Transformer architecture originally designed for text-based tasks,
was proposed at the end of 2020. The notable highlight of Transformer is that it is the
first model that relies entirely on a self-attention mechanism to capture the salient parts of
input information, and this attention mechanism is one of the most valuable breakthroughs
in deep learning in recent years [26,27]. The attention mechanism refers to the ability to
dynamically highlight and use the salient parts of information [28], which is similar to the
ability of the human brain to dynamically and instinctively select crucial information for
decision-making. ViT attains excellent results compared to state-of-the-art CNNs, while
it requires substantially fewer computational resources to train [29–31]. Additionally, in
comparison with attention-enhanced CNN models, a pure Transformer applied directly to
sequences of image patches without a CNN can perform very well in image classification
tasks [18,32]; thus, this has been the inspiration for a new wave of vision Transformer
networks [33,34], including Pyramid ViT [35], SegFormer [36], Swin Transformer [37], and
so on.

Vision Transformer networks show great development potential in the field of com-
puter vision. Nevertheless, investigations into Transformer-based networks for the extrac-
tion of geographical objects from VHR remote-sensing images remain scarce [38–41]. Vision
Transformer networks have unique implementations such as image patches [42], linear
embedding [43], and multi-head self-attention (MHSA) [44]. It remains unclear how we can
more effectively configure them for the extraction of objects in VHR images and how they
affect the accuracy of networks [45]. Therefore, this article leverages vision Transformer
networks for object extraction from VHR remote-sensing images. As building footprints
are essential artificial objects on the land surface and there are already several publicly
available training datasets of buildings in the remote sensing classification community, we
chose building footprints as the research object to investigate the impact on the accuracy
of hyperparameters that are often specific to vision Transformer networks [46–49]. In the
next section, existing studies on building footprint extraction methods are reviewed, and
the foundations of vision Transformer networks are introduced to elucidate how vision
Transformers work. In Section 3, a network based on Swin Transformer is presented for the
extraction of building footprints. Based on this network, we set up eight different models,
and each model had different Transformer-specific hyperparameter values. These models
are presented in Section 4, as well as a comparison of the performance of each of them.
Section 5 presents the experiment results, followed by a discussion of the results. Section 6
concludes this paper.

2. Related Work
2.1. Building Footprint Extraction Methods

Traditional building footprint extraction methods mainly rely on features designed
manually by humans, such as the texture and geometric features of buildings, and the algo-
rithms of building footprint extraction include the gray level co-occurrence matrix [50], Ga-
bor wavelet transform [51], corner detection [52], and contour grouping [53]. However, due
to the limited number of features and the model size, the deeper or more abstract features of
building footprints are difficult to represent; thus, traditional building extraction methods
usually have lower levels of extraction accuracy compared to deep learning methods.

With the advent of deep learning techniques, semantic segmentation methods based
on convolutional neural networks (CNNs) have provided new approaches for the extraction
of buildings from VHR images. These networks are mainly based on Fully Convolutional
Networks (FCNs) [54], SegNet [55], U-Net [56], and DeepLab. For example, CNNs based
on ResNet or DenseNet backbone networks combined with Conditional Random Fields
(CRFs) [57], the U-Net++ network reconstructed with DenseNet as a backbone network [58],
and the SegNet network improved with the Gaussian algorithm and Image Pyramid [59]
are all CNN-based building footprint extraction methods. CNN-based methods have
dominated the field of building footprint extraction for several years due to their ability to
learn and extract complex features from VHR images.
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In the last two years, with the great success of Transformer methods in the computer
field, Transformer-based semantic segmentation methods have also been utilized for the
extraction of building footprints [60–63], such as BuildFormer [64], a ViT-based model
with a dual-path structure capable of capturing global context with large windows; MSST-
Net [46], a multi-scale adaptive segmentation network model based on Swin Transformer;
STT (Sparse Token Transformer) [29], an efficient dual-pathway Transformer structure that
learns long-term dependencies in both spatial and channel dimensions; and STEB-UNet [65],
a network integrating a Swin-Transformer-based encoding booster in a specially designed
U-shaped network to achieve the feature-level fusion of local and large-scale semantics.
These novel Transformer-based approaches show great promise for further improvements
to the accuracy of building footprint extraction. However, it is important to note that
the different hyperparameters of Transformers can also affect the model performance
and should be considered. Therefore, this study pays more attention to the impact of
the hyperparameters of the Swin Transformer, providing valuable insights into the more
effective utilization of vision Transformer networks in VHR images.

