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Abstract: This paper presents the development and validation of a low-cost device for real-time
detection of fatigue damage of structures subjected to vibrations. The device consists of an hardware
and signal processing algorithm to detect and monitor variations in the structural response due
to damage accumulation. The effectiveness of the device is demonstrated through experimental
validation on a simple Y-shaped specimen subjected to fatigue loading. The results show that the
device can accurately detect structural damage and provide real-time feedback on the health status of
the structure. The low-cost and easy-to-implement nature of the device makes it promising for use in
structural health monitoring applications in various industrial sectors.
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1. Introduction

Monitoring the structural behavior of mechanical components and systems has been
widely used in engineering for many years. Since damage monitoring techniques offer the
significant advantage of reducing the risk of unexpected failures, leading to increased safety
and decreased maintenance and repair costs [1,2]. As a result, it is applied in several fields
of engineering, for example, damage monitoring technique and/or early fault detection
methods are widely used on civil structures, such as bridges, dams or any infrastructures
that can attempt the safety of people [3,4]. In mechanical engineering, one of the most
explored sectors for health monitoring is wind turbines [5–7]; however, it is easy to find
applications in several different sectors, such as automotive or aerospace [8,9].

Due to the increasing use of engineering systems in harsh environmental conditions
for all sectors of engineering, active control techniques have emerged to minimize fatigue
damage and reduce structural loads [10]. For this reason, it is easy to find in literature
several techniques for the health monitoring of structures. The most commonly used
approach for dynamic structures is to monitor any change in the dynamic response of
the system. This kind of analysis is generally made through several techniques, such as
ultrasonic, acoustic emission, or vibration analysis. All these techniques involve analyzing
data acquired by sensors positioned on the structures and observing any changes in the
natural frequencies, damping, or modal shapes [11–14]. In recent years, the diffusion of
computer vision, artificial intelligence, and machine learning has further extended the
opportunities offered by damage monitoring methods to the damage localization and
quantification [15–17]. For example, Yan et al. [18] used the classical vibrational theory
in combination with the artificial intelligence to increase the accuracy of vibration-based
structural health monitoring techniques. In this framework, Alavi et al. [19] proposed an
innovative approach combining the finite element method (FEM) and probabilistic neural
network (PNN) based on Bayesian decision theory for damage detection. Ngoc et al. [20]
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proposed a novel approach for damage detection in structures based on a combination be-
tween artificial neural network and cuckoo search algorithm demonstrating their efficiency,
especially in terms of computational effort, to detect structural damage using a calibrated
numerical model of a steel beam and a large-scale truss bridge. Kathir et al. [21] proposed
a technique based on artificial neural network (ANN) in combination with particle swarm
optimization (PSO) aimed at damage quantification in laminated composite plates using
Cornwell indicator (CI). Feng et al. [22] have developed a new approach, based on approxi-
mate Bayesian computation with subset simulation (ABC-SubSim), for the approximation
of a model using modal data.

An innovative approach for the detection of fatigue damage has been proposed by
Patil et al. [23]. Their approach merges the vibration-based method with the non-destructive
ultrasonic C-scan method. The aim is to effectively detect, localize, and measure the
extent of damage in carbon composite fiber-reinforced structures subjected to impacts. An
interesting activity is the one of Tang et al. [24] who proposed a method that exploits the
photomicroscope to detect the small crack propagation in a very high-cycle fatigue regime
with reasonable time-cost. Bhowmik et al. [25] proposed a novel reference-free approach
for identifying structural modal parameters using recursive canonical correlation analysis.
The method utilizes a first-order eigen-perturbation approach to determine the normal
modes of a vibrating system at each instant of time, and then used these modes to detect a
potential damage throughout the modal assurance criterion. Recently, Cianetti et al. [26,27]
proposed a damage estimation method able to monitor the accumulated fatigue damage
in a structure or potential damage in real-time. This method involves applying a cycle
counting method and the Palmgren–Miner damage accumulation rule [28] to a moving
window of the signal. The significant advantage of this technique is that it can determine
the cumulative damage on the entire structure with a single measurement, based on a
numerically-determined relationship. Indeed, assuming that the component is linear, it
is possible to determine the system’s frequency response functions between the forcing
function and any physical quantity used to evaluate actual and/or potential damage
(potential if calculated on a different quantity than stress), for any point in the structure,
using a finite element numerical model. However, the potential of the approach proposed by
Cianetti et al. [29] has only been evaluated numerically, and the possibility of implementing
this methodology in a real-time physical device capable of performing the required tasks
has not yet been experimentally tested.

For this reason, in this work, the monitoring technique proposed by Cianetti et al. [29]
has been implemented in an ad-hoc device, using easily available and low-cost components.
A high-performance but low-cost processor and analog-to-digital converter were used for
the hardware, while the damage calculation algorithm was developed in Python. Once the
device was fabricated, it was experimentally tested on a Y-shaped component [30] subjected
to vibration tests using different excitation profiles. During the various tests, the potential
damage was evaluated in real-time up to the predicted failure time. The validation of the
device and algorithm was then performed by comparing the estimated real-time lifetimes
provided by the system with those obtained by monitoring the drop in natural frequency
in post-processing analysis [31]. The results obtained demonstrate that the device provides
sufficiently accurate results, with a percentage error committed always below 20%.

