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Abstract: With the rise and development of smart infrastructures, there has been a great demand
for installing automatic monitoring systems on bridges, which are key members of transportation
networks. In this regard, utilizing the data collected by the sensors mounted on the vehicles passing
over the bridge can reduce the costs of the monitoring systems, compared with the traditional systems
where fixed sensors are mounted on the bridge. This paper presents an innovative framework for
determining the response and for identifying modal characteristics of the bridge, utilizing only
the accelerometer sensors on the moving vehicle passing over it. In the proposed approach, the
acceleration and displacement response of some virtual fixed nodes on the bridge is first determined
using the acceleration response of the vehicle axles as the input. An inverse problem solution approach
based on a linear and a novel cubic spline shape function provides the preliminary estimations of the
bridge’s displacement and acceleration responses, respectively. Since the inverse solution approach is
only capable of determining the response signal of the nodes with high accuracy in the vicinity of
the vehicle axles, a new moving-window signal prediction method based on auto-regressive with
exogenous time series models (ARX) is proposed to complete the responses in the regions with
large errors (invalid regions). The mode shapes and natural frequencies of the bridge are identified
using a novel approach that integrates the results of singular value decomposition (SVD) on the
predicted displacement responses and frequency domain decomposition (FDD) on the predicted
acceleration responses. To evaluate the proposed framework, various numerical but realistic models
for a single-span bridge under the effect of a moving mass are considered; the effects of different
levels of ambient noise, the number of axles of the passing vehicle, and the effect of its speed on the
accuracy of the method are investigated. The results show that the proposed method can identify the
characteristics of the three main modes of the bridge with high accuracy.

Keywords: indirect bridge health monitoring; bridge mode shape identification; moving vehicles;
moving-window ARX model; inverse problem; vibration-based monitoring

1. Introduction

The development of smart infrastructure has highlighted the need for automatic and
real-time monitoring systems for critical transportation components such as bridges. The
high cost associated with maintenance and reconstruction of these essential lifelines has
made the implementation of such monitoring systems a pressing issue. Consequently,
significant research has been conducted over the last few decades in the area of vibration-
based monitoring of bridge structures using sensors installed directly on the bridges [1–3].

Previous studies have made notable contributions to bridge health monitoring. For
instance, Gonzalez and Karoumi [4] proposed a damage detection method for bridges
utilizing bridge weigh-in-motion (BWIM) data and machine learning techniques. Their
approach employed an artificial neural network (ANN) to predict bridge health based
on BWIM data, ensuring reliable evaluations over time. Similarly, Azim and Gül [5]
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developed a data-driven damage detection framework for truss railway bridges using
operational acceleration and strain response data. Feng and Feng [6] presented a time-
domain finite element (FE) model updating approach using in situ measurements of
dynamic displacement responses under trainloads. Their study validated the importance
of the bridge’s equivalent stiffness for accurate model updating, although extracting modal
information from dynamic responses proved challenging for short-span railway bridges
with high natural frequencies.

Due to the high cost of real-time monitoring of bridges using fixed sensors, recent
research in structural health monitoring has explored indirect methods, called indirect
bridge health monitoring (iBHM), that utilize only the vertical vibration data collected
by accelerometers mounted on passing vehicles. This method, first proposed by Yang
et al. [7], has recently gained significant recognition. The main objective in this research
direction is to find a reliable method to determine the vertical vibration responses of desired
locations on a bridge without the need for expensive fixed sensors or with minimal sensor
requirements [8,9]. For example, Malekjafarian and O’Brien [10] developed a method
for identifying bridge mode shapes using short time frequency domain decomposition
(STFDD) of responses measured in a passing vehicle. Their approach involved segmenting
the bridge and employing a multi-stage procedure using frequency domain decomposition
(FDD) to estimate the mode shapes. Numerical case studies validated the performance
of the method, demonstrating the accurate estimation of mode shapes under low noise
levels and the presence of other traffic or signal subtraction in identical axles. Furthermore,
Eshkevari et al. [11] developed novel methods for modal identification of bridges using
data collected by a large number of moving sensors (vehicles). Their study proposed matrix
completion methods, specifically the alternating least squares algorithm, to extract modal
properties from sparse and dynamic bridge response data. Three methods were evaluated:
principal component analysis, structured optimization analysis, and the natural excitation
technique (NExT). The results demonstrated accurate estimations of modal properties.
However, the methods had limitations in terms of computational costs, modal leakage,
sparse data, user-defined points, and accuracy for higher modes. The study showcased
the potential of using mobile sensor networks for bridge health monitoring and system
identification. Kong et al. [12] proposed a method to efficiently extract bridge modal
properties using a test vehicle composed of a tractor and trailers. They verified the method
on an existing bridge, considering the effects of trailer mass and stiffness. Their findings
demonstrated high visibility in extracted bridge frequencies, particularly when traffic flows
provided additional excitation. However, limitations were identified, such as difficulties
in accurately extracting mode shapes dominated by lateral bending due to the limited
modeling of trailers.