2.2. Foundations of Transformers in Vision

Transformers in vision are based on the architecture of the Transformer originally
designed for text-based NLP tasks. Instead of a series of word embeddings as the inputs of
the Transformer in NLP, image patches, which are generated via image partition, are the
inputs of Transformers in vision, and the attention is computed on top of the image patches.
Transformers in vision consist of a stack of Transformer blocks, and the Transformer
block includes Layer Normalization (LN), multi-head attention (MHA), and Multi-layer
Perceptron (MLP), as shown in Figure 1. Residual connections are applied on both MHSA
and MLP to resolve the difficulty in the convergence of multi-layer neural networks.
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2.3. Layer Normalization (LN)

LN is used before every block and residual connections after every block in a Trans-
former to scale the features for each sample of a sequence. LN helps to speed up and
stabilize the learning process. Additionally, LN [66] is proven to yield significantly better
performance than Batch Normalization (BN) in Transformers, and BN is often used in
CNNs to scale an entire feature map. For a batch of sentences in Transformers in NLP, BN
scales over the words at the same position of each sentence, and LN scales over all the
words in each sentence, as shown in Figure 2. Obviously, scaling the words at the same
position in different sentences does not follow the design of sequence models, whereas LN
satisfies the requirements of Transformers.
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2.4. Multi-Head Self Attention (MSA)

MSA in Transformers is multiple self-attentions in parallel, and each head of self-
attention is concatenated and then projected to outputs, as shown in Figure 3. Most
Transformers use standard self-attention [21], which is based on scaled-dot products to
compute self-attention. Three inputs of Queries (Q), Keys (K), and Values (V) are used to
generate self-attention feature maps. Q and K are used to generate weights of features, and
the weights work on V, generating self-attention feature maps. The Q, K, and V of standard
self-attention are outputs of linear operations with the learnable parameters WQ, WK, and
WV, and the standard self-attention is computed as:

Sel f Attention(Q, K, V) = So f tmax
(

QKT
√

dk

)
V (1)

where dk is the dimension of both Q and K, and the Softmax function scales the weights
in the range [0, 1] and makes the weights equal to one. The multi-head self-attention
links multiple convolution kernels in CNNs to generate multiple feature maps. The more
self-attention feature maps there are, the better the performance models could achieve. The
multi-head self-attention is computed as:

MSA(Q, K, V) = Concat(head1, . . . , headh)WO (2)

where headi = Sel f Attention(QWQ
i , KWK

i , VWV
i ).
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2.5. Multi-Layer Perceptron (MLP)

MLP, also known as the Feed-Forward network (FFN), consists of two linear layers
and a GELU nonlinearity in Transformers. The outputs from MLP are added to the inputs
(skip connection) to obtain the final output of the Transformer block. The role and purpose
of MLP are to process the output from one attention layer in a way that fits the input for
the next attention layer better.

3. Transformer-Based Network for Extraction of Build Footprints from VHR Images
3.1. Network Architecture

The proposed Transformer-based network for building extraction has an encoder-
decoder architecture, as shown in Figure 4. A novel Swin Transformer is utilized as the
encoder to extract the multi-scale-self-attention-based features of the VHR images. Based
on the multi-scale features, we further introduce a Pyramid Pooling Module (PPM) [67]
in the decoder to add global context to a VHR image; then, we use a Feature Pyramid
Network (FPN) [68] in the decoder to fuse the multiple different scales of feature maps. All
of these fused feature maps are upsampled into the original resolution of the VHR image
via a segmentation head. The segmentation head projects the feature maps onto the pixel
space to obtain pixel-by-pixel coverage of the building footprints.
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3.2. Network Modules

The proposed network is composed of a Patch Partition module, Linear Embedding
module, Patch Merging module, Swin Transformer block module, Pyramid Pooling Module,
and Feature Pyramid Fusion Module. They are described as follows:

3.2.1. Patch Partition

The Patch Partition module is the first layer of the Transformer-based encoder. The
Patch Partition Layer splits the raw VHR image into non-overlapping patches for the
application of self-attention to the image patches rather than the pixels. The self-attention
to image patches can reduce the time complexity of training and thus make the Transformer-
based network applicable to a large number of VHR images.
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3.2.2. Linear Embedding

“Embedding” means taking some sets of raw inputs and converting them to vectors
in machine learning. The Linear Embedding module in Vision Transformers thus takes a
sequence of image patches as the input and generates a vector representation of the image
patches in another mathematical space using a linear transformation. It can be seen as the
abstract representation of the original information at the semantic level. Additionally, with
the Linear Embedding module, the arbitrary channel number and arbitrary size of image
patches can be transformed into a sequence of one-dimension vectors with the same length,
thereby enhancing the model’s ability to adapt to different kinds of images as inputs.