Therefore, the result of this work enables the problem of identifying possible fatigue
failure in a mechanical component to be addressed using a very simple algorithm and
low-cost electronic components. Although the device was tested on a simple laboratory
component, its potential is not diminished, as it can be applied to any mechanical compo-
nent or system.

This paper is organized as follows: Section 1 describes the traditional approach used
to calculate fatigue damage in the time domain at a theoretical level. Section 2 presents
the monitoring technique that was then implemented in the fabricated device. Section 3
describes the optimization process followed to define the acquisition parameters. Section 4
describes the device from both a hardware and software perspective, while Section 5
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illustrates the experimental validation of the device and the results obtained. Section 6
presents the conclusions.

2. Theoretical Background

The calculation of mechanical component damage is performed to verify the material’s
resistance when subjected to cyclic variations in time, which, although lower than the
maximum load, can still lead to material failure. The quantitative characterization of the
phenomenon is carried out by dividing the load history into cycles described by mean
and alternating values. Each cycle, based on its amplitude and number of occurrences,
contributes proportionally to the component’s damage. Although several methods exist
in literature for assessing fatigue damage [28,32], this work utilizes Palmgren–Miner’s
accumulation law [33]. This law states that each cycle contributes a damage factor to the
overall life of the component, equal to the percentage of life consumed at those conditions,
independent of the order of application of various cycles. If the cycle is characterized by
a non-zero mean value, it lowers the material’s resistance curve. Correction is, therefore,
necessary to account for the effect of the mean stress. One of the most used is Goodman’s
correction [32], which returns a purely alternating stress σa,eqv (Equation (1)):

σa,eqv =
σa

1 + σm
Sut

(1)

At this point, it is possible to use the Wohler curve, which relates the amplitude of the
cycle’s oscillation to the number of cycles at which fatigue failure will occur, to determine
the number of cycles (Equation (2)) at which the material would withstand before failure:

Ni =
(σa,eqv

a

) 1
b

(2)

In Equation (2), a and b represent the intercept and slope of the Wohler curve, respec-
tively. Once this value is determined, it is compared with the number of cycles, ni at that
level, recorded in the loading history. This comparison allows for the calculation of the
damage portion caused (Equation (3)) by the i-th cycle:

Di =
ni
Ni

(3)

when Di reaches unity, fatigue failure of the component occurs.
The load history of the component under examination, as in most cases, is subjected

to random fluctuations and high-frequency oscillations, where it is not possible to uniquely
identify each cycle with its mean and alternating value. Therefore, it is necessary to use
cycle counting methods [34]. In this work, a biparametric method that takes into account
both the amplitude and mean value, namely, the Rainflow counting method (RFC), is
utilized [35].

The purpose of the method is to identify closed hysteresis load cycles that represent the
material’s energy dissipated during oscillation, and thus is responsible for the component’s
fatigue damage. For each identified cycle, mean, alternating values, and the number of
cycles are determined and are typically represented in the Rainflow mean-range matrices
and the load spectra.

The traditional method for calculating the damage of a mechanical component sub-
jected to a typically oscillating load history consists of acquiring a signal instant-by-instant
through sensors, in order to generate a load history that increases over time and evaluate
the damage of that time history, from the initial instant to the current one, at each instant.
Once the history is acquired, a cycle counting method, such as Rainflow counting can
be applied to extract a load spectrum, in which the mean value and alternate value are
reported for each extracted cycle. If cycles with non-zero mean value are obtained by the
RFC algorithm, it is necessary first to adopt Equation (1) to calculate an equivalent uniaxial
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component. Finally, a damage accumulation rule, such as the Palmgren–Miner rule is
applied to this load spectrum to obtain a value of damage up to the considered instant
(Equation (4)):

Dp =
m

∑
i=1

ni(
σa,eqv

a

) 1
b

(4)

where m is the total number of counted cycles.
This process is continuously applied until the excitation is removed. Figure 1 shows a

flowchart of the traditional procedure for calculating the fatigue damage.
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If the acquired temporal history is expressed in terms of stress, then the damage
calculated with the method highlighted earlier represents the actual damage suffered by
the component, and thus provides a precise indication of its residual life. However, the
method presented can also be applied to a generic physical quantity. In this latter case,
the computed damage does not have a physical sense (it can be used instead to highlight
a situation when the structure is particularly excited). Therefore, if one has a fatigue
resistance curve expressed in the unit of measurement of the analyzed quantity, such as the
one reported in Equation (5), it is possible to obtain an indication of the residual life of the
component also by measuring physical quantities different from stress:

x f = aNb (5)

where xf represents the amplitude of the input signal, a and b represent the intercept and
slope of the resistance curve of the parameter being monitored, expressed in the same
unit of measurement as xf. If an appropriate fatigue resistance curve is not available, the
calculation can still be performed, but what is obtained is not actual damage, but rather
potential damage indicated as Dp (Equation (6)):

Dp =
m

∑
i=1

ni( xai
a

) 1
b

(6)

Therefore, the potential damage calculated is not indicative of the residual life of
the component, but can be used as a parameter for comparing different load conditions,
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for example, to highlight whether a particular condition is potentially more damaging
than another or to highlight any temporal instants in which the structure is particularly
stressed. Whatever type of damage is calculated, i.e., real or potential, the traditional
method involves applying the cycle counting method for the entire time, from the moment
the component is installed to the moment the calculation is carried out, and thus presents
the problem related to the large amount of data that increase over time. The elaboration of
this large amount of data requires high-processing times, and this implies that evaluating
damage in real-time with this type of approach is almost impractical.