To reduce the cost of monitoring using mobile sensing, researchers have also ex-
plored the use of smartphone sensors instead of expensive and commercially graded
accelerometer sensors. Smartphone data have been widely used in different fields, such
as indoor positioning [13], crime prevention [14], and even agriculture [15]. In the struc-
tural health monitoring field, smartphone sensors have also demonstrated effectiveness
in various applications, such as bridge seismic monitoring [16], assessment of building
damage from seismic events [17], damage detection of a 3D steel frame [18], and walking
vibration analysis [19]. Experimental investigations have demonstrated the reliability of
smartphone technology for bridge monitoring, particularly in identifying natural frequen-
cies, although this area of research is still in its early stages [20]. For instance, Di Matteo
et al. [21] conducted a field experiment on the Corleone bridge in Palermo, Italy, to as-
sess smartphone-based bridge monitoring through vehicle–bridge interaction. The study
successfully identified the bridge’s natural frequency using smartphone data with high ac-
curacy. Shirzad-Ghaleroudkhani and Gül [22] developed a novel methodology for natural
frequency identification of bridges using acceleration signals recorded by smartphones on
passing vehicles. Their inverse filtering approach effectively removed the frequency content
of the vehicle. Additionally, Sitton et al. [23] proposed postprocessing strategies to estimate
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a bridge’s fundamental frequency from acceleration data recorded from a traversing vehicle
without prior knowledge of bridge parameters, successfully validating their approach
through finite element simulations and experimental validation on a scale-model bridge.

Despite the potential benefits of mobile sensing, challenges remain in achieving ac-
curate bridge response prediction and mode shape identification [9,24]. Complicated
mathematical techniques and principles of structural dynamics are often required. There-
fore, this paper aims to explore the use of mobile sensors on crossing vehicles for bridge
health monitoring, leveraging their ubiquity and potential cost savings, while addressing
the need for accurate modal identification and practical solutions.

To predict the bridge response using the recorded acceleration responses from a
crossing vehicle, the vehicle response needs to be spatially mapped onto some virtual
fixed nodes on the bridge [25]. These estimated responses can then be used to identify
the dynamic characteristics and potential damages in the structure. However, due to the
interpolation of the adjacent crossing axles (moving sensors), theoretical inverse problem
solutions can only determine a limited part of the response signal for each fixed node
on the bridge. This interpolation results in a sparse response matrix, where each row
corresponds to the response of a particular fixed node and each column corresponds to the
response vector of the fixed nodes in a time stamp. This matrix contains numerous missing
values (invalid regions) that require advanced statistical, mathematical, or machine learning
techniques to predict or complete the response signals for the virtual fixed nodes [25,26].

A few previous studies have utilized vehicle response data to identify bridge mode
shapes using the sparse response data from bridges. While some of these methods have
attempted to address the issue of missing values in the bridge response matrix through
soft-imputing techniques [26], short time frequency domain decomposition [10], alternating
least squares technique, and principal component analysis [11], these approaches often rely
on engineering judgment, involve time-consuming constrained optimization processes,
and require manual parameter settings. Although these limited research works have made
significant contributions to drive-by modal identification, there is a need for an innovative
and automated framework to overcome these limitations.

This research work presents a novel technique for identifying the modal characteristics
of bridges using only accelerometer sensors mounted on vehicles passing over them. The
proposed framework consists of two stages. In the first stage, an inverse problem solution
approach is employed to determine the acceleration and displacement response of virtual
fixed nodes on the bridge. This is achieved by using the acceleration response of the
vehicle axles as input, utilizing conventional linear interpolation functions to predict the
bridge displacement responses, and introducing a novel cubic spline shape function to
predict the acceleration response of the assumed fixed nodes on the bridge. However, the
inverse problem solution approach yields response signals with missing parts, necessitating
prediction. To address this issue, a new automated moving-window time series model
based on auto-regressive exogenous (ARX) techniques is proposed in this paper. In the
second stage, a novel approach combines the results of singular value decomposition (SVD)
on the predicted displacement responses and frequency domain decomposition (FDD) on
the predicted acceleration responses. This approach allows for the accurate identification
of the first mode shape and higher mode shapes of the bridge, as well as the determination
of natural frequencies. The main novelties of this research lie in the utilization of a cubic
spline shape function within the inverse problem solution stage to predict the acceleration
response of the fixed nodes and the application of moving-window time series models
to complete the predicted incomplete signals obtained from the inverse problem solution
procedure. Moreover, the method distinguishes itself by identifying mode shapes of the
bridge using both acceleration and displacement responses, thereby enhancing the accuracy
of identification for both lower and higher modes. Numerical simulations are conducted
to evaluate the effectiveness of the proposed framework, considering different levels of
ambient noise, number of axles, and vehicle speed. The future implementation of the
framework in smartphone sensing-based applications is also discussed.
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This paper is structured as follows: Section 1 provides the introduction and review
of the literature. Section 2 focuses on the background and the inverse problem solution
procedure, specifically for estimating the preliminary response signals of the bridge. Section 3
introduces the details of the proposed framework, which encompasses a two-stage approach
for predicting the missing parts of the response signals of the virtual fixed nodes on the bridge,
as well as identifying the mode shapes and natural frequencies of the bridge. In Section 4,
numerical analyses are conducted to evaluate the performance of the proposed method. The
results of the analyses are presented and discussed in Section 5, where the characteristics
and limitations of the proposed method are also examined. Finally, Section 6 presents the
conclusions of the study, along with recommendations for future research in this area.

2. Background and Inverse Problem Solution Procedure

Identifying moving loads is a prevalent inverse problem in the field of structural
dynamics; researchers have developed several approaches to tackle this challenge [27].
These approaches can be categorized into two main types: those relying on analytical
models and those formulated using finite element models, with a specific focus on solution
techniques. Another type of inverse problem encountered in vehicle–bridge dynamics
pertains to the identification of structural parameters using the moving load as an excitation.

In this paper, a different approach is presented, inspired by the work of Oshima
et al. [25], to address this inverse problem, utilizing a FE approach with two different shape
functions to estimate the bridge response by incorporating the vehicle response as the
input. The proposed approach is thoroughly discussed and successfully solved within
this section, with a novel shape function being employed to enhance the accuracy of the
bridge’s acceleration response.