3.2.3. Swin Transformer Block

Swin Transformer blocks [37] are kernels in the Transformer-based building extraction
network which implement the self-attention mechanism in an efficient way. Swin Trans-
former blocks are often stacked to capture deeper and more advanced features, as CNN
blocks do. Inside a Swin Transformer block, a shifted window is introduced to compute
both local and global self-attention. The shifted windows are non-overlapping windows
that partition the VHR images on the top of image patches. To reduce quadratic com-
plexity in computing self-attention, two successive Swin Transformer blocks can achieve
self-attention computation with less complexity, as shown in Figure 5. The first Swin
Transformer block contains a window-based multi-head attention (W-MSA) module which
computes the self-attention within the window, and the second Swin Transformer block
contains a shifted-window-based multi-head attention (SW-MSA) module, which computes
self-attention across the windows by alternating between two partitioning configurationsW
in consecutive Swin Transformer blocks. Therefore, two successive Swin Transformer
blocks can compute the self-attention computation over the whole VHR image, and the
computation takes less time.
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3.2.4. Pyramid Pooling

To make the model learn not only the detailed features but also the global features
of VHR images, we introduce the Pyramid Pooling module in the decoder to capture the
global context of the feature map learned by the encoder. The Pyramid Pooling module is
an effective global prior representation and captures the global context using a CNN-based
multi-level pyramid. Each level of the multi-level pyramid is a pooling layer with a different
pooling rate. A multi-level pyramid of pooling layers can learn different granularities of
global features, which enables the model to more comprehensively grasp information
regarding the global scene of VHR images.

3.2.5. Feature Pyramid Fusion

To more effectively utilize the multi-scale feature maps generated by the encoder, the
Feature Pyramid Fusion (FPN) module is applied in the decoder to fuse the feature maps
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from the Pyramid Pooling and the Swin Transformer block. With the FPN, feature maps
with different sizes and channel numbers are fused to a single feature map. The fused
feature map integrates all the features at different levels and thus may help to further
improve the classification accuracy.

3.3. Transformer-Specific Hyperparameters

The main Transformer-specific hyperparameters in the network are patch size, embed-
ding dimension, and window size. They are described as follows:

(1) Patch size

The patch size refers to the size of image patches and determines how many pixels are
in a unit to generate feature maps based on the self-attention calculation method. The patch
size is related to the resolution of the feature maps. When a VHR image is represented as

Image(X) ∈ RH×W×C (3)

where H, W is the height and width of the VHR image, and C is the channel of the VHR
image, the VHR image patches can be represented as

ImagePatches(X) ∈ R(P×P×C)×N (4)

where P is the patch size, and N is the length of the sequence of image patches (N = H×W/ P2).
Each patch is flattened to a vector with a length of P× P× C before it is passed into the
Linear Embedding module.

(2) Dimension of embeddings

The dimension of embeddings refers to the length of a vector that represents an embed-
ded image patch. The embedded image patches are generated by the Linear Embedding
module, represented as

PatchEmbeddings(X) ∈ RD×N (5)

where D is the dimension of embeddings, and N is the length of the sequence of embed-
dings, which is the same as the length of image patches.

(3) Window size

The window size refers to how many image patches are grouped to directly calculate
self-attention within windows; thus, a larger window size means more image patches are
used to directly calculate the window-level self-attention. Supposing each window contains
M × M patches, the feature map generated by the Swin Transformer block in Stage 1 is
represented as

FeatureMapstage1(X) ∈ RH/P×W/P×D (6)

After merging image patches, the feature maps generated by the Swin Transformer
block in Stage 2, Stage 3, and Stage 4 are represented as

FeatureMapstage2(X) ∈ RH/2P×W/2P×2D (7)

FeatureMapstage3(X) ∈ RH/4P×W/4P×4D (8)

FeatureMapstage4(X) ∈ RH/8P×W/8P×8D (9)
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4. Experimental Section
4.1. Datasets

We chose the publicly available Massachusetts Buildings Dataset (https://www.cs.
toronto.edu/~vmnih/data/ accessed on 1 September 2022) as the experiment data. The
Massachusetts Buildings Dataset consists of 151 aerial images in the Boston area of the U.S.
Each image is 1500 pixels × 1500 pixels with red, green, and blue bands, and the spatial
resolution is 1 m. The original 151 images were split into a training dataset of 137 images, a
validation dataset of 4 images, and a test dataset of 10 images.

