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Abstract: Measures of stepping volume and rate are common outputs from wearable devices, such as
accelerometers. It has been proposed that biomedical technologies, including accelerometers and
their algorithms, should undergo rigorous verification as well as analytical and clinical validation to
demonstrate that they are fit for purpose. The aim of this study was to use the V3 framework to assess
the analytical and clinical validity of a wrist-worn measurement system of stepping volume and rate,
formed by the GENEActiv accelerometer and GENEAcount step counting algorithm. The analytical
validity was assessed by measuring the level of agreement between the wrist-worn system and a thigh-
worn system (activPAL), the reference measure. The clinical validity was assessed by establishing the
prospective association between the changes in stepping volume and rate with changes in physical
function (SPPB score). The agreement of the thigh-worn reference system and the wrist-worn system
was excellent for total daily steps (CCC = 0.88, 95% CI 0.83–0.91) and moderate for walking steps and
faster-paced walking steps (CCC = 0.61, 95% CI 0.53–0.68 and 0.55, 95% CI 0.46–0.64, respectively).
A higher number of total steps and faster paced-walking steps was consistently associated with
better physical function. After 24 months, an increase of 1000 daily faster-paced walking steps
was associated with a clinically meaningful increase in physical function (0.53 SPPB score, 95% CI
0.32–0.74). We have validated a digital susceptibility/risk biomarker—pfSTEP—that identifies an
associated risk of low physical function in community-dwelling older adults using a wrist-worn
accelerometer and its accompanying open-source step counting algorithm.

Keywords: physical activity; accelerometer; biomarker; step count; stepping volume; stepping rate;
walking; analytical validity; clinical validity; verification

1. Introduction

The use of wearable sensors, including accelerometers, to estimate the number of daily
steps and their cadence, has become ubiquitous in research [1]. Their ability to objectively
and unobtrusively obtain multi-day, 24/7 recordings of stepping in free-living conditions
can provide insights not obtainable within the constraints of the laboratory, such as detailed
distributions of step counts, stepping durations, and cadences [2–5].

A higher stepping volume (the number of steps counted during an interval of time, e.g.,
steps/day) is associated with reduced all-cause mortality and cause-specific
mortality [1,6–9], as well as a lower risk of chronic disease [10] including cardiovascu-
lar disease [11].
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Meeting a daily stepping goal through slower-paced walking is qualitatively different
from achieving the same daily steps through faster-paced walking. Investigations of the
association between an accelerometer-derived stepping volume and rate (the cadence at
which steps were accumulated, e.g., 62 steps/min) with health outcomes provide equivocal
findings. A higher stepping volume and rate have been shown to be jointly associated with
lower hospitalisation and all-cause mortality in older adults [12]. Stepping at a faster pace
has also been associated with all-cause, cancer, and cardiovascular morbidity and mortality
even when adjusting for the daily stepping volume [13], and it has been suggested that
the stepping rate may be of greater importance for cardiometabolic risk reduction than
total stepping volume [14]. Furthermore, the association of total stepping volume with
all-cause dementia [15] and incident diabetes [16] was found to be stronger when steps
were accrued at a faster pace. Similarly, a larger proportion of steps at higher stepping
rates was associated with a greater risk reduction for diabetes [17]. In contrast, a higher
daily stepping volume was associated with lower mortality but stepping rate was not when
adjusted for the stepping volume [7,8,18].

The different measurement properties of the systems used to estimate step counts are
one possible reason for the uncertainty about the relative importance of stepping volume
and rate, because the outputs of different systems are far from interchangeable [19]. The
aspects shaping an accelerometer system’s measurement properties include the design of
algorithms turning raw data into stepping estimates [20], the construction and duration of
variable-length stepping events [21], and the sensor’s wear location (usually hip, thigh, or
wrist) [22–28]. Discrepancies between systems can also be exacerbated at low stepping rates
because it is harder to detect steps from weak acceleration signals [5,25,29–31]. Likewise,
the acceleration is moderated by the setting in which movement occurs. Stepping metrics
estimated from the same device can vary depending on whether the data are recorded in
an artificial laboratory setting, such as treadmill walking or simulated activities of daily
life, or in an authentic free-living setting [32,33].

Epoch-based methods and event-based methods are two different ways to estimate the
stepping volume and the rate at which steps were accumulated. An epoch-based method
collects and analyses data in predefined, non-overlapping time intervals (epochs). For
example, an epoch might be set to last 60 s, and the number of steps taken during that 60-s
interval would be recorded. The number of steps taken are divided by the epoch’s duration
to estimate the cadence. This approach underestimates the ‘true’ cadence if the epoch
includes stationary time or if the start and end of the stepping event spans over two epochs.
This is likely to be an issue because it is uncommon for humans to step consistently for a
whole minute [34]. An event-based method, on the other hand, records steps in real-time as
they occur [3]. When a step is detected, an event is started, and the number of steps taken
recorded until the continuous period of stepping comes to an end. The number of steps in
the event is still divided by the duration of the event to estimate the cadence. However,
this estimate is a more accurate estimate of the true cadence because the stationary time is
not included in the variable-length event’s duration.