2.1. Assumptions and Notations

This study assumes that the sensors are mounted on the front and rear axles of the
vehicle to mitigate the effects of the suspension system [26]. For simplicity, the deformation
of wheels and tires is ignored. In practice, the effect of the vehicle–bridge interaction can
be eliminated by considering its empirical transfer function. Although it is assumed that
the recorded data are solely accelerations, the displacements integrated twice from the
accelerations will also be used as inputs for the proposed time series models. To have a
linear time invariant system, the mass of the vehicle is ignored in comparison with the mass
of the bridge. The speed of all traversing axles is also assumed to be identical and constant
during the measurement for simplicity. The geometry of the bridge and parameters of the
moving vehicle are shown in Figure 1; all other notations and variables used in this paper
are introduced in Table 1.
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Table 1. List of symbols and notations used in this paper.

Symbol Description

y(x, t) Continuous function of bridge vertical displacement response

yv
i (t) Vertical displacement response of the ith axle of the vehicle

D(t) Nodal vertical displacement vector of the bridge

Y(t) Vector containing the displacement responses of the moving axles

N(x) Interpolating shape function matrix for beam elements

Nv(t)
Interpolating shape function matrix for estimating the response of the moving

axles (m × n)

Sj jth virtual fixed node considered on the bridge

Nj(x) Contribution of the jth node displacement of the displacement field

Q(t) Vector containing the modal coordinate responses = [qk(t)]

Φs Matrix containing the amplitudes of all mode shapes at the fixed nodes

φk(sj) Amplitude of the kth mode shape at fixed node Sj

n Total number of virtual fixed nodes considered on the bridge (mesh nodes)

m Total number of moving axles crossing the bridge

sj Location of the jth fixed node from the left support of the bridge

xi(t) Location of the ith moving axle from the left support of the bridge

∆s Mesh size of the bridge element

2.2. Inverse Problem Solution for Bridge Response Determination Utilizing Vehicle Response

In order to determine some parts of the bridge response signals at the virtual fixed
nodes utilizing the vehicle response, an inverse problem solution is first employed in
this section.

Based on the principles of finite element methods, the continuous vertical displacement
response of a bridge can be determined by considering a proper interpolating (shape)
function and using the discrete responses of the bridge at the location of the fixed nodes
(shown in Figure 1b) [28].

y(x, t) =
[
N1(x) · · · Nn(x)

]
ys1(t)

...
ysn(t)

 = N(x)D(t) (1)

where N(x) is the interpolating shape function matrix and D(t) is a vector containing vertical
displacements of the fixed nodes.

In Equation (1), a linear interpolating shape function is usually considered:

s1 · · · sj sj+1 · · · sn

N(x) =
[

0 · · · x−sj+1
sj−sj+1

x−sj
sj+1−sj

· · · 0
]
; sj < x ≤ sj+1

(2)

where Sj is the location of the jth fixed node from the left support. j can be valued from 1 to
(n − 1).

By substituting the location history of the moving axles (x1(t) to xm(t)) in Equation (1),
the nodal displacement responses of the moving axles can easily be extracted [26].

Y(t) =


yv

1(t)
...

yv
m(t)

 =

N(x1(t))
...

N(xm(t))




ys1(t)
...

ysn(t)

 = Nv(t)D(t) (3)
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where yi
v(t) is the vertical displacement response of the ith axle of the vehicle and Nv(t) is

an interpolating shape function matrix for estimating the response of the moving axles.
For a general condition of m 6= n, multiplying Equation (3) by the pseudoinverse of the

matrix Nv(t) produces the nodal displacements of the bridge as a function of displacements
of the moving axles.

D(t) =
((

Ntr
v (t)Nv(t)

)−1Ntr
v (t)

)
Y(t) (4)

Taking the second derivation from both sides of the previous equation will produce a
similar relation between the acceleration responses.

..
D(t) =

((
Ntr

v (t)Nv(t)
)−1Ntr

v (t)
) ..

Y(t) (5)

2.3. Valid Regions of the Estimated Signals

Although in Equations (4) and (5), the pseudoinverse of the Nv(t) matrix is multiplied
in all the responses of the moving axes, based on our numerical observations, the use of
the pseudoinverse of the Nv(t) matrix based on the assumption of either linear or spline
shape function, which is introduced in the next part, leads to an accurate estimation only
for the responses of the nodes located in the vicinity of the moving axles at that time stamp;
in time intervals outside of that, the prediction error will be very large, which cannot be
used for structural health monitoring applications. The main reason for the error is the fact
that the matrix Nv(t) is a sparse matrix and has lots of zeros outside of the valid region of
the response, thereby its inverse can result in large errors. Although the proposed rule to
determine the valid regions of the estimated response is more general and can be applied
for any number of axles, Figure 2 illustrates the procedure for a case of the three moving
axles crossing the bridge at an arbitrary time stamp such as t. Since there are at least two
moving axles in the vicinity of the nodes Sj−1 and Sj to contribute to their response in the
given time, the estimated response by the theoretical method for these two nodes at time
t is considered valid. The main reason for adopting this assumption is that, in order to
determine the response of a fixed node at time t using the inverse solution of Equation (3),
there must be at least two non-zero rows corresponding to that fixed node in the matrix
Nv(t). The inverse of small or zero values in invalid regions approaches infinity and results
in high error issues.
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Considering this approach, the expected valid and invalid regions for the responses of
each fixed node can be determined. Figure 3 shows a schematic visualization of the valid
and invalid data regions in the matrix of nodal responses. It should be noted that, if the
number of axles increases, the valid region of matrix D will increase. Therefore, the missing
ratio of the matrix will be reduced. Furthermore, the more fixed nodes that are considered,
the shorter valid regions and the higher missing rate we will have in matrix D.
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3. Proposed Response Prediction and Modal Identification Methodology