3. Real-Time Estimation of Damage

The approach presented in the previous section is not effective with a real-time anal-
ysis as it would involve managing an enormous amount of data (especially for high-
frequency signals). An innovative method for estimating damage, which is proposed by
Cianetti et al. [29], is based on the same methodology as the classical method, the Rainflow
counting algorithm, and Palmgren–Miner rule, but rather than performing the calculation
at every instance on the entire acquired time history, it is performed on a moving window,
and thus significantly reduces the computational effort. The proposed approach is shown
in Figure 2.
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In contrast to the classical method, the main advantage of the proposed method for
the estimation of fatigue damage is that it involves analyzing only a small window of
length ∆T. This means that the amount of data to be managed and processed is small
and can be addressed with low-cost devices. Indeed, the Rainflow counting technique
and Palmgren–Miner rule are applied only on the i-th window and the rest of the data
are disregarded in order to not fill the memory. These data are needed to determine the
potential instantaneous damage associated, as shown in Equation (7):

dpi =
mi

∑
k=1

(nk)i(
(xak )i

a

) 1
b

(7)
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where a and b are the parameters of the Wohler curve expressed in terms of analyzed
physical quantities, nk is the number of the counted cycles from the i-th window, k is the
generic cycle of the counted spectrum, xak represents the alternate value of the acquired
signal, and mi is the total number of cycles in the acquired signals.

Instantaneous damages dpi can be used to detect trends of increasing fatigue stress of
the structure, which once critical thresholds are exceeded, signal a risky mode of operation,
enabling prompt intervention activities. Once the potential fatigue damage associated
with the i-th window is known, the accumulated total damage at a predetermined time
instant Dp can also be calculated through the Miner’s cumulative damage law as the sum
of instantaneous damages dpi (Equation (8)):

Dp =
i

∑
r=1

dpi (8)

The “potential” damage provides an indication of the residual life of the machine,
allowing for the monitoring of the achievement of the unitary value and avoiding fatigue
failure.

3.1. Analysis of Criticalities

When deciding to work in real-time [29], critical issues often arise due to the need
to provide instantaneous results, which may compromise the accuracy of the results. As
indicated in the preceding paragraph, in order to calculate the damage of structures in
real-time subjected to dynamic loading, it is necessary to work with windows rather than
long time histories. Therefore, there are three issues to be analyzed and managed before
implementing the real device and testing it.

In particular, three fundamental criticalities have been identified:

1. Window duration;
2. Residue management;
3. Sampling frequency.

The window duration represents the acquisition and processing time of the portion of
the signal that is actually analyzed in real-time. The duration of the window is determined
exclusively by the lowest frequency content that needs to be observed. In fact, the window
length should be equal to a multiple of the inverse of the lowest frequency (Equation (9)):

∆T =
k

fmin
(9)

Using a window length that is shorter than indicated in Equation (9) carries the risk
of missing crucial phenomena in the overall process, resulting in inaccurate outcomes.
Therefore, the window length plays a vital role in calculating real-time damage. However,
working with longer windows necessary to capture low-frequency phenomena presents a
challenge when it comes to operating in real-time. Longer windows entail managing and
processing a substantial amount of data, which is impractical in real-time application.

When performing cycle counting on short windows, there is a high risk of managing
numerous residues that would not occur with very long time histories. However, as
indicated earlier, to operate in real-time, it is necessary to use few data, and thus the residue
management strategy becomes crucial in obtaining potential and/or cumulative damage
values similar to those obtained by cycle counting on a long time history. To address the
problem, four different methods have been considered [34–39]:

1. Ignored residues;
2. Residues counted as half a cycle;
3. Residues carried over to the next window;
4. Residues counted as full cycles in the hypothesis of repeating history.
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In the first case, residues are completely ignored, and only the closed cycles are
considered for the calculation of damage, resulting in an approximation that underestimates
the final damage. The second approach consists of considering residues as half a cycle [34].
In the third case, the residues left open in the previous window are carried to the next one,
with the aim of recreating the periodicity of the original entire history and allowing for
the spontaneous closure of residues. The fourth method assumes that the loading history
repeats itself identically to infinity, creating duplicates that give rise to repeated maxima
and minima, which then correspond to complete cycles. This method generally tends to
overestimate the damage as it considers each residue as a complete cycle rather than as a
half cycle [39].

The sampling frequency of a signal determines the time interval between an acquisition
and the next one, and thus depends on the maximum frequency to be observed. According
to the Nyquist theorem, it should be at least two times the maximum frequency content of
the signals [40]. Generally, to accurately sample high-frequency variations, the two times of
the maximum frequency may not be sufficient and, for this, a sampling frequency ten times
higher than the maximum frequency of the process is commonly used. However, even in
this case, working with high sampling frequencies entails possible criticalities in operating
in real-time, and thus analyses have been carried out to determine the optimal sampling
frequency value.