When measuring stepping, placing accelerometers on the lower body (e.g., the thigh
or hip) is generally preferred because the lower limbs are the body parts in contact with the
ground and the primary source of movement during stepping. An accelerometer placed
on the upper body, such as the wrist, may still capture the motion of the body during
stepping, but the signals can be affected by secondary actions (e.g., holding a phone) and
may not always reflect whole body movement [25]. The sensor wear location also impacts
wear time adherence, which may lead to differences between studies. Periods of missing
data due to non-wear can reduce the accuracy of stepping estimates and lead to erroneous
estimates of the association between stepping and health outcomes [35,36]. Reduced wear
time for hip-worn devices has been attributed to the discomfort and inconvenience they
can cause [37] and evidence suggests that wrist-worn systems have higher adherence to
wear time protocols in adolescents and adults [1,38,39].
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Comfortable, waterproof, single-device sensors worn at the wrist are more likely to
maximise wear time, and thus the accuracy of derived estimates, but these measurement
systems need to show that the stepping estimates they produce are reliable and fit for
purpose. It has been proposed that biomedical technologies, including accelerometers and
their algorithms, should undergo rigorous verification as well as analytical and clinical
validation—the V3 framework—to confirm their suitability [40]. While digital measures of
stepping have been estimated from wrist-worn accelerometers, none have demonstrated
that they are fit-for-purpose based on the V3 framework [25,28,41–46]. The results from
studies that assessed the accuracy of the widely used wrist-worn ActiGraph in free-living
settings and with criterion measures obtained in a laboratory found that stepping esti-
mates obtained from the wrist were often in disagreement with those measured at the
hip [26,47,48], highlighting the importance of rigorous verification and validation of ac-
celerometer measurement systems. Therefore, the aims of this study were to apply the
complete V3 framework by:

1. Selecting a verified wrist-worn measurement system, formed by the GENEActiv
accelerometer [49] and its accompanying open-source step counting algorithm.

2. Establishing its analytical validity by measuring the level of concurrent agreement
between the GENEActiv wrist system and the activPAL thigh system when worn
simultaneously in a sample of older adults.

3. Establishing its clinical validity by measuring the prospective association between
repeated measures of daily stepping volume and rate with physical function measured
via the Short Physical Performance Battery (SPPB) score [50] in a sample of older
adults. The SPPB score is a clinically based measure of physical function associated
with all-cause mortality, hospitalisation, future functional decline, and long-term
disability [51,52]. Furthermore, the SPPB score is a predictor of frailty phenotypes
and geriatric syndromes in community-dwelling older people [53].

We conclude that wrist-measured stepping volume and rate obtained through the
verified and analytically and clinically validated GENEActiv measurement system create a
viable digital susceptibility/risk biomarker [54] associated with a decreased risk for low
physical function in older, community-dwelling adults not suffering from health conditions
preventing them from engaging in physical activity.

2. Materials and Methods
2.1. Verification

This study was conducted with well-established measurement hardware. The acceler-
ation measurement of the GENEActiv has been shown to have excellent intra-device and
inter-device reliability [55]. The function of the open-source step counting algorithm was
verified both by code inspection and replication in an alternate code base. The analytical
reference device for step measurement was the activPAL [56], which has demonstrated
an absolute percentage error of 1% when compared to the leading pedometers [57]. The
analysis pipeline was regularly tested throughout development, with full records of the
package dependencies.

2.2. Analytical Validity
2.2.1. Data Source

Data for the evaluation of the analytical validity were obtained from the ‘Digital
Assessment of Precise Physical Activity’ (DAPPA) project (funded by the EPRSC, dissemi-
nated via the Get A Move On (GAMO) Network (grant ref: EP/N027299/1), Project 532526
Feasibility Funding). The participants were a convenience sample of 56 people over the age
of 50, taking part in a study to develop a suite of measures of physical activity. Participants
simultaneously wore the GENEActiv wrist-worn and activPAL thigh-worn accelerometers
for 7 consecutive days while going about their usual activity. Those with a disability or
injury preventing them from engaging in physical activity were excluded. Ethical approval
was obtained by the University of Bath’s Research Ethics Approval Committee (SESHES-
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20/21R1-008). All participants provided written informed consent prior to participation,
including consent for their anonymised data to be used for future research.

2.2.2. Processing of Raw Accelerometer Data

The raw accelerometer data from the thigh- and wrist-worn devices were processed to
obtain estimates of stepping volume and rate. Both measurement systems used event-based
rather than epoch-based approaches to achieve a granular assessment of stepping volume
and rate throughout a day, although the event segmentation approaches were different.
The thigh-worn devices ran firmware 649 and their raw data were processed with the
manufacturer’s proprietary PALbatch desktop software in version 8.11.1.63 [56] using
the VANE algorithm. The minimum non-upright period and minimum upright period
durations were set to the default of 10 s. The wear time validation algorithm was set to the
most stringent option, using the 24-h protocol, which allows a maximum of 4 h of non-wear
per day. Wear correction was enabled to automatically correct inverted wear if a participant
accidentally attached the device the wrong way round. There is no calibration option in
the PALbatch software. The resulting data were exported via the ‘Events (extended)’ and
‘Stepping bouts’ reports to acquire time-stamped strides and variable-length events.

The wrist-worn devices ran firmware version 4.08a. Their raw sensor data were
calibrated to remove potential measurement errors, which may result from local gravity
or temperature [58], using the GENEAread R package [59]. The calibrated raw data were
then processed into stepping metrics using variable-length events with the GENEAread
and GENEAclassify packages [60] in versions 2.0.8 and 1.5.1, respectively. The number
of valid wear hours on each measurement day was identified separately with the GGIR
package version 2.7-1 [61] by analysing the calibrated raw data in 24-h chunks (midnight to
midnight). This made it possible to match the 24-h protocol from the thigh-worn system
during data quality checking. All the code (in Supplementary Materials) was run with R
version 4.1.3 in R Studio 2022.02.3 Build 492 [62].

2.2.3. Data Quality and Aggregation

The processed stepping measurements were quality checked to ensure that only the
relevant and reliable observations were included. Only data recorded on valid days, defined
as days on which a participant wore both devices for at least 20 h, were analysed. Sedentary
or upright events without stepping activity were excluded, as were events with fewer than
10 steps because fewer than 10 consecutive steps may lead to unreliable estimates [63]. The
thigh-worn system did not report cadences less than 20 steps/min, possibly because slow
stepping produces smaller accelerations, which do not satisfy the minimum acceleration
thresholds necessary for a step to be registered [25]. Wrist events with cadences less than
20 steps/min were therefore removed. Similarly, the thigh-worn system does not report
cadences greater than 175 steps/min and such events were removed from the wrist data
accordingly. Where participants recorded data for more than 7 consecutive days, the
additional days were excluded to avoid a potential distortion of the results by cyclical
behaviour, such as work-related activity patterns or exercise routines.