The proposed framework from collecting the acceleration response of the crossing
axles to identifying the modal characteristics of the bridge is summarized in Figure 4.
In this study, an inverse problem solution procedure is employed to estimate the initial
displacement response signals of the bridge. Initially, a linear shape function is utilized for
this purpose. However, based on numerical investigations, it has been demonstrated that
incorporating a cubic spline shape function in the inverse solution procedure yields more
precise results for bridge acceleration responses. The subsequent sub-section presents a
detailed description of the proposed technique, which involves the use of a cubic spline
interpolation function within the inverse problem solution procedure.
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3.1. Continuous Cubic Spline as the Shape Function

A cubic spline is a piecewise polynomial in which the coefficients of each polynomial
are fixed between joints [29]. In this paper, an innovative approach to estimate the bridge
nodal responses at the valid regions is proposed. The novelty of the proposed approach is
utilizing cubic spline polynomials as the shape function for the displacement field in lieu of
the conventional discontinuous linear ones (Figure 5). Although a cubic spline interpolator
is a continuous combination of some piecewise nonlinear cubic polynomials, it is shown
that the linearity between the nodal responses and the response function will still be valid;
the relation between the nodal responses and response field function can be written in the
form of Equation (1).
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It should be noted that natural spline is employed in this paper due to the fact that
the first and last supports of bridges are generally roller or hinge type, which releases the
moment reaction at the supports and results in zero curvature at those points (i.e., N′′(x = 0)
and N′′(x = L) are considered zero).

N(x) = D̂j,:(x− sj)
3 + Ĉj,:(x− sj)

2 + B̂j,:(x− sj) + Âj,: ; sj < x ≤ sj+1 (6)

where the matrix of coefficients Â, B̂, Ĉ, and D̂ are the size of n by n and to be calculated
via the following equations and the row index, j, can be valued from 1 to (n − 1) [29]:

Â = In (7)

Ĉ = GH−1 (8)
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Â2:n,: − Â1:n−1,:

]
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...
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 0 0


(11)
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H = ∆s



1/∆s 0 0 0 · · · · · · 0
1 4 1 0 · · · · · · 0
0 1 4 1 · · · · · · 0
...

...
...

...
. . . . . .

...
0 0 0 · · · 1 4 1
0 0 0 · · · 0 0 1/∆s


(12)

In the previous equations, ∆s is the distance between two adjacent virtual fixed nodes
that can be assumed constant.

After the determination of N(x), the continuous response function of the bridge can be
calculated by Equation (1).

3.2. Proposed Moving-Window ARX Model to Complete the Missing Parts of the
Estimated Responses

As discussed in Section 2, the classical method for solving the inverse problem can only
estimate a small portion of the bridge displacement signal using drive-by data. In order
to have the complete response for all the fixed nodes, a signal forecasting and completion
approach is required.

In the present research, an innovative moving-window forecasting framework based
on auto-regressive time series models with exogenous input (ARX) is introduced. The main
motivation for this procedure is that the short valid part of the estimated response signal
for a given fixed node can be trained by the corresponding parts of the responses of the
adjacent nodes to forecast the missing response of the given node.

In other words, the proposed approach considers a unique ARX model for each of
the fixed nodes. Therefore, (n − 2) different ARX models can be established for the whole
system. The proposed procedure can be utilized to forecast the missing parts of the signal
in both backward and forward directions; however, it should be noted that, for training
and predicting the missing parts in the backward direction, the reverse of the signals is
used (see Figure 6).
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Figure 6. Explanation of the training parts and input in the ARX model for forecasting the missing
parts of the response signal of node sj.

The ARX model structure is generally given by the following equation [30]:

y(t) + a1y(t− ∆t) + · · · + anay(t− na∆t) = a1u(t− nk) + · · · + anbu(t− (nb + nk− 1)∆t) + e(t) (13)

where y(t) and u(t) are the output and the input of the system, respectively; a1, . . . , ana and
b1, . . . , bnb are parameters of the model, which can be identified through the least-squares
optimization approach; e(t) is a white-noise disturbance value.
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The main reason for considering the ARX models is that the responses of two different
fixed nodes located on the bridge can be decomposed to modal response components
utilizing modal expansion principles for nd modes [31]:

ysj(t) =
[
φsj ,1 · · · φsj ,nd

]
q1(t)

...
qnd(t)

 (14)

D(t) =


ys1(t)

...
ysn(t)

 =

φs11 · · · φs1nd
...

. . .
...

φsn1 · · · φsnnd




q1(t)
...

qnd(t)

 = ΦsQ(t) (15)

In a general case, multiplying both sides of Equation (15) by the pseudoinverse of φs

and substituting the resulting Q(t) in Equation (14) yields to Equation (17):

Q(t) =


q1(t)

...
qnd(t)

 =

φs11 · · · φs1nd
...

. . .
...

φsn1 · · · φsnnd


−1

ys1(t)
...

ysn(t)

 (16)

ysj(t) =
[
φsj ,1 · · · φsj ,nd

]φs11 · · · φs1nd
...

. . .
...

φsn1 · · · φsnnd


−1

ys1(t)
...

ysn(t)

 =
[
bj,1 · · · bj,n

]
ys1(t)

...
ysn(t)

 (17)

According to our numerical investigations, only the contribution of the adjacent nodes
is high for the response prediction of the jth node. Therefore, we neglect the contributions
of the other fixed nodes in Equation (17) and, by doing so, the pattern of the response can
still be maintained.