Due to the limitation of GPU memory, the original 1500 pixel × 1500 pixel images
needed to be divided into smaller images in the experiment. Due to the hierarchical
structure of the Swin Transformer, the arbitrary sizing of image samples is not recom-
mended. The downscaling was performed during the generation of the multi-scale
attention-based feature maps, and the upscaling was performed when merging them.
Hence, inappropriate image sizes will lead to merging failure in the Swin Transformer.
By analyzing the structure of this network, the appropriate image size was determined
to be patch_size × 2merge_times × window_size or the integer multiples of it, and Table 1
lists the appropriate image sizes between approximately 200 and 400 pixels. The patch
number in the Nth stage was calculated using H/P/N × W/P/N, where H and W are
the height and width of images, P is the size of the image patches, and N is the sequen-
tial number of the stages (i.e., 1, 2, 3, 4). Considering maximization by utilizing the
original 1500 pixels × 1500 pixels images, the image size selected in this experiment was
288 × 288 pixels. Therefore, we finally obtained 3000 pieces of 288 × 288-pixel samples for
training and 98 pieces of the same-sized samples for validation.

Table 1. Appropriate image sizes between approximately 200 and 400 pixels.

Input Image
Size (Pixels)

Utilization for
the Original
1500 × 1500
Pixel Image

Patch Size
(Pixels)

Patch Numbers of
the Four Stages

Window Size
(Patches)

224 89.6%
2 [1122, 562, 282, 142] 7 or 14

4 [562, 282, 142, 72] 7

256 85.3%
2 [1282, 642, 322, 162] 8 or 16

4 [642, 322, 162, 82] 8

288 96.0%
2 [1442, 722, 362, 182] 9 or 18

4 [722, 362, 182, 92] 9

320 93.9%
2 [1602, 802, 402, 202] 10 or 20

4 [802, 402, 202, 102] 10

352 93.9%
2 [1762, 882, 442, 222] 11 or 22

4 [882, 442, 222, 112] 11

384 76.8%
2 [1922, 962, 482, 242] 12 or 24

4 [962, 482, 242, 122] 12
Note: the largest utilization is highlighted in bold.

4.2. Hyperparameter Settings

In order to explore how the Transformer-specific hyperparameters affect the accuracy
of the extraction of building footprints, we set up eight experiment groups, and each group
had different Transformer-specific hyperparameter values, as shown in Table 2. They all
were trained by the same training samples described in Section 4.1.

https://www.cs.toronto.edu/~vmnih/data/
https://www.cs.toronto.edu/~vmnih/data/
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Table 2. Experiment group for the Transformer-specific hyperparameter.

Experiment Group Patch Size (Pixels) Embedding
Dimension

Window Size
(Patches)

patch2_em24_win09 2 24 9

patch2_em96_win09 2 96 9

patch2_em24_win18 2 24 18

patch2_em96_win18 2 96 18

patch4_em24_win09 4 24 9

patch4_em96_win09 4 96 9

patch4_em24_win18 4 24 18

patch4_em96_win18 4 96 18

4.3. Training Settings

The eight building footprint extraction networks with the different hyperparameter
values were trained on the same NVIDIA GeForce RTX 3080 Ti GPU with 12 GB memory
for 200 epochs. The batch size of the training samples was set to four due to the capacity
limitation of GPU memory. The optimizer employed in the experiment was AdamW, with
an initial learning rate of 6 × 10−5 and a weight decay of 0.01. In addition, a scheduler
of linear learning rate was used to train the models with a warmup of 10 iterations. The
building footprint extraction networks were not pre-trained on any other datasets, and no
data augmentation methods were applied.