For each participant, the event-level stepping estimates were aggregated into daily
measures of stepping volume and rate. Total steps (20–175 steps/min) were obtained by
summing up a participant’s steps on each valid day.

Total steps were then further categorised into two subsets: ‘non-walking steps’
(20–44 steps/min) and ‘walking steps’ (45–175 steps/min). Stepping below 45 steps/min
was not considered walking, because stepping below this threshold tends to consist of less
sustained stepping consistent with non-walking behaviours [5].

The ‘walking’ category (45–175 steps/min) was then further divided into two sub-sets
representing ‘slower-paced walking’ and ‘faster-paced walking’. A comparison of the
distributions of event step counts, durations, and cadences showed that the thigh and
wrist systems had different response characteristics due to differences in their processing
pipelines (Figure A1). The system-specific cadence thresholds to delineate walking at
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slower and faster pace were therefore required for a meaningful evaluation of agreement.
This was achieved by identifying each system’s median walking cadence (the median
cadence of events ≥45 steps/min). For the thigh system, the median walking cadence was
74 steps/min, for the wrist 76 steps/min. Step counts from events below and including the
median walking cadence were then summed for each day to obtain slower-paced walking
steps and those above the median walking cadence to calculate faster-paced walking steps
(Table 1, Figure 1).

Table 1. Cadence thresholds for the aggregation of daily stepping and walking.

Thigh-Worn 1 Wrist-Worn 1

Total steps 20–175 20–175
Non-walking steps 20–44 20–44
Slower-paced steps 20–74 20–76
Walking steps 45–175 45–175

Slower-paced walking steps 45–74 45–76
Faster-paced walking steps 75–175 77–175

1 steps/min.
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ipants and days by device.

2.3. Clinical Validity
2.3.1. Data Source

Participants were from the REtirement in ACTion (REACT) study, which was reviewed
and approved by the National Health Service (NHS) South East Coast-Surrey Research
Ethics Committee (15/LO/2082) and is registered as a completed randomised controlled
trial (ISRCTN45627165). All participants provided written informed consent, including the
use of anonymised data for future research.

The full study protocol is published in detail elsewhere [64,65]. In short, participants
were over the age of 65 and had an SPPB score between four and nine (inclusive). They
were also screened for a variety of health-related exclusion criteria before recruitment.
Participants were followed for 2 years during which they were asked to wear a wrist-worn
accelerometer in a community-dwelling setting for 7 consecutive days at baseline and at
6 months, 12 months, and 24 months after baseline. At each of these four accelerometer
recording periods, the participants also completed a laboratory assessment during which
their physical function (SPPB score) and other health metrics were recorded.
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2.3.2. Processing of Raw Accelerometer Data

Only the wrist-worn measurement system was used in the REACT study and the raw
data were processed with the same tools and settings described in Section 2.2.2.

2.3.3. Data Quality and Aggregation of Stepping Metrics

In keeping with the exclusion criteria described in Section 2.2.3, stepping events with
fewer than 10 steps, a cadence less than 20 steps/min and greater than 175 steps/min, and
measurement days beyond the 7th day were excluded. For each of the four accelerometer
recording periods, stepping estimates were only considered valid if the device was worn
for at least 18 h/day on at least 6 days/period to maximise the reliability of the habitual
physical activity estimates [35]. The 18 h/day wear time limit accounted for the fact that
the accelerometers were configured to start recording at 5:00 am on the first measurement
day. A minimum of 18 h/day avoided discarding valuable data while producing reliable
estimates because it remained considerably more stringent than the recommended wear
times [66].

For each valid recording period, the data were aggregated into average daily step-
ping variables. The aggregation of the stepping measures happened in two stages. First,
total steps and the sum of steps accrued during slower-paced and faster-paced walking
were calculated for each participant per day. The median walking cadence (62 steps/min
in the REACT dataset) was used to delineate slower-paced from faster-paced walking.
In the second stage, the daily aggregates were averaged across recording periods, re-
sulting in mean daily step counts for total steps (20–175 steps/min), slower-paced steps
(20–62 steps/min), slower-paced walking steps (45–62 steps/min), and faster-paced walk-
ing steps (63–175 steps/min) for each of the four recording periods.

2.4. Statistical Analysis
2.4.1. Analytical Validity

The wrist-worn system’s analytical validity was determined by assessing the con-
current agreement of its daily stepping estimates with those of the thigh-worn reference
standard via the Concordance Correlation Coefficient (CCC) developed by Lin [67] and
extended by Carrasco et. al. [68] for longitudinal repeated measurements. This extension
expresses the CCC in terms of the variance components of a Linear Mixed Effects Model
(LMEM). This accounted for the hierarchical nature of the data by modelling the paired
daily stepping estimates as longitudinal replicates separately for each participant (random
effects), including the interactions between systems, participants, and recording periods.
Separate models were fitted with the cccrm R package version 2.0.3 [69] for total steps and
the walking, slower-paced walking, and faster-paced walking subsets to obtain a CCC for
each cadence category.