Comparing Equation (17) with the general ARX model introduced in Equation (13),
the time series model for the jth node can be simplified as follows:

ysj(t) + aj,1ysj(t− ∆t) + aj,2ysj(t− 2∆t) = bi,1ysj+1(t) + bj,2ysj+1(t− ∆t) + bj,3ysj+1(t− 2∆t) + e(t) (18)

As obtained in Equation (18), the information on external force and vehicle char-
acteristics in the proposed model is not required. The rationale behind considering a
second-order ARX model is that using acceleration response in the time series model can
give better accuracy.

By performing the proposed method for all the intermediate nodes, some parts of the
bridge response signals can be completed according to Figure 7. As can be seen from the
figure, this approach is only able to complete the missing parts of the signal in which the
input for the time series model can be provided, considering the missing gap between the
two consecutive signals.
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Figure 7. The first iteration of the proposed moving ARX technique to complete the missing parts
of the response matrix, where the inputs are available for forecasting backward and forward values
using the time series models.

In order to complete the entire responses of the fixed nodes, the moving ARX al-
gorithm will be applied through a straight-forward iterative procedure. The proposed
signal completion framework is shown in Figure 8 for the displacement response of an
intermediate fixed node. It is important to highlight that the number of iterations needed
depends on the quantity of moving axles and the number of virtual fixed nodes. For a
model subjected to three-axle moving loads, a total of six iterations are required. As the
number of axles increases, the number of iterations decreases due to a reduction in the valid
regions. During each iteration of the algorithm, the predicted regions are combined with
the initial valid regions, leading to an expansion of the valid regions within the response
matrix. The iterative process continues until there are no remaining invalid regions in the
response matrix.
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Figure 8. An illustrative example of the iterative moving ARX framework to complete the response
signal of fixed nodes (applicable for either displacement or acceleration).

3.3. Integrating Displacement and Acceleration Responses for Modal Identification

In this paper, a novel mode shape identification through the response of the moving
wheels only is considered. To be more precise, both displacement and acceleration of the
fixed nodes are first estimated with the aid of the proposed moving ARX method, then
singular value decomposition (SVD) is applied on all of the nodal displacement responses
to identify the first mode shape; however, for the higher modes and identification of natural
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frequencies, frequency domain decomposition (FDD) is utilized, considering the accelera-
tion responses of the fixed nodes. This is based on the fact that combining displacement
and acceleration responses in modal identification improves accuracy and reliability. Dis-
placement responses are effective for identifying lower modes, while acceleration responses
capture high-frequency components and higher modes more accurately [32]. The math-
ematical relationship between accelerations and displacements reduces high-frequency
components in dynamic displacements. This reduction is due to the fact that the integration
operation acting as a low-pass filter and the accumulation of the area under the acceleration
curve during integration [33].

Since the SVD can extract the orthogonal vectors of an arbitrary matrix, it can be
applied to the completed response matrix (D) to determine φs:

D = UΣVtr (19)

where U and V are composed of the left and right singular vectors of matrix D, respectively;
they are orthogonal matrices. Σ is a diagonal matrix containing singular values of D.

By comparing the right side of Equations (15) and (19), identification of the mode
shape can be performed with high accuracy [25]:

Φs = UΣ
1
2 (20)

We observed that SVD can identify the first mode shapes with high accuracy if applied
on the displacement response matrix of the bridge.

As mentioned earlier, in order to identify the mode shapes through the acceleration
response matrix of the bridge, the FDD method is employed [34]. The basis of FDD is
presented in the following paragraph.

From statistics, the correlation matrix between the response of the fixed nodes can be
constructed using Equation (21):

R ..
y

..
y(τ) =

1
T

T∫
0

..
D(t)

..
D

tr
(t− τ)dt =


R ..

ys1

..
ys1

(τ) · · · R ..
ys1

..
ysn

(τ)

...
. . .

...
R ..

ysn
..
ys1

(τ) · · · R ..
ysn

..
ysn

(τ)

 (21)

Considering modal expansion and substituting Equation (15) in Equation (21) gives:

R ..
y

..
y(τ) =

1
T

T∫
0

Φ
..
Q(t)

..
Q

tr
(t− τ)Φtrdt = ΦR..

q
..
q(τ)Φ

tr (22)

Then, taking Fourier transform from both sides of the latter equation produces the
matrix containing cross/auto power spectrums of the response signals:

G..
q

..
q(ωi) = ΦG..

q
..
q(ωi)Φ

tr (23)

G..
q

..
q(ωi) = UiΣiVtr

i (24)

As can be understood from Equations (23) and (24), the SVD of matrix G..
q

..
q(ωi) should

be calculated for each frequency, ωi, in which the matrix of singular values (Σi) is a diagonal
matrix containing modal FRFs and each column of the matrix of singular vectors (Ui and
Vi) represents the mode shapes corresponding to the given frequency ωi.
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4. Results
4.1. Model Setup

To evaluate the effectiveness of the proposed framework, a comprehensive numerical
analysis is conducted on a single-span simply supported bridge using the finite element
software package, ABAQUS. The bridge under consideration has a span length of 40 m
and a rectangular cross-section with dimensions of 3 m wide and 1.5 m high. The material
properties of the bridge are assigned based on concrete, with a density of 2400 kg/m3 and
an elastic modulus of 27.5 GPa.

In the numerical model, the bridge is subjected to the loading of a three-axle moving
vehicle. The distance between the axles is set to 2.5 m, as shown in Figure 1. The natural
frequencies of the bridge model are determined to be 1.44 Hz, 5.76 Hz, and 12.95 Hz for the
first three modes, respectively.

A constant speed of 60 km/h is assigned to all the moving axles. The analysis is
performed using a linear implicit dynamic analysis approach, considering the contacts
between the moving axles and the bridge. The simulation is terminated when the foremost
moving axle reaches the right end of the bridge.