The determination of optimal parameters for the minimum duration of the acquisition
window, the residue management strategy, and the sampling frequency to work in real-time
has been numerically addressed. The choice of optimal parameters and strategy was made
by comparing the results obtained using various options with the proposed method and
the results obtained with the conventional method. In particular, the potential damages ob-
tained with the two methods (classical—proposed) and the mean-range matrices obtained
with the Rainflow counting method were compared. Correspondence between these results
indicates good accuracy of the results. To this end, various signal types were chosen and
generated to cover a wide range of signals generally encountered by mechanical systems
subjected to vibrations. Five different signal types have been identified for analysis:

1. Non-stationary signals;
2. Non-stationary signals in sections;
3. Real signals with variable average;
4. Wideband signals;
5. Bimodal signals.

Non-stationary signals are random signals whose statistical parameters are not con-
stant over time. This type of signal is very common in nature, and thus must necessarily
be taken into account [41–43]. To test the algorithm, a real signal whose average value is
different from zero in some sections was also chosen. In order to confer general validity
to the algorithm, it is necessary to analyze signals with different shapes and distributions
of power spectral density (PSD) to verify that the algorithm does not lose its effectiveness
when working at certain frequencies, perhaps due to difficulties in the cycle counting phase.
Therefore, a wideband signal with frequency content distributed over a wide range of
frequencies and a bimodal signal, whose frequency content is distributed with a rectangular
shape of varying amplitudes over a double frequency range, have been selected. As the
purpose of the study is to evaluate the optimal parameters for signal analysis, the various
comparisons were made by imposing the parameters of the fatigue resistance curve. These
parameters were arbitrarily chosen and are α = 400 MPa and β = −0.3. The tests and
comparisons were performed on all the considered signal types and are presented in detail
only for one case. The results obtained for the remaining signals are synthetized at the end
of each subsection since they are analogous to the detailed case.
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3.1.1. Variation of the Window Duration

In this first case, the results are reported for the non-stationary signal case, character-
ized by a non-zero power spectral density (PSD) in the frequency range from 28 to 36 Hz
(Figure 3).
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Initially, the damage was calculated using the classical procedure for the considered
signal, taking into account the entire time history. The resulting damage, based on the
chosen parameters, was found to be 0.1699. In the first testing phase, the signal was
analyzed by varying the duration of the acquisition windows while fixing the other control
parameters. Specifically, a sampling frequency of 720 Hz was imposed, which is 20 times
higher than the maximum frequency of the signal. Furthermore, the residue management
strategy recommended by the relevant technical standard was chosen, i.e., each residue was
calculated as half a cycle. However, a different choice would lead to a very similar result
since, when working with very long random temporal histories, the number of residues is
negligible.

To validate the capability of the considered logic as the acquisition window duration
varied, different durations were considered according to Equation (9), assuming various k-
values. The results obtained from these series of analyses are reported in Table 1. Observing
the last column, which reports the percentage error in damage with respect to what was
obtained with the traditional method on the entire time history, it is noted that the error
decreases below 2% only for window durations greater than 28 times that are computed
considering only the minimum window.

Table 1. Window duration variation analysis results for the non-stationary signal only.

Min. Frequency Scale Factor Window
Duration Total Damage Percentage

Error

[Hz] [-] [s] [-] [%]

28 1 0.03 0.0954 44
28 1.5 0.05 0.1306 23
28 28 1 0.1664 2
28 85 3 0.1687 1
28 190 7 0.1696 0.17

This is even more evident in Figure 4, where the potential damages obtained for
different window durations are compared to the traditional method.
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The results show that a short window duration underestimates the final damage
value (Figure 4), and there is an increase in residues, with a consequent increase in cycle
dispersion. To ensure the obtained results, the Rainflow (mean-range) matrices were also
compared, as shown in Figure 5.
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For the other types of signals, similar results are obtained and synthetized in Table 2.
For the analysis, a sampling frequency equal to 20 times the maximum frequency contained
in the signal as well as an evaluation of the residuals as half a cycle and variation of the
window duration were used.
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Table 2. Results for each considered signal from the window duration variation analysis.

Min. Freq. Scale Factor Win. Duration Total Dam Perc. Error

[Hz] [-] [s] [-] [%]

Non-stationary signal in section (Damage with standard method = 0.07859)

20 1 0.05 0.0659 16.15
20 2 0.1 0.0709 9.81
20 30 1.5 0.0778 1.01
20 50 2.5 0.0781 0.56
20 100 5 0.0784 0.25

Non-zero mean signal (Damage with standard method = 0.0140)

0.4 1 2.5 0.0133 4.71
0.4 2 5 0.0139 1.07
0.4 30 75 0.0142 1.14
0.4 50 125 0.0141 0.71
0.4 100 250 0.0141 0.71

Wideband signal (Damage with standard method = 0.9782)

50 1 0.02 0.8265 15.51
50 2 0.04 0.8976 8.24
50 30 0.6 0.9922 1.43
50 50 1 0.9950 1.72
50 100 2 0.9769 0.13

Bimodal signal (Damage with standard method = 0.1608)

10 1 0.1 0.1357 15.61
10 2 0.2 0.1452 9.70
10 30 3 0.1565 2.67
10 50 5 0.1556 3.23
10 100 10 0.1560 2.98

As visible from Tables 1 and 2, the optimally compromised window length that leads
to cumulative damage values equal to those calculated on the entire history corresponds
to a duration at least 30 times greater than the inverse of the minimum signal frequency.
Indeed, with a window length equal to 30 times the inverse of the minimum frequency of
the signal, the absolute percentage error between the fatigue damage computed with the
proposed method and the one obtained considering the entire time signal is always around
1–2%.