4.4. Evaluation Metrics

Four evaluation metrics were used in this study to evaluate the inference results. They
are listed as follows:

(1) Overall accuracy (OA)

Accuracy is the metric calculated in the simplest way. It is the ratio of the correct
predictions to the total number of predictions, represented as

OA =
TP + TN

TP + TN + FP + FN
(10)

where TP, FP, TN, and FP are the number of true positives, false positives, true negatives,
and false negatives, respectively, in the confusion matrix;

(2) Intersection over union (IoU)

The mIoU is the average IoU. The IoU, also known as the intersection over union, is
often used in object detection and semantic segmentation. It is the ratio of the overlap and
union areas of prediction and ground truth. The mIoU can also be represented as

mIoU =
1

n + 1

n

∑
i=1

TP
TP + FP + FN

(11)

(3) F1-score

The F1-score is a metric that combines the precision and recall metrics, and it is more
suitable for imbalanced data. The F1 score is defined as the harmonic mean of precision
and recall, represented as

F1 score = 2× Precision× Recall
Precision + Recall

(12)
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(4) Kappa

Kappa, also known as Cohen’s Kappa [69], is a metric used to assess the agreement
between two raters. Kappa is also a useful evaluation metric when dealing with imbalanced
data. It is represented as

Kappa =
p0 − pe

1− pe
(13)

where p0 is the overall accuracy of a model and pe is the measure of the agreement between
the model predictions and the ground truth values.

5. Results and Discussion
5.1. Accuracy Evaluation

Accuracy evaluation was performed when training the models. After every epoch, the
evaluation was performed using the validation samples described in Section 4.1.

Figure 6 shows the accuracy variation curve on the validation samples during training.
It demonstrates that the networks with the 2 × 2 pixels image patches and 96-dimensional
embeddings (i.e., ‘patch2_em96_win09’ and ‘patch2_em96_win18’) achieved the highest
score for all metrics. Figure 5 also demonstrates that when the patch size and the dimen-
sion of the embeddings of the build footprint extraction networks were the same, the
varying curves of OA, mIoU, F1-score, and Kappa were very similar, which indicates
that the window size of the network has little impact on the accuracy of the building
footprint extraction.
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Table 3 further lists the top-three accuracy evaluation results. The ‘patch2_em96_win09’ ex-
periment group achieved the best performance, which comprised values of 0.8913 for OA, 0.8138
for mIoU, 0.8919 for F1-score, and 0.7838 for Kappa, and the ‘patch2_em96_win18’ experiment
group had very similar evaluation results to ‘patch2_em96_win09’. The ‘patch2_em96_win09’
and ‘patch2_em96_win09’ experiment groups had the same 96-dimension embeddings and
two-pixel-sized image patches, and only their window sizes were different. Table 3 also
demonstrates that the other experiment groups, which had the same patch sizes and
embedding dimensions but different window sizes, had similar evaluation results. For
example, ‘patch4_em24_win09’ and ‘patch4_em24_win18’ had the same four-pixel-sized
image patches and 24-dim embeddings, and their results were similar.

Table 3 also shows that the vision Transformer networks with 96-dim embeddings
had higher levels of evaluation accuracy than those with 24-dim embeddings. Higher-
dimensional embeddings can represent richer features of buildings on remote sensing
images. With the representation of richer features, the network can more effectively
distinguish buildings from other objects, thereby obtaining a higher level of accuracy.
Additionally, as the dimension of embeddings reflects the level of feature representation,
we suggest higher-dimensional embeddings are suitable for extracting features of complex
objects such as crops and wetlands, while lower dimensions can be relatively simple
objects such as water and ice. However, it should be noted that using higher-dimensional
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embeddings increases the size of the model, resulting in higher CPU and GPU memory
usage. Hence, given high-dimensional embeddings, it is necessary to pay attention to the
size of the model so as not to exceed GPU memory limitations.

Table 3. Evaluation metrics scores for the different models.