For data acquisition, the accelerometers mounted on the moving vehicle have a con-
stant sampling frequency of 200 Hz. Although a total of nine virtual fixed nodes are
defined on the bridge, for the purpose of verification and comparison, only three specific
fixed nodes located at 1

4 , 1
2 , and 3

4 of the span are selected to verify the displacement and
acceleration responses.

Further details regarding the numerical model can be found in the previous work of
the authors [26]. The established numerical setup provides a realistic representation of a
bridge structure and allows for the comprehensive evaluation of the proposed framework’s
performance.

4.2. Interpretation of Results

As explained in Section 2, by utilizing the measured acceleration of the moving axles
in Equation (5), the valid part of the acceleration response signal of the fixed nodes on the
bridge can be estimated. Similarly, to determine the displacement response signal, it is
enough to double integrate the measured acceleration signals of the axles and put them in
Equation (4).

In order to evaluate the proposed framework, the exact response of the fixed nodes
on the bridge will be used directly from the numerical model. Although the acceleration
and displacement responses of all nine fixed nodes can be determined using the proposed
method, only the results from the linear and spline shape functions of three validation
nodes are shown in Figures 9 and 10.

The displacement and acceleration responses of the fixed nodes are determined using
linear and spline shape functions, respectively, as outlined earlier. Figure 9 shows that the
cubic spline shape function proposed in this study provides more accurate acceleration
response estimates of the fixed nodes in the valid regions compared with the conventional
linear approach. On the other hand, the linear shape function provides more precise
displacement response estimates compared with the cubic spline shape function (Figure 10).

The difference observed between the linear and spline shape functions, regarding
their impact on displacement response estimates, can be attributed to multiple factors.
Firstly, the inherent characteristics of the displacement response itself play a significant
role. Displacement responses primarily consist of low-frequency components that reflect
the overall steady-state behavior of the system. The linear shape function, with its linear
interpolation, aligns well with this low-frequency behavior, resulting in more precise
displacement estimates.

Secondly, acceleration responses exhibit more complex dynamics and transient behav-
iors, often characterized by high-frequency oscillations. The cubic spline shape function,
which incorporates higher-order interpolation, is better equipped to capture these intricate
features, leading to more accurate estimates in the acceleration domain.
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Figure 9. Estimated acceleration responses of the bridge in their valid regions through the linear and
spline shape functions and inverse problem solution (three moving axles).
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Figure 10. Estimated displacement responses of the bridge in their valid regions through the linear
and spline shape functions (three moving axles).

In summary, the choice between the linear and the spline shape functions depends
on the specific nature of the response being analyzed. The linear shape function excels in
capturing low-frequency displacement components, while the cubic spline shape function
is advantageous for accurately representing the complex dynamics and high-frequency
oscillations present in acceleration responses.

Hence, both responses of the fixed nodes are utilized in the proposed modal identifica-
tion method. It is worth noting that higher accuracy of the determined responses in the
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valid regions results in higher accuracy of the predicted whole signals from the proposed
moving time series model, based on the authors’ numerical observations.

The predicted displacement and acceleration responses of the bridge at the verifica-
tion points, using only the measured acceleration of the moving axles and their relative
amplitude errors, are presented in Figures 11 and 12, respectively. The relative error of
the predicted responses outside the valid regions is high in the case of a three-axle vehicle.
However, as shown in the following sections, using more moving axles reduces these errors
and, for all models, the mode shape identification accuracy is very high.

It is well known that the identification of lower modes of structures is easier using
displacement responses, while higher modes can be identified using acceleration responses
with higher accuracy [33]. Accordingly, a hybrid mode shape identification framework
is proposed, where SVD is applied to the predicted displacement responses of the fixed
nodes (based on the linear shape function) to identify the first mode shape. On the other
hand, the FDD technique is employed to identify the higher modes and natural frequencies
by analyzing the acceleration responses (based on the cubic spline shape function) of the
fixed nodes.

The results of the identified mode shapes and natural frequencies are presented in
Figure 13 and Table 2, respectively. It is worth noting that the identified natural frequencies
are based on the completed acceleration responses and considering the plot of the first
singular value obtained from FDD.
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Figure 11. Predicted displacement responses extracted using the proposed framework and their
relative amplitude errors (three moving axles, linear shape function).
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Figure 12. Predicted acceleration responses extracted using the proposed framework and their
relative amplitude errors (three moving axles, cubic spline shape function).
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Figure 13. Identified mode shapes of the bridge using the proposed framework (three moving axles).
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Table 2. Identified natural frequencies and MAC values of the mode shapes.

Mode Number Natural Frqs
(Hz) (Exact)

Identified Natural
Frqs (Hz) (FDD) Error (%) MAC Mode

Shapes (%)

Mode 1 1.44 1.56 8.33 99.8
Mode 2 5.76 5.86 1.74 96.7
Mode 3 12.95 12.5 3.47 96.6