3.1.2. Variation of Residue Counting Strategy

The analysis of residual counting strategies was also carried out on all types of signals,
but only the case of non-stationary signals (Figure 3) is reported in detail. Similar to what
was carried out previously, the only variable parameter was the residual counting method,
while keeping the other parameters, i.e., sampling frequency and Wohler curve, constant
and fixing the window duration to the longest of the values in the previous paragraph,
which corresponds to an error of approximately 0%. All four types of residual counting
methods (described in Section 3.1) were tested. The results are summarized in Table 3.

Table 3. Analysis of residue management strategy results for the non-stationary signal only.

Residue Management
Technique Total Damage Percentage Error [%]

1 Not counted 0.0608 64%
2 Counted as full cycle 0.2784 64%
3 Moved to next window 0.1560 8%
4 Counted as half a cycle 0.1696 0.17%



Sensors 2023, 23, 5143 11 of 24

A comparison between the cumulative damage calculated using the classical method
and the method proposed here, with their respective strategies, is shown in Figure 6.
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Figure 6. Comparison of the cumulative damage of different residue management strategies with the
classical method for the non-stationary signal type.

For the rest of the analyzed signal types, the results are shown in Table 4.

Table 4. Results for each considered signal from the residue management strategy analysis.

Residue Management
Technique Total Damage Percentage Error [%]

Non-stationary signal in section (Damage with standard method = 0.07859)

1 Not counted 0.06829 13.11
2 Counted as full cycle 0.1072 36.40
3 Moved to next window 0.0795 1.16
4 Counted as half a cycle 0.0784 0.25

Non-zero mean signal (Damage with standard method = 0.0140)

1 Not counted 0.00744 46.86
2 Counted as full cycle 0.0206 47.14
3 Moved to next window 0.0142 1.43
4 Counted as half a cycle 0.0141 0.71

Wideband signal (Damage with standard method = 0.9782)

1 Not counted 0.916 6.39
2 Counted as full cycle 1.409 44.04
3 Moved to next window 1.029 5.19
4 Counted as half a cycle 0.977 0.13

Bimodal signal (Damage with standard method = 1608)

1 Not counted 0.1323 17.71
2 Counted as full cycle 0.2128 32.33
3 Moved to next window 0.1697 5.55
4 Counted as half a cycle 0.1560 2.98

The analysis and the results in Tables 3 and 4 showed that the best methods for
obtaining cumulative damage values equal to those calculated from the entire loading
history are those in which the residuals are treated as half a cycle or transferred to the next
window. Adopting one of these two methods, the computed fatigue damage is similar
to the one obtained considering the classical method. Indeed, the absolute percentage
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error between the estimated fatigue damage and the actual one has a mean value equal
to 3.3% adopting the third residue management technique (move to next window) and a
mean value equal to 1% using the latter (half cycle). As expected, the method in which the
residuals are neglected underestimates the damage calculation, while the method in which
they are counted as whole tend to overestimate it.

3.1.3. Variation of Sampling Frequency

Once the optimal values of the two previous parameters were determined, an analysis
was performed to determine the influence of sampling time variation. The case of a
wideband signal was considered, characterized by a non-zero PSD in the frequency range
from 50 to 200 Hz (Figure 7).
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The cumulative damage value calculated using the classical method was found to
be 0.9782. As for the previous cases, the other parameters were kept at the values which
presented a minor damage calculation error in the previous analyses; therefore, the window
duration was set to the greater value of k, described in Tables 1 and 2, the residuals were
treated as half a cycle, and the parameters of the Wohler curve were the same as those
used in the previous paragraphs. To observe the effects of the variation of this parameter,
according to the Nyquist theorem, which states that the sampling frequency must be at
least two times the maximum frequency, the time intervals were defined as the inverse
of multiples (k) of the maximum frequency contained in the signal, using the following
formula (Equation (10)):

dt =
1

k· fmax
(10)

The results are summarized in Table 5.

Table 5. Sample rate variation analysis results for the wideband signal only.

Max.
Frequency Scale Factor Sampling

Rate
Time

Resolution
Total

Damage Error

[Hz] [-] [Hz] [s] [%] [%]

200 2 400 2.5 × 10−3 0.5820 41
200 5 1000 1.0 × 10−3 0.9096 7
200 10 2000 5.0 × 10−4 0.9558 2
200 15 3000 3.3 × 10−4 0.9988 2
200 20 4000 2.5 × 10−4 0.9769 0.13

The comparison of cumulative damage for the wideband signal between the various
tests performed and the one obtained with the classical method is shown below (Figure 8).
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For the purpose of completeness, the results obtained for the other considered signals
are also reported in Table 6.

Table 6. Results for each considered signal from the sample rate variation analysis.