2.4.2. Clinical Validity

The outcome of interest was the change of physical function (SPPB score) over the
24-month follow-up period. Therefore, participants had to provide valid accelerometer
and SPPB data for at least two of the four recording periods to be included in the statistical
analysis. The independent association between stepping variables and physical function
was assessed through LMEMs. All data were analysed at the level of the individual
participant and a random intercepts term was included in the model to allow the intercepts
to vary for each participant. The covariates included group allocation, site of data collection,
age at recruitment, sex, indices of multiple deprivation (IMD) quintile, highest education
qualification, perceived general health (SF-36 Score), and the presence of comorbidities
(see Table 2 for covariate levels). Data from the control and intervention groups could be
analysed together because the effect that the intervention had on SPPB was accounted for
by including the group allocation and its respective interaction with time (0, 6, 12, and
24 months) in the model. Longitudinal associations between stepping and SPPB were
also modelled by including ‘stepping x time’ interaction terms. Three different models
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were produced to determine which stepping metric, or combination of them, was best for
modelling the SPPB score:

• Model 1: ‘Total steps’ only.
• Model 2: ‘Faster-paced walking steps’ only.
• Model 3: ‘Faster-paced walking steps’ and ‘Slower-paced steps’.

Table 2. Characteristics of the study population with regards to the model variables.

Overall
N = 651

Male
N = 217

Female
N = 434

Age at recruitment 1 77 (7) 77 (7) 77 (7)
Baseline physical function
(SPPB) 1 8.47 (1.52) 8.60 (1.48) 8.40 (1.55)

IMD quintile 2

1/5 (Most deprived) 69 (11%) 24 (11%) 45 (10%)
2/5 130 (20%) 46 (21%) 84 (19%)
3/5 130 (20%) 46 (21%) 84 (19%)
4/5 136 (21%) 42 (19%) 94 (22%)
5/5 (Least deprived) 186 (29%) 59 (27%) 127 (29%)

Highest education 2

Some/All secondary 291 (45%) 91 (42%) 200 (46%)
Some college 171 (26%) 58 (27%) 113 (26%)
All college/Degree 189 (29%) 68 (31%) 121 (28%)

Comorbidity 2

None 549 (84%) 182 (84%) 367 (85%)
One or more 102 (16%) 35 (16%) 67 (15%)

SF-36 General Health Score 2

Very good/Excellent 99 (15%) 28 (13%) 71 (16%)
Good 310 (48%) 109 (50%) 201 (46%)
Fair/Poor 242 (37%) 80 (37%) 162 (37%)

Allocation 2

Control 300 (46%) 98 (45%) 202 (47%)
Intervention 351 (54%) 119 (55%) 232 (53%)

Site 2

Bristol/Bath 278 (43%) 89 (41%) 189 (44%)
Birmingham 152 (23%) 58 (27%) 94 (22%)
Exeter 221 (34%) 70 (32%) 151 (35%)

1 Mean (SD) 2 N (%).

Statistical significance of coefficient estimates, for the presence of associations, was
defined as p < 0.05. All models were fitted in Stata version 17.0 [70] using the ‘mixed’
command. Sensitivity analyses were conducted to confirm the robustness of the LMEM
results. This included: (i) fitting the models without health and socio-economic covariates,
(ii) the examination of the Control and Intervention groups separately, (iii) the replication
of the analysis using mixed effects ordinal logistic regressions (cumulative link models)
because SPPB scores lie on a non-equidistant 12-point ordinal scale derived from the sum
of three individual four-point scores on an ordinal scale (gait, balance, and sit-to-stand).
However, as the 12-point scores were normally distributed, they could be approximated to,
and treated as, a continuous scale for the primary LMEM analyses.

2.5. Biomarker Description

A detailed analysis of the different measurement systems in this study and those
referenced in the prior art made it possible to conceive a simple biomarker that reveals
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the association of in-community measured steps and physical function (pfSTEP). This
biomarker is structured as two integer numbers that represent the average number of
slower-paced steps per day, followed by the average number of faster-paced walking steps
per day, e.g., (6931; 428). The sum of the two integers is the average total number of steps
per day and the separation threshold is the median walking cadence of the population
under study.

3. Results
3.1. Analytical Validity

Of the N = 56 participants who provided valid data, 30 (54%) were female and 26 (46%)
were male. Their age ranged between 50 and 87 years, with an average age of 64 (±8) years.
On average, participants took 9065 (±5104) daily total steps for the thigh-worn reference
system and 9721 (±4776) for the wrist-worn system.

The agreement of the thigh- and wrist-worn systems for total daily steps was excel-
lent [71] with a CCC of 0.88 (95% CI 0.83–0.91). The CCC for walking steps and faster-paced
walking steps showed a moderate agreement with CCCs of 0.61 (95% CI 0.53–0.68) and 0.55
(95% CI 0.46–0.64), respectively. The CCC for slower-paced walking steps was 0.14 (95% CI
0.02–0.27), indicating a poor agreement for this category with a 95% CI close to zero.

Figure 2 further illustrates the precision and accuracy dimensions of the CCC. The
pairs of daily total steps estimated by the two systems were similar (Plot A). A given thigh
step count tended to correspond to a similar wrist step count and vice versa, meaning that
the measured linear relationship was close to what would be observed in the presence of
perfect agreement. The thigh-worn system consistently recorded higher step counts for
walking (Plot B). Considerably different thigh and wrist step counts corresponded to each
other for slower-paced walking and the true linear relationship between thigh- and wrist-
worn measurements at slower-paced walking was far from the theoretical relationship for
perfect agreement (Plot C). For faster-paced walking, the agreement was weaker for higher
step counts and on many days the thigh-worn reference system recorded considerably
more steps than the wrist-worn system (Plot D). The thigh-worn system also consistently
reported more faster-paced walking steps than the wrist-worn system.

The variance components from the LMEMs (Figure A2) showed that most of the
observed differences between the thigh- and wrist-measured total steps were attributable
to the participants (51% of total variance) and the variation of their behaviour on different
days (37%), while the measurement systems were the source of little variation (1%). How-
ever, when step counts were categorised into slower-paced and faster-paced walking, the
measurement systems were a much larger source of variation, contributing between 15%
and 30% of the total variance.