5. Discussion
5.1. Sensitivity of the Inverse Solution to the Number of Virtual Fixed Nodes

The accuracy of the theoretical inverse solution method in Equations (4) and (5) is
highly dependent on the number of virtual fixed nodes, which is equivalent to the mesh
size of the bridge element. Therefore, it is crucial to investigate the sensitivity of the
estimated response in the valid regions for various numbers of fixed nodes using both
linear and spline shape functions. As shown in Figure 14, for the linear shape function case,
increasing the number of fixed nodes improves the accuracy of the estimated acceleration
and displacement responses of the mid-span point up to a certain point. Beyond this point,
the accuracy of the estimated response declines steadily. The ascending branch of the curve
can be attributed to the fact that the finite element method requires an increased number
of intermediate nodes (number of elements) to determine the displacements of the fixed
nodes with higher accuracy. However, increasing the number of fixed nodes leads to an
increase in the number of columns in matrix N(t) and, consequently, a large computational
error in calculating the pseudoinverse of N(t). The second part of the sensitivity graph is
downward and indicates a decrease in the accuracy of the estimated response. In contrast to
the linear shape function results, the cubic spline shape function can achieve high accuracy
with even a few interpolating fixed nodes, such as three points, but it is more sensitive to
an increase in the number of fixed nodes. To ensure a fair comparison between the two
methods, this study employs a constant value of nine fixed nodes on the bridge. It is worth
noting that the coefficient of determination, R2, is used in the subsequent figures to evaluate
the similarity between two signals as well as the fitting accuracy.
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Figure 14. Sensitivity of the estimated responses using the inverse solution for the mid-span point in
the valid region to the number of fixed nodes (three moving axles).

5.2. Influence of the Number of Moving Axles

As previously discussed, a larger number of axles passing over the bridge results in
a longer valid region for the response signals. This provides a better measurement of the
accuracy of the preliminary model fit and is expected to enhance the accuracy of the bridge
response prediction. To evaluate this hypothesis, three different types of moving vehicles,
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each with four, six, or 8 axles, were considered; the proposed method was used to determine
the displacement, acceleration response of the fixed nodes, and modal characteristics of
the bridge.

Figures 15 and 16 show the predicted displacement and acceleration responses, respec-
tively, for the mid-span of the bridge, along with their time distribution of the prediction
error relative to the exact response. As anticipated, the relative prediction error of the
mid-span response was significantly reduced with an increase in the number of axles.
Figure 17 shows the three main identified mode shapes based on the predicted acceleration
and displacement responses of all fixed nodes for all three different loading types. It can be
observed that, although the accuracy of identifying higher mode shapes increased with an
increase in the number of axles, the first mode shape was not significantly affected.

It is important to note that an increase in the number of axles would require a corre-
sponding increase in the number of sensors, resulting in additional costs for monitoring
the structure. However, there was no significant change in the accuracy of the identified
modal characteristics. Therefore, using moving vehicles with fewer axles could reduce the
costs of bridge health monitoring while maintaining an acceptable level of accuracy.
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Figure 15. Predicted displacement response of mid-span using the proposed framework and their
relative to the amplitude errors for different numbers of moving axles (linear shape function).
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Figure 16. Predicted acceleration response of the mid-span using the proposed framework and their
relative to amplitude errors for different numbers of moving axles (cubic spline shape function).

Sensors 2023, 23, x FOR PEER REVIEW 21 of 26 
 

 

 

Figure 17. The first three identified mode shapes of the bridge under different number of moving 

axles (4, 6, and 8 moving axles) using the hybrid approach. 

5.3. Influence of Vehicle Speed on the Identification Results 

The speed of the vehicles passing over the bridge is one of the main parameters that 

may affect the accuracy of identification based on the vehicle response. In this section, the 

effect of the parameter on the proposed method is evaluated. The speed of the moving 

axles is varied between 20 and 80 km/h and its effect on the accuracy of the identified 

mode shapes and natural frequencies is investigated. Figure 18 compares the modal as-

surance criterion (MAC) values of the first three identified mode shapes at different speeds 

for three different vehicles with varying numbers of axles. Similarly, Figure 19 shows the 

relative error in identifying the natural frequencies for the first three modes at different 

speeds and for different numbers of axles. 

Upon analyzing these figures, it can be inferred that the accuracy of mode shape 

identification is generally higher at lower speeds, since more time information can be ob-

tained from the bridge response. However, the accuracy of identifying the natural fre-

quencies reduces by almost half as the vehicle speed increases. Furthermore, increasing 

the number of moving axles does not significantly affect the accuracy of the identified 

modal characteristics through the proposed hybrid method, where the predicted displace-

ment responses are considered for the first mode and the acceleration responses are used 

for the higher modes. 

1
s
t
M

o
d

e
 S

h
a
p

e
2

n
d

M
o

d
e
 S

h
a
p

e
3

rd
M

o
d

e
 S

h
a
p

e

Location of Fixed Nodes (Normalized)

Figure 17. The first three identified mode shapes of the bridge under different number of moving
axles (4, 6, and 8 moving axles) using the hybrid approach.
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5.3. Influence of Vehicle Speed on the Identification Results

The speed of the vehicles passing over the bridge is one of the main parameters that
may affect the accuracy of identification based on the vehicle response. In this section, the
effect of the parameter on the proposed method is evaluated. The speed of the moving
axles is varied between 20 and 80 km/h and its effect on the accuracy of the identified mode
shapes and natural frequencies is investigated. Figure 18 compares the modal assurance
criterion (MAC) values of the first three identified mode shapes at different speeds for three
different vehicles with varying numbers of axles. Similarly, Figure 19 shows the relative
error in identifying the natural frequencies for the first three modes at different speeds and
for different numbers of axles.
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Figure 18. MAC values of the first three identified mode shapes at different speeds for different
number of axles (in comparison with exact mode shapes).
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Figure 19. The relative error of the first three identified modal frequencies at different speeds for
different numbers of axles (in comparison with exact natural frequencies).