Max.
Frequency Scale Factor Sampling

Rate
Time

Resolution
Total

Damage Error

[Hz] [-] [Hz] [s] [%] [%]

Non-stationary signal in section (Damage with standard method = 0.07859)

100 2 200 5.00 × 10−3 0.0526 33.08
100 5 500 2.00 × 10−3 0.07301 7.11
100 10 1000 1.00 × 10−3 0.077311 1.64
100 15 1500 6.67 × 10−4 0.07807 0.67
100 20 2000 5.00 × 10−4 0.0784 0.25

Non-zero mean signal (Damage with standard method = 0.0140)

20 2 40 2.50 × 10−2 0.0075 46.79
20 5 100 1.00 × 10−2 0.0104 25.86
20 10 200 5.00 × 10−3 0.0121 13.75
20 15 300 3.33 × 10−3 0.0141 0.71
20 20 400 2.50 × 10−3 0.0141 0.71

Non-stationary signal in section (Damage with standard method = 0.1699)

36 2 72 1.39 × 10−2 0.0179 89.46
36 5 180 5.56 × 10−3 0.0482 71.63
36 10 360 2.78 × 10−3 0.1496 11.95
36 15 540 1.85 × 10−3 0.17655 3.91
36 20 720 1.39 × 10−3 0.1696 0.17

Bimodal signal (Damage with standard method = 1608)

110 2 220 4.55 × 10−3 0.1064 33.83
110 5 550 1.82 × 10−3 0.14501 9.82
110 10 1100 9.09 × 10−4 0.1537 4.42
110 15 1650 6.06 × 10−4 0.15602 2.97
110 20 2200 4.55 × 10−4 0.156 2.98
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From the results shown in Tables 5 and 6, it can be stated that, as already well-known
from signal analysis, considering a frequency sampling equal to two times the maximum
frequency to be observed is not sufficient to adequately represent all the variations of a
high-frequency signal. Indeed, a frequency, at least, ten times higher than the maximum
frequency of the signal is necessary. Assuming this value of frequency sampling, the error
committed with the proposed algorithm is around 3–4%, while assuming a frequency
sampling equal to two times the maximum frequency of the signal leads to a percentage
error of over 50%.

In conclusion, from the carried-out analyses, the optimal values for calculating the
damage in real-time appear to be: Duration of the analysis window equal to at least 30
times the minimum frequency, the residuals considered as half a cycle, and finally the
sampling frequency equal to at least 10 times the maximum frequency. The experimental
tests carried out to test the proposed algorithm are conducted using the optimal values
listed earlier.

4. Hardware and Software Prototype for the Real-Time Monitoring of Fatigue Damage

Once the main acquisition parameters and the strategy to manage the residues were
extracted by the Rainflow counting algorithm, thereafter the next step was to develop a
physical prototype and an algorithm capable of computing the fatigue damage in real-time.
In the following sections, a description of the hardware and software is provided.

4.1. The Hardware

The device used in this study comprises five essential elements, each serving a specific
purpose. These include a sensor for signal acquisition, a signal conditioner for signal
amplification, an AD converter to convert the analog signal into a digital one, a buffer
board to store acquired data, and a processor for simultaneous data computation.

In this study, as a signal transducer, an accelerometer produced by PBC was used as
the sensor. For this reason, a potential fatigue damage based on the acceleration response is
computed according to what was stated in the previous section. Using an accelerometer, it
was further necessary to use a signal conditioner. A conditioner model 480E09 produced
by PBC was adopted. The Raspberry Pi AD/DA Expansion Board ADS1256, with eight
channels at 24-bit and a sampling rate of 30 ksps, was used as the ADC. The WeAct Black
Pill V2.0 board was chosen for the buffer board to store acquired data, while the Raspberry
Pi 4 was used as the processor. These components were selected to minimize the total cost,
in which excluding the sensor and signal conditioner is less than EUR 150. Figure 9 shows
the final prototype of the device used in the study.
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Figure 9. The prototype of the device realized in this activity to monitor the fatigue damage in
real-time [34].

As shown in Figure 9, an additional shunt resistor between the ADC converter and
the buffer board was required to insert a bias. This was needed since the selected ADC
converter can read only positive values within the range of 0–3.3 volts. Therefore, the shunt
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resistor adds a bias, and the signal is only positive with a mean value different from zero
but of known value equal to 1.75 volts. In this way, negative values are not lost. However,
since as expected the acceleration response is generally a zero mean signal, the introduced
mean value is removed when the signal is processed by the software.

4.2. The Software

Once the signal is accurately acquired by the device shown in the previous section,
it was necessary to define an algorithm that is able to read the data, process them by
applying a cycle counting technique and, at the same time, able to supply an indication of
fatigue damage (real or potential) in real-time. To this aim, a Python algorithm has been
implemented on the Raspberry Pi 4. This algorithm exploits the multi-threading logic. In
this way, two threads can operate simultaneously. The first thread acquires real-time signal
portions (windows), while the second calculates the fatigue damage of the previously
acquired window, as explained in Section 2 (Figure 10).
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As thread2 processes the data obtained by thread1, upon device start-up it immediately
acquires a window outside the while-loop and directly conveys it to thread2. Meanwhile,
thread1 acquires a second window, retaining it in memory through the buffer board and
awaits thread2’s readiness to process new data. This ensures that all operations occur
within the chosen processor, without the risk of data loss.