3.2. Clinical Validity

Of the N = 777 participants who took part in the REACT trial, 651 (83.78%) provided
both valid accelerometer data and completed the physical function tests on at least two of
the four recording periods (10.42% of participants provided data from two periods, 28.44%
from three, and 44.92% from all four). Consequently, the model coefficients and goodness-
of-fit metrics were derived from stepping activity collected from 15,374 measurement days
across 2227 participant-recording periods. On average, each participant provided 6.9 days
of accelerometer data from 3.6 recording periods. The age at recruitment ranged from 65
to 98 years. Table 2 presents the characteristics of the study population, resulting from
randomisation via a minimisation algorithm, which balanced groups by study site, age
group, gender, and initial functional ability [64,72].

Daily total steps and step counts in the cadence-specific categories declined at each
follow-up. The proportion of non-walking steps increased over time while the proportion
of slower- and faster-paced walking declined (Table 3).



Sensors 2023, 23, 5122 9 of 23
Sensors 2023, 23, x FOR PEER REVIEW 9 of 23 
 

 

 
Figure 2. Agreement (Concordance Correlation Coefficient: CCC) and association (Pearson’s Corre-
lation Coefficient: PCC) between the step counts of the thigh- and wrist-worn systems with line of 
identity (grey) and linear regression line of best fit (red) for total steps (A), all walking steps (B), 
slower-paced walking steps (C), and faster-paced walking steps (D). Each point represents 1 day. 

The variance components from the LMEMs (Figure A2) showed that most of the ob-
served differences between the thigh- and wrist-measured total steps were attributable to 
the participants (51% of total variance) and the variation of their behaviour on different 
days (37%), while the measurement systems were the source of little variation (1%). How-
ever, when step counts were categorised into slower-paced and faster-paced walking, the 
measurement systems were a much larger source of variation, contributing between 15% 
and 30% of the total variance. 

3.2. Clinical Validity 
Of the N = 777 participants who took part in the REACT trial, 651 (83.78%) provided 

both valid accelerometer data and completed the physical function tests on at least two of 
the four recording periods (10.42% of participants provided data from two periods, 
28.44% from three, and 44.92% from all four). Consequently, the model coefficients and 
goodness-of-fit metrics were derived from stepping activity collected from 15,374 meas-
urement days across 2227 participant-recording periods. On average, each participant 
provided 6.9 days of accelerometer data from 3.6 recording periods. The age at recruit-
ment ranged from 65 to 98 years. Table 2 presents the characteristics of the study popula-
tion, resulting from randomisation via a minimisation algorithm, which balanced groups 
by study site, age group, gender, and initial functional ability [64,72]. 

Figure 2. Agreement (Concordance Correlation Coefficient: CCC) and association (Pearson’s Cor-
relation Coefficient: PCC) between the step counts of the thigh- and wrist-worn systems with line
of identity (grey) and linear regression line of best fit (red) for total steps (A), all walking steps (B),
slower-paced walking steps (C), and faster-paced walking steps (D). Each point represents 1 day.

Table 3. Daily means of wrist accelerometer-derived step counts by cadence category. Combined
data from Control and Intervention groups. Slower-paced steps are the sum of non-walking steps
and slower-paced walking steps.

Baseline
N = 608

6 Months
N = 565

12 Months
N = 544

24 Months
N = 504

Total steps
(20–175 steps/min)

5815
(3186; 100)

5569
(3256; 100)

5250
(3017; 100)

4871
(3039; 100)

Non-walking steps
(20–44 steps/min)

4342
(2371; 75)

4147
(2386; 74)

3965
(2259; 76)

3776
(2353; 78)

Slower-paced steps
(20–62 steps/min)

4923
(2640; 85)

4702
(2676, 84)

4470
(2490; 86)

4215
(2570, 87)

Slower-paced walking steps
(45–62 steps/min)

581
(530; 10)

555
(544; 10)

505
(484; 10)

439
(459; 9)

Faster-paced walking steps
(63–175 steps/min)

892
(938; 15)

867
(996; 16)

780
(915; 15)

656
(857; 13)

Mean (SD; % of total).
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More total steps were consistently associated with better physical function (higher
SPPB scores) at all three follow-ups compared to baseline and the association became
stronger over the 2-year period. After 24 months, an increase of 1000 daily total steps
was associated with a physical function increase of 0.21 points on the 12-point SPPB scale
compared to the baseline (Table 4, Model 1).

Table 4. Comparing models containing ‘total steps’ and ‘faster-paced walking steps’ separately and
concurrently, in the prediction of physical function.

Model 1
Total Steps Only

Model 2
Faster-Paced Walking Steps

Only

Model 3
Faster-Paced Walking and

Slower-Paced Steps

Total steps
(20–175 steps/min)

Baseline 0.04 (−0.01–0.08) N/A N/A
6 Months 0.07 (0.02–0.12) ** N/A N/A
12 Months 0.12 (0.07–0.17) *** N/A N/A
24 Months 0.21 (0.15–0.26) *** N/A N/A

Faster-paced walking steps
(63–175 steps/min)

Baseline N/A 0.08 (−0.07–0.23) 0.05 (−0.12–0.13)
6 Months N/A 0.27 (0.10–0.44) ** 0.22 (0.03–0.41) *
12 Months N/A 0.43 (0.25–0.60) *** 0.35 (0.15–0.55) **
24 Months N/A 0.69 (0.50–0.88) *** 0.53 (0.32–0.74) ***

Slower-paced steps
(20–62 steps/min)

Baseline N/A N/A 0.03 (−0.03–0.10)
6 Months N/A N/A 0.04 (−0.03–0.10)
12 Months N/A N/A 0.06 (−0.01–0.13)
24 Months N/A N/A 0.13 (0.06–0.20) ***