Experiment Group Top-3 OA mIoU F1-Score Kappa Epoch

patch4_em24_win09

1 0.8663 0.7822 0.8696 0.7393 96

2 0.8675 0.7821 0.8695 0.7391 85

3 0.8627 0.7820 0.8694 0.7388 77

Avg 0.8655 0.7821 0.8695 0.7391 -

patch4_em24_win18

1 0.8673 0.7822 0.8697 0.7393 84

2 0.8642 0.7815 0.8691 0.7382 85

3 0.8682 0.7814 0.8691 0.7382 65

Avg 0.8666 0.7817 0.8693 0.7386 -

patch4_em96_win09

1 0.8838 0.7945 0.8785 0.7569 42

2 0.8743 0.7933 0.8775 0.7550 39

3 0.8730 0.7925 0.8769 0.7538 40

Avg 0.8770 0.7934 0.8776 0.7552 -

patch4_em96_win18

1 0.8804 0.7947 0.8786 0.7571 195

2 0.8775 0.7937 0.8778 0.7557 186

3 0.8782 0.7936 0.8778 0.7555 189

Avg 0.8787 0.7940 0.8781 0.7561 -

patch2_em24_win09

1 0.8864 0.8038 0.8851 0.7703 107

2 0.8818 0.8038 0.8850 0.7701 111

3 0.8855 0.8037 0.8850 0.7700 83

Avg 0.8846 0.8038 0.8850 0.7701 -

patch2_em24_win18

1 0.8802 0.8019 0.8837 0.7674 78

2 0.8827 0.8013 0.8834 0.7668 81

3 0.8872 0.8011 0.8833 0.7666 91

Avg 0.8834 0.8014 0.8835 0.7669 -

patch2_em96_win09

1 0.8931 0.8139 0.8920 0.7839 46

2 0.8909 0.8138 0.8919 0.7837 42

3 0.8898 0.8138 0.8918 0.7837 47

Avg 0.8913 0.8138 0.8919 0.7838 -

patch2_em96_win18

1 0.8900 0.8124 0.8909 0.7819 47

2 0.8898 0.8121 0.8907 0.7814 53

3 0.8940 0.8119 0.8906 0.7813 39

Avg 0.8913 0.8121 0.8907 0.7815 -
Note: underline denotes the highest score.

Table 3 also shows that the vision Transformer networks with two-pixel-sized image
patches outperformed those with four-pixel-sized image patches, as image patches, rather
than pixels, are used to calculate self-attention in vision Transformer networks. Smaller
image patches generate higher-resolution features that are fed into the model and calculated
to output attention feature maps. A finer attention feature map obviously reduces the
number of errors raised by upsampling to the original size of images. As a result, using
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smaller image patches improves the accuracy of building footprint extraction. Also, unlike
the common use of four- or six-pixel-sized patches in natural images, our findings indicate
that two-pixel-sized patches are preferred in the context of VHR image analysis. Therefore,
we recommend using two-pixel-sized patches for building footprint extraction tasks to
maximize accuracy and reduce errors related to upsampling.

In addition, we compared Transformer-based methods to the CNN-based methods in
the extraction of building footprints, as shown in Table 4. U-Net and DeepLab V3 are the
most commonly used networks in the extraction of building footprints; thus, they were
selected for comparison. Table 4 shows that the Transformer-based network outperformed
the CNN-based U-Net and DeepLab V3 networks in all of the evaluated metrics. This result
is consistent with the result in the CV field.

Table 4. Quantitative comparison with CNN-based methods.

Methods Parameters
(Million) OA mIoU F1-Score Kappa

U-Net 7.7 0.8271 0.7412 0.8390 0.6780

DeepLabV3 39.6 0.8339 0.7471 0.8440 0.6881

Swin
Transformer+PFN

(patch2_em96_win09)
62.3 0.8913 0.8138 0.8919 0.7838

In general, the accuracy evaluation results confirm that the size of image patches and
the dimension of embeddings has significant impacts on the accuracy of the extraction of
building footprints using vision Transformer networks. Smaller-sized image patches or
higher-dimension embeddings can achieve a higher level of accuracy in building footprint
extraction, whereas the parameter of window size has little impact on the accuracy.

5.2. Model Size and Training Time

With the same GPU, the training time is mainly determined by the size of the model
and training samples. In this study, the number of training samples was 3000, and the size
of each sample was 288 × 288 pixels. The training times for the eight experiment groups
are listed in Table 5. It can be seen that, in general, the training time of our Transformer-
based building footprint extraction network was approximately between 9 and 12 h. The
exact training time for each experimental group was slightly different due to the different
parameter settings. We can see that the higher the embedding dimension was, the longer
the training took since higher-dimensional embeddings lead to larger models.

Table 5. Training time, model parameters, and sizes.

Experiment Group Training Time
(Hours)

Model Parameters
(Million)

Model Size
(MB)

patch4_em24_win09 8.8
8.9 35

patch2_em24_win09 9.0

patch4_em24_win18 9.4
8.9 35.6

patch2_em24_win18 9.8

patch4_em96_win09 10.4
62.3 249.2

patch2_em96_win09 10.8

patch4_em96_win18 12.4
62.3 249.2

patch2_em96_win18 12.9
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5.3. Prediction Results

Since buildings in remote sensing images have different sizes and non-buildings could
be misclassified as buildings, we show the prediction results in terms of large buildings,
small buildings, and non-building misclassification.