As shown in Figure 10, all operations occur within a while-loop which concludes
when the algorithm’s computation of potential fatigue damage reaches a critical threshold.
This threshold indicates that the component has accumulated damage deemed critical to
the structure. The value is equivalent to the unit when the signal acquired is stress, but can
differ when dealing with other physical quantities, such as accelerations, forces, etc. This
value can be determined numerically by highlighting relationships between the measured
signal and actual structural damage.
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5. Experimental Validation of the Realized Device

In order to evaluate the ability of the device to operate in real-time for the monitoring
of a fatigue failure induced by dynamic loads, vibration tests were performed on a simple
laboratory component. The specimens were realized in additive manufacturing in PolyLac-
tic acid (White-Pearl PLA produced by Ultimaker, Utrecht, The Netherlands). Figure 11
shows the used experimental setup. A detailed description of the printing parameters and
the manufacturing process is provided in [31,44].
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Figure 11. Experimental setup.

As shown in Figure 11, the Y-shaped specimen was excited with a series of random
acceleration profiles through an electrodynamic shaker. The random profiles were defined
by three different power spectral densities (PSDs) with varying frequency contents and
RMS. The used PSDs have the following frequency ranges: 90–200 Hz, 80–250 Hz, and
100–400 Hz, while the used RMS values were 1 g, 3 g, and 2 g, respectively. Since the
fourth natural frequency of the system is equal to 195 Hz, the excitation PSD is always
defined around the natural frequency of the structure. Figure 12 shows the waveform of
the adopted PSD.
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According to the experimental setup shown in Figure 11, the parameter chosen to
monitor the fatigue life of the Y-shaped specimen is the acceleration response measured
on the arm of the sample. However, since the S-N curve of the sample was determined
in a previous activity [30], it was of interest to use the same response acceleration and
the known fatigue curve. To use this response acceleration and, at the same time, use the
fatigue curve, it was necessary to determine a scale factor able to transform the acceleration
measured on the arm of the specimen to the stress component at the failure point.

To this aim, an FE model of the sample has been realized, replicating the actual
experiment condition (Figure 13a), and then it has been calibrated with the experimental
data in terms of acceleration frequency response function (Figure 13b) [30]. Details of the
FE model are provided in Appendix A.
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Once a finite element model is calibrated, experimental data are viable and it is possible
to use these data to obtain a frequency response function Hσ/..

y between the base acceleration
(

..
y) and the stress component that causes the failure of the component. In fact, depending on

the type of inputs used, only the fourth vibrating mode of the system is excited, which is the
symmetrical bending of the arms (Figure 14a). This means that the point at which the test
sample fails is easily identifiable and that the stress component that leads to the failure of
the test piece is only the stress component due to the bending of the arms (Figure 14b) [30].
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Therefore, once the two frequency response functions were addressed, the first be-
tween the acceleration on the arm (

..
x) and the base acceleration (

..
y) defined as H ..

x/..
y, and the

other between the stress component (σ) at the failure point and the base acceleration (
..
y)

defined as Hσ/..
y, it is possible to identify the frequency response function between the stress

at the failure point and the acceleration measured on the arm as follows:

Hσ/..
x = Hσ/..

y· H ..
x/..

y
−1 (11)

The frequency response function Hσ/..
x obtained is shown in Figure 15.
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Although in this case the component is subjected to an uniaxial stress state induced
solely by the bending of the arms, even in the case of a multiaxial stress state, what is
proposed remains applicable. In fact, the developed device processes both an uniaxial
alternating stress or an equivalent uniaxial stress time history obtained by a multiaxial
synthesis criterion.

Assuming the validity of frequency response function, a scaling factor was determined
in order to transform the acceleration measured on the specimen’s arm with the stress at
the failure point. This scaling factor η was considered as the maximum of the frequency
response function at the specimen’s resonance frequency (Figure 15). This factor is equal
to 0.146 MPa/g. In this way, Palmgren–Miner’s rule can be directly applied for damage
calculation, along with the known fatigue strength curve, as shown in Equation (12):

D =
m

∑
i=1

ni(
η· ..

xa,i
a

)1/b (12)

where
..
xa,i is the response acceleration measured during the test.

Once the scale factor is known, it was able to perform the experimental tests using
the method described previously in order to check the capabilities of the realized device.
Therefore, vibration tests were performed using an electrodynamic shaker and the signal
measured by the accelerometer on the specimen arm was simultaneously acquired and
processed with the device and recorded with a traditional acquisition system. This last step
was used for the evaluation of the actual fatigue life of the component in post-processing by
monitoring the resonance frequency drop. The results obtained with the realized device are
shown in Figure 16, where the cumulative damage curve is reported over time. Figure 16
also shows the threshold that indicates the component’s failure point. This threshold was
defined as the unit according to Miner’s cumulative damage law.
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To compare the results obtained from the realized device, the duration was evaluated in
post-processing by monitoring the frequency drop. This method, widely used in vibration
fatigue, involves monitoring the natural frequency of the component during the test.
Indeed, the start of a fatigue fracture results in a variation of the stiffness of the system, and
thus in a decrease in the natural frequency. Usually, a component is considered to be failed
when the monitored natural frequency drops by 5% compared to its initial value [31]. The
results obtained by monitoring the frequency drop for the conducted tests are shown in
Figure 17.
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The obtained results are then compared in Table 7 in order to better highlight the dif-
ferences between what is obtained with the proposed device and the traditional frequency
drop.
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Table 7. Comparison between the estimated fatigue life with the proposed device and the standard
approach.