Goodness-of-fit

AIC 8759 8767 8749
Log-likelihood −4352 −4356 −4342

Unstandardised coefficient estimates reported per 1000 steps with 95% confidence intervals. All models are
adjusted for age, sex, site, allocation to Control or Intervention, SF-36 Score, comorbidities, IMD quintile, and
highest education in addition to the stepping variables shown. The reference level for all interactions is baseline.
The 6-, 12-, and 24-month coefficients represent how much stronger the coefficient is compared to baseline and
need to be added to the baseline coefficient to obtain the total strength of the association at each time point (e.g.,
0.04 + 0.21 = 0.25 for total steps at 24 months in Model 1). Only models 2 and 3 are nested. N/A = not applicable
(variable not included in model) AIC = Akaike Information Criterion (lower by 2 units is considered a better
model). * p < 0.05, ** p < 0.01, *** p < 0.001 (coefficient statistically significantly greater than reference baseline
coefficient).

A higher number of faster-paced walking steps was also consistently associated with
better physical function and the association became stronger over time. An additional
1000 daily faster-paced walking steps were associated with a physical function increase of
0.69 points at the 24-month follow-up compared to the baseline (Table 4, Model 2).

Additionally controlling for total steps attenuated the association but it remained
present at all time points. An increase by 1000 slower-paced steps (20–62 steps/min) was
associated with a physical function increase of 0.13 points while 1000 additional faster-
paced walking steps (63–175 steps/min) were associated with an increase of 0.53 points
compared to the baseline (Table 4, Model 3).

In relation to the study population’s mean baseline activity levels (Table 3)—which
are typical for older adults [9]—1000 additional steps represented a daily physical activity
increase of 17% total steps, 20% slower-paced steps, 172% slower-paced walking steps, or
112% faster-paced walking steps.
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Sensitivity analyses showed that the health and socio-economic covariates did not alter
the presence of the reported associations (Table A1). The results remained the same when
the models were replicated as ordinal logistic regressions with mixed effects (Table A2).
Separate models of Control and Intervention group data produced comparable results that
were also in line with the primary analysis (Tables A3 and A4).

4. Discussion

The aims of this study were to verify and evaluate the analytical and clinical validity of
a wrist-worn system for estimating the stepping volume and rate in community-dwelling
adults. The results showed that verified, processed data on stepping volume and rate
had a high level of agreement with total steps and an acceptable level of agreement with
faster-paced walking steps, when directly compared with a thigh-based reference standard
in a sample of community-dwelling adults aged over 50.

Direct comparisons with other studies reporting the analytical validity of step counting
algorithms, processing data from wrist-worn devices, is challenging due to differences
in methodology. The primary challenge is the absence of a true gold standard to classify
stepping volume and rate in free-living settings where a direct observation is not feasible.
For this reason, most validity studies [44,46,73–76] are limited to laboratory settings or
semi-supervised conditions involving simulated outdoor stepping situations where direct
observation is possible for short periods. The performance of step counting algorithms vali-
dated under such conditions is poor when they are applied to free-living situations [77,78].
The absence of a gold standard measure prevents the assessment of criterion validity, and
it has been proposed that the term ‘reference standard’ be used in situations when the
best available method is being used rather than a gold standard [79]. To our knowledge,
only one study has assessed the analytical validity of a wrist-worn system in community-
dwelling adults using the thigh-worn activPAL as the reference measure [28]. In a sample
of N = 713 (aged 45 ± 10 years), participants wore both accelerometers together for 7 days.
A greater number of daily total steps were recorded for the wrist-worn system compared
to the thigh-worn system, a finding similar to the current study. In addition, consistent
with the current study, the wrist-worn system had a high level of agreement with daily
total steps and a lower level of agreement with faster-paced walking steps (which Maylor
et al. [28] defined as >100 steps/min). The level of agreement for slower-paced stepping
was not described. As reported in the current study, Maylor and colleagues also comment
that the between-accelerometer differences in faster-paced walking steps may be largely
due to the reference measure not reliably capturing slower-paced non-walking steps, rather
than an error in the wrist-worn system. This again highlights the problem of the absence
of a true gold standard criterion measure when assessing a wide range of cadences in
free-living settings. In older populations, where the proportion of daily slower-paced
steps to total steps is likely to be higher, underestimating slower-paced stepping could be
particularly problematic [80].

In the clinical validity study in community-dwelling older adults with a mean age of
77 (±7) years, both faster-paced walking steps (63–175 steps/min) and all other slower-
paced steps (20–62 steps/min) were independently associated with higher physical function.
The model with both the number of faster-paced walking steps and slower-paced steps
was a better fit than models with just total steps (20–175 steps/min) or just faster-paced
walking steps. Even if total steps are quite low, if they are mostly faster-paced walking
steps, the risk of reduced function is lower than it would be for a higher total number of
entirely slower-paced steps.

Over a 2-year period, total steps, slower-paced steps, and faster-paced walking steps
fell by 944, 708, and 236 steps/day, respectively, in the combined control and intervention
group dataset from the REACT trial. These declines in stepping could potentially lead to a
decrease of 0.22 in SPPB score ([0.708 × 0.13] + [0.236 × 0.53]). Consequently, if older people
merely retained their baseline stepping level, they could potentially prevent a 0.22 decrease
in the SPPB score. However, a meta-analysis of intervention studies has shown that an
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increase of approximately 1000 steps/day is possible [81]. If achieved in this population
(e.g., 500 extra faster-paced walking steps/day and 500 extra slower-paced steps/day), the
SPPB score would be expected to increase by 0.33 ([0.500 × 0.53] + [0.500 × 0.13]). Alterna-
tively, if an extra 500 faster-paced walking steps/day were achieved and 500 slower-paced
steps/day were replaced with faster-paced walking steps, the SPPB score could increase
by 0.47 ([1.000 × 0.53] − [0.500 × 0.13]), a reversal of the expected age-related decline
in physical function as well as being a clinically meaningful change [82–84]. Increases of
1000 steps/day would not only increase the physical function but also reduce the risk of
all-cause mortality and cardiovascular disease morbidity and mortality [1]. Additional ex-
amples of changes in slower-paced steps and faster-paced walking steps and the estimated
changes in the SPPB score can be found in Figure A4.