Large buildings. In this study, buildings with areas larger than 1000 sq. meters
were classified as large buildings, such as shopping malls, big libraries, and museums.
Figure 7 shows the results of the large building footprints predicted using the Transformer-
based building footprint extraction network. It demonstrates that the models with 96-dim
embeddings (i.e., Figure 7e–h) generally outperformed the ones with 24-dim embeddings
(i.e., Figure 7a–d), and the integrity of the large building footprint boundaries extracted
using the 96-dim embeddings was better than that of those extracted using the 24-dim
embeddings. We believe that higher-dimensional embeddings have more parameters,
which helps to more accurately represent the overall characteristics of large buildings,
resulting in better integrity when extracting them. Regarding the patch size, the results
show its value was less sensitive than the embedding dimensions to the large buildings.
This demonstrates that patch size is related to spatial resolution, and spatial resolution has
a small impact on the extraction of large buildings from VHR images.
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Small buildings. In this study, buildings with areas smaller than 300 sq. meters were
classified as small buildings, such as houses and small commercial buildings. Figure 8
shows the results of the small building footprints predicted using the Transformer-based
building footprint extraction network. The results demonstrate that the models with
2× 2-pixel image patches (i.e., Figure 8a,b,e,f) generally outperformed those with 4 × 4-pixel
image patches (i.e., Figure 8c,d,g,h). This suggests that smaller image patches are more
effective for the prediction of the footprints of small buildings. These results could be
explained by the fact that using smaller image patches helps the network capture finer
details and edges, which can be important for the accurate prediction of small buildings’
footprints. In contrast, using larger image patches may result in the loss of some finer
details, as well as the overlapping of the extracted building footprints.
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Non-building misclassification. In this study, the main non-building objects mis-
classified as building footprints are roads. Figure 9 shows an example of roads being
misclassified as building footprints. It can be seen that the ‘patch2_em96_win09’ exper-
iment group (i.e., Figure 9a) achieved the best performance, and a few pixels of roads
were misclassified as building footprints. The ‘patch2_em96_win09’ experiment group,
which was only different in terms of window size, only misclassified a few pixels of roads.
Figure 6 also demonstrates the models with 24-dim embeddings (i.e., Figure 9a–d) misclas-
sified roads more seriously than the models with 96-dim embeddings (i.e., Figure 9e–h),
especially for the models with patch sizes of 4 × 4 pixels (i.e., Figure 9c,d).
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6. Conclusions

Vision Transformer networks have been developed as an alternative to CNNs and
have shown significant improvements in performance over traditional CNNs in multiple
tasks such as image classification, object detection, and semantic segmentation. This
study explored the potential of vision Transformer networks in extracting geographical
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objects from VHR images, with a focus on building footprints. Moreover, we analyzed
the particular hyperparameters of Swin Transformer networks, such as image patches,
linear embedding, and window size, and investigated how they affect the accuracy of the
extraction of building footprints. We found the hyperparameters of image patches and
linear embedding had significant impacts on the accuracy. Smaller image patches resulted
in higher accuracy in building footprint extraction. High-dimensional embeddings also
resulted in higher accuracy in building footprint extraction. The window size had a smaller
impact on the accuracy, but it impacted the size of the model, thereby affecting the training
time. With the same image patches and embeddings, we recommend a smaller window
size for the Swin Transformer network. These results provide an essential reference in
Transformer-based network hyperparameter configuration to improve the accuracy of land
cover classification with VHR images. In our experiment, when the size of the image
patches was 2 × 2 pixels, the dimension of the embeddings was 96, and the window size
was nine, the network achieved the highest accuracy in building footprint extraction. The
values were 0.8913 for OA, 0.8138 for mIoU, 0.8919 for F1-score, and 0.7838 for Kappa, and
the accuracy evaluation was based on the Massachusetts Buildings Dataset (https://www.
cs.toronto.edu/~vmnih/data/ accessed on 16 November 2022). In addition, the experiment
also showed that the Swin Transformer network could be trained with general-scale GPUs
when applying VHR remote sensing images, and the model size and training time are
acceptable compared to traditional CNNs while achieving better accuracy. This further
demonstrates that Transformer networks are highly scalable and have broad potential
applications in the field of remote sensing.
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