Test ID Frequency
Range Input RMS Estimated

Life Real Life Percentage
Error

[-] [Hz] [g] [s] [s] [%]

1 90–200 1 2020 2350 16.3
2 80–250 3 620 770 19.04
3 100–400 2 980 1180 17.1

Comparing the estimated fatigue life obtained with the proposed device with the one
obtained by monitoring the frequency drop, it is evident how the proposed device supplies
good results, in agreement with those traditionally computed. The percentage error is
always lower than 20%. As visible from Table 7, the device always anticipates the failure of
the component. However, this is attributable to the fact that for the damage calculation, a
scaling factor between the acceleration measured on the arm and the tensile stress equal to
the value assumed by the magnitude of the frequency response function at resonance was
used. However, considering that the maximum value of the frequency response function
is conservative, the system is not excited only at the resonance frequency, but also with a
wideband signal. This implies that the stress–acceleration relationship is not always equal
to the maximum of the frequency response function, but can assume lower values, and
thus the tensile stress would be lower than the one calculated.

However, the obtained results are in line with what can be obtained from traditional
methods and represent a good starting point for the evaluation of fatigue damage in real-
time using a low-cost device. In fact, the device allows for the evaluation of the damage
of a whole structure with a single measurement point, exploiting a numerically calibrated
model to define the correlation between the points where the outputs are measured and the
critical points. In addition, this methodology would allow for the calculation of damage
at points where it would not be possible to insert classical sensors to directly perform
measurements.

6. Conclusions

This paper presents the development of a low-cost device for the monitoring of fatigue
damage of structures subjected to vibrations in real-time. The device has been developed
both in terms of hardware and software parts using low-cost commercial electronic elements
and an ad-hoc developed algorithm.

To check the accuracy of the proposed device to supply correct results in real-time, a
set of vibration tests were performed on a simple Y-shaped specimen excited with different
random profiles until the failure occurs. The fatigue life of the component was monitored
with the proposed device and the obtained results in terms of fatigue life were compared
with those calculated in post-processing by monitoring the drop of the natural frequency
of the specimen. The comparison shows that there is a good agreement between what
is obtained with the proposed device and with the traditional method. The maximum
error is always lower than 20%. The estimated fatigue life is always shorter than the actual
and, being conservative, it can be considered acceptable. The validation of the device,
however, has been conducted on a simple laboratory specimen. For this reason, the results
presented in this study can be considered as a good starting point. Further developments
and subsequent validation on more complex and realistic structures must be conducted
in order to certify the accuracy of the proposed device/method and it will be the focus
of future activities. However, the obtained outcomes indicate that the fatigue damage
monitoring with low-cost instruments is viable, although further developments are still
needed.
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Appendix A

The finite element model of the Y-shaped specimen shown in Figures 13a and A1 is
realized considering an elastic, homogeneous, and isotropic linear material. The material
parameters, such as the elastic modulus, the percentage damping, and the density were
experimentally obtained by the authors in a previous activity [30]. Briefly, the following
material parameters were used to model the sample: Elastic modulus equal to 2805 MPa,
density equal to 1200 Kg/m3, and percentage damping equal to 0.8%.
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Figure A1. Detailed view of the realized FE model of the tested structure.

The model was meshed with solid elements with 10 nodes per element. To reduce
the computational effort, since the zone where the fatigue fracture occurs is well-known
(around the central hole), shell elements with a thickness equal to 1 × 10−6 mm (skin
elements) were used over the solid elements limiting the fatigue damage calculation to
those elements. The model is composed of 121.746 nodes and 43.652 elements.

In order to replicate the experimental test conditions, the two masses shown in
Figure 11 (used to adjust the natural frequency of specimen) were modelled with a two-
points mass rigidly constrained to the nodes of the structure within the holes. An additional
mass has been used to simulate the presence of the accelerometer. The mass value and the
center of gravity position of the accelerometer are provided by the manufacturer. The mass
is equal to 0.2 g placed at 1.4 mm from the perpendicular direction of the surface.

To carefully reproduce the constraint conditions of the experimental setup, the yellow
nodes shown in Figure A1 were constrained to the ground while the vertical translation
was left free.
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A modal and harmonic analyses were then performed in order to obtain the frequency
response function of the structure and check, in this way, the accuracy of the realized FE
model. The first ten vibrating modes were extracted and the first four modes are shown in
Figure A2.
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The performed modal analyses were then used to compute the frequency response
function between the base acceleration and the arm acceleration to be compared with those
experimentally obtained. The comparison is shown in the following figure.
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Figure A3. Comparison between numerical and experimental acceleration frequency response
function.

Since there is a good agreement between the frequency response function, it is possible
to state that the model carefully replicates the dynamic behavior of the actual structure.
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