To the best of our knowledge, there are no studies that have assessed the clinical
validity of accelerometer-derived stepping metrics and objective measures of physical
function. More specifically, there are no studies of the association between the changes in
stepping volume and rate with changes in physical function. Despite this, our results for
daily total steps are consistent with the many prospective cohort studies that consistently
show that higher volumes of daily stepping are associated with reduced risk of mortality
and chronic disease [1,11,13].

However, there remains uncertainty about whether stepping at a faster pace is as-
sociated with health benefits, independent of the total steps taken per day. In this study,
increases in faster-paced walking steps were more strongly associated with physical func-
tion than increases in slower-paced steps. Different devices, their wear location, and step
detection methods can lead to different estimates of stepping rate. The lowest stepping rate
able to be reliably detected also varies between devices [25]. Inevitably, this will lead to
the misclassification of stepping rates, especially in older adult populations where slow
stepping rates are most prevalent. Nevertheless, different devices attached to the same
body part and using the same processing algorithm can reduce the differences between
device outputs, at least for ‘average-paced’ walking [46]. Some studies calculate the step-
ping rate using an epoch method while others, including this study, use an event-based
method (identify a variable-length stepping event, count the number of steps in the event,
and divide by the duration of the event). It has been reported that the epoch method
underestimates the ‘true’ stepping rate because it includes periods of standing as well as
stepping into one and the same epoch [85]. In addition, event-based methods may be better
placed to establish the independence of stepping rate because the stepping rates estimated
from epoch methods are more correlated with total steps [86]. In addition, some studies
only computed the stepping rates for epochs ≥2 min and cadences ≥60 steps/min [8],
whereas others computed cadences as low as 1–39 steps/min [13], even though the device
used was not validated for such low cadences.

Declines in physical function are insidious and start at a point when traditional mea-
sures of physical function, such as the SPPB score, would likely return ‘normal’ values
despite the function already being in decline. We show that the wrist-worn system evalu-
ated in this paper is fit for purpose to obtain a digital biomarker for the early detection of
people’s susceptibility or risk of decline in physical function and can be measured remotely
at a time when people still have a reserve of function sufficient to alter their trajectory
towards low function and frailty. A meta-analysis of interventions [81] has shown that the
level of change required to preserve or improve the function identified in this study can be
achieved and would also be accompanied by a significant reduction in the risk of chronic
disease and all-cause mortality [1].

The GENEActiv wrist-worn system used in this study achieves a high wear time
compliance in a variety of populations, is low burden for the wearer, and is proven to be
easily deployable in a wide range of applications. The pfSTEP biomarker can be derived
from the GENEActiv raw (sensor-level) acceleration data using standard approaches and
the open-source GENEAcount algorithm. The continuous measurement of body movement
from the wrist is fully aligned with the intended utility of the pfSTEP biomarker (assessing
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physical function through stepping volume and rate). The representation of the biomarker
as two integers retains the intuitive simplicity and usability of steps for both individuals
and clinicians, while providing a much richer outcome to support decision-making.

A strength of this study is the methodical approach to the V3 process [40] for assessing
how fit for purpose the measures of stepping volume and rate obtained from the wrist are
as a digital biomarker of susceptibility/risk for low physical function in older, community-
dwelling adults. In addition, the analytical validity was assessed in a real-world setting
over several days, better reflecting daily living values of stepping rates compared to
laboratory estimates of gait speed [87]. The repeated measures of both exposure and
outcome measures are a real strength of this clinical validity study, along with the large
sample of community-dwelling older adults.

A major strength of the current study is that it has collected measures of both the
exposure (stepping) and the health outcome (physical function) at four time points over
a 2-year period. The wholly longitudinal nature of these data allows for the analysis of
dynamic associations, rather than the static associations afforded by cross-sectional designs.
Dynamic associations in this analysis are represented by the ‘stepping x time’ interaction
term, which describe to what degree time-related changes in the SPPB score are associated
with time-related changes in stepping. A more common approach in longitudinal studies
is to measure stepping once—at the baseline timepoint—and measure physical function
at baseline and follow up. The absence of repeated measures of the exposure in such
studies would be a major limitation in ageing populations, as this study showed that large
decreases in daily total steps, especially at faster-paced walking, occurred over a 2-year
period (a reduction of 16% and 26%, respectively). Repeated, longitudinal data are also
likely to improve the reliability of associations compared to cross-sectional data as they are
less affected by the occurrence of non-typical measures (e.g., a non-representative week of
walking/stepping or sub-optimal performance in the SPPB tests). Representing total steps
with two different stepping variables of non-overlapping cadence (faster-paced walking
steps and slower-paced steps) in the same model makes for an intuitive interpretation of
the model coefficients and reduces the level of collinearity between predictors. If total
steps and faster-paced walking steps (a sub-set of total steps) had been entered into the
same model, this would have caused a high level of collinearity, which in turn would have
increased the uncertainty and decreased the reliability of their respective model coefficients.
Furthermore, the ‘total steps’ coefficient would represent the coefficient of ‘slower-paced
steps’ with ‘faster-paced walking steps’ already being accounted for in the model.