Upon analyzing these figures, it can be inferred that the accuracy of mode shape
identification is generally higher at lower speeds, since more time information can be
obtained from the bridge response. However, the accuracy of identifying the natural
frequencies reduces by almost half as the vehicle speed increases. Furthermore, increasing
the number of moving axles does not significantly affect the accuracy of the identified modal
characteristics through the proposed hybrid method, where the predicted displacement
responses are considered for the first mode and the acceleration responses are used for the
higher modes.
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5.4. Investigation of Ambient Noise Effects

Measurement errors and environmental vibrations can affect the accuracy of the
proposed framework. To investigate the effects of ambient noise on the identification of
mode shapes and natural frequencies using the proposed technique, different levels of
artificial noise were added to the measured acceleration response of the moving axles
assuming a zero-mean Gaussian distribution. The applied noise amplitude was considered
as a percentage of the RMS of the measured acceleration in the range of 1–5% (corresponding
to the signal-to-noise ratio of 40–26 dB).

Figure 20 shows the MAC values of the identified mode shapes by the proposed hybrid
method in different levels of ambient noise compared with their exact values. The presence
of ambient noise reduces the accuracy of the mode shape identification, although this
sensitivity to noise is more evident in some cases, such as for six moving axles. Moreover,
although the sensitivity of the first mode detection in different levels of noise has decreased
with an increase in the number of axles, this trend is almost inverted for higher modes.
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Figure 20. MAC values of the first three identified mode shapes at different noise levels for different
numbers of axles (in comparison with exact mode shapes).

It should be noted that the difference in the behavior pattern between the first mode
and the higher modes is due to the use of different methods. As mentioned in Section 3, the
SVD method is used to identify the shape of the first mode from the predicted displacement
responses of the bridge, while the FDD method is used to identify the higher modes from
the acceleration responses in this study; their behavior is also different in different noise
levels. In conclusion, the hybrid identification technique can detect the mode shapes
reasonably accurately for all three modes while utilizing fewer axles.

Figure 21 depicts the relative error of the first three identified natural frequencies for
the bridge compared with their exact values at different levels of ambient noise. The results
indicate that the proposed method has high accuracy in determining the natural frequencies
of the higher modes and is robust to noise. However, this behavior is not observed when
investigating the effect of noise on the identified frequency of the first mode through the
predicted acceleration response signal for the fixed nodes. The main reason for this is
that the FDD method cannot accurately determine the position of the first peak of the first
singular value diagram (first mode), utilizing the acceleration results due to the presence
of ambient noise. The accuracy and robustness of the first identified natural frequency is
generally higher in models with a smaller number of moving axles, highlighting the high
capability of the proposed method for implementing it using the response of conventional
vehicles passing over the bridge.
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Figure 21. The relative errors of the first three identified modal frequencies at different noise levels
for different numbers of axles (in comparison with exact values).

Overall, the average detection error at different levels of ambient noise for the fre-
quency of the first mode shape is less than 10%, while for the frequency of higher modes it
is less than 5%. These results indicate the promising efficiency of the proposed framework,
which utilizes only the response of the axles of the moving vehicle, in identifying the mode
shapes and natural frequencies of the bridge, even in the presence of ambient noise.

6. Conclusions

This paper contributes to indirect bridge health monitoring through the introduction
of an automated and comprehensive framework based on an inverse problem solution
approach and a novel moving-window time series model for response prediction. The
major findings and contributions of this research can be summarized as follows:

• Accurate modal characteristics’ identification: The proposed method demonstrates
accurate identification of the modal characteristics for the first three modes of bridges
within normal traffic speeds ranging from 20 to 70 km/h. This capability is crucial for
assessing the structural health and integrity of bridges.

• Novel use of cubic spline shape function and moving-window time series models:
The research introduces the use of a cubic spline shape function within the inverse
problem solution for predicting acceleration responses. Additionally, the application of
moving-window time series models to complete the predicted signals further enhances
the accuracy of the framework.

• Novel approach for mode shape identification: The framework utilizes predicted
displacement and acceleration responses to identify the first and higher mode shapes
of the bridge, respectively. This approach enhances the accuracy and robustness of
mode shape identification for lower and higher modes.

• Cost-effective solution: The method requires only one vehicle with a limited number
of axles, which significantly reduces the number of sensors compared with traditional
fixed sensor setups. This offers a cost-effective solution for bridge health monitoring
without compromising accuracy.

However, there are certain limitations that should be acknowledged:

• Influence of the number of moving axles: The accuracy of identification improves
with an increase in the number of axles passing over the bridge. However, there is no
significant effect on the identification of the first mode shape. This finding highlights
the need to optimize the number of axles (vehicles) used in bridge monitoring systems.

• Influence of vehicle speed on identification: Mode shape identification is more accurate
at lower speeds, while the accuracy of identifying natural frequencies decreases with
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higher vehicle speeds. Considering vehicle speed is important for designing effective
bridge monitoring strategies.

• Sensitivity to ambient noise: As expected, the presence of ambient noise reduces the
accuracy of mode shape identification, particularly for the higher modes. The accuracy
and robustness of the first identified natural frequency is generally higher in models
with fewer moving axles.

Further research and improvements can be pursued in the following areas:

• Enhancement of the response prediction models: exploring different models or tech-
niques to improve the accuracy of predicted responses can lead to more precise
identification of modal characteristics and better performance in the presence of noise.

• Multi-vehicle scenarios: investigating the applicability of the proposed method in
scenarios with multiple vehicles of varying speeds crossing the bridge can provide a
more comprehensive understanding of its capabilities and limitations.

• Experimental validation: conducting experimental investigations on real-life structures
will be crucial to validate the accuracy and effectiveness of the proposed framework
in practical applications.

In summary, while the proposed framework presents a promising approach for indirect
bridge health monitoring, further research is needed to address the limitations and to refine
the method for broader applicability and improved accuracy in real-world scenarios. These
advancements will contribute to the field of bridge health monitoring, ensuring the safety
and longevity of transportation infrastructure.
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