This study is the first to be methodical in trying to match the processing methods
for both systems as much as possible. Future studies of analytical validity in real-world
settings would benefit from being more transparent about the differences in the step
detection methods to ensure that the measurement systems are not a large source of the
variance between the stepping estimates, potentially leading to false conclusions about the
accuracy of the system being compared to the reference system.

A major limitation in this study, and any other analytical validity study in free-living
settings, was the absence of a true gold standard criterion measure. As a result, differences
in the estimates of stepping could not be attributed to a misclassification in one system or
the other. However, it has been observed that, in situations where an acceptable reference
standard does not exist, clinical validation can provide a significant methodological ad-
vance [79]. Furthermore, our analytical and clinical validity studies were restricted to older
people, limiting the external validity of the results. Additional studies are required in a
broader range of populations to determine how generalisable the results are.

The well-documented challenge of accurately detecting slower-paced
stepping [5,25,29–31], especially in older people, requires urgent attention to better under-
stand the value of slower-paced stepping in this population. Systematic reviews of the
prospective association of stepping measures and health outcomes struggle to harmonise
the data for meta-analysis due to the very many differences in the systems used to collect
the estimates of stepping measures. With the increasing availability of cloud storage, it
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is possible to store the raw acceleration data, from which stepping measures are derived,
at scale. This would allow future reviews to apply a single processing method to raw
acceleration data collected from different devices if the wear location was consistent, the
wear time was standardised, and the device outputs were verified. This could improve the
precision of estimates of the associations between stepping and health outcomes.

5. Conclusions

We have described and validated a digital susceptibility/risk biomarker—pfSTEP—
that identifies the associated risk of a low physical function in community-dwelling older
adults using a wrist-worn accelerometer and its accompanying open-source step counting
algorithm. Older adults who increase their proportion of faster-paced walking steps reduce
their risk of developing low physical function and thereby their risk of premature mortality,
frailty, hospitalisation, and falls. The digital pfSTEP biomarker uses real world evidence
from a system with proven high usability. It supports continuous measurement outside
the confines of the clinic or laboratory environment and enables the remote monitoring of
changes in ambulatory activity to identify older adults at risk of developing a low physical
function.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Baseline 0.05 (0.00–0.09) * N/A N/A 
6 Months 0.08 (0.03–0.13) ** N/A N/A 
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24 Months 0.22 (0.16–0.27) *** N/A N/A 
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12 Months N/A N/A 0.07 (−0.01–0.14) 
24 Months N/A N/A 0.14 (0.07–0.21) *** 

Goodness-of-fit 
AIC 8788 8799 8776 
Log-likelihood −4375 −4381 −4365 
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Figure A4. Estimated changes in the SPPB score, at 24 months compared to baseline, with changes in
slower-paced steps and faster-paced walking steps.
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Appendix B

Table A1. Comparing models containing ‘total steps’ and ‘faster-paced walking steps’ separately and
concurrently, without health and socio-economic covariates, in the prediction of physical function.

Model 1b
Total Steps Only

Model 2b
Faster-Paced Walking Steps

Only

Model 3b
Faster-Paced Walking and

Slower-Paced Steps

Total steps
(20–175 steps/min)

Baseline 0.05 (0.00–0.09) * N/A N/A
6 Months 0.08 (0.03–0.13) ** N/A N/A
12 Months 0.13 (0.07–0.18) *** N/A N/A
24 Months 0.22 (0.16–0.27) *** N/A N/A

Faster-paced walking steps
(63–175 steps/min)

Baseline N/A 0.10 (−0.05–0.25) 0.06 (−0.10–0.23)
6 Months N/A 0.28 (0.11–0.45) ** 0.24 (0.05–0.43) *
12 Months N/A 0.44 (0.26–0.62) *** 0.36 (0.16–0.56) ***
24 Months N/A 0.72 (0.53–0.91) *** 0.54 (0.33–0.75) ***

Slower-paced steps
(20–62 steps/min)

Baseline N/A N/A 0.04 (−0.02–0.10)
6 Months N/A N/A 0.04 (−0.04–0.11)
12 Months N/A N/A 0.07 (−0.01–0.14)
24 Months N/A N/A 0.14 (0.07–0.21) ***

Goodness-of-fit

AIC 8788 8799 8776
Log-likelihood −4375 −4381 −4365

Unstandardised coefficient estimates reported per 1000 steps with 95%-confidence intervals. All models are
adjusted for age, sex, site, and allocation to Control or Intervention in addition to the stepping variables shown.
Reference level for all interactions is the baseline visit. Note that only models 2 and 3 are nested. N/A = not
applicable (variable not included in model) AIC = Akaike Information Criterion (lower by 2 units is considered
a better model) * p < 0.05, ** p < 0.01, *** p < 0.001 (coefficient statistically significantly greater than reference
baseline coefficient).

Table A2. Comparing models containing ‘total steps’ and ‘faster-paced walking steps’ separately and
concurrently, modelled as ordinal logistic regression with mixed effects, in the prediction of physical
function.

Model 1c
Total Steps Only

Model 2c
Faster-Paced Walking Steps

Only

Model 3c
Faster-Paced Walking and

Slower-Paced Steps

Total steps
(20–175 steps/min)

Baseline 0.04 (−0.02–0.10) N/A N/A
6 Months 0.12 (0.05–0.19) *** N/A N/A
12 Months 0.17 (0.10–0.24) *** N/A N/A
24 Months 0.29 (0.21–0.36) *** N/A N/A

Faster-paced walking steps
(63–175 steps/min)

Baseline N/A 0.09 (−0.11–0.29) 0.06 (−0.17–0.28)
6 Months N/A 0.43 (0.20–0.65) *** 0.36 (0.10–0.61) **
12 Months N/A 0.65 (0.40–0.89) *** 0.55 (0.27–0.82) ***
24 Months N/A 1.01 (0.74–1.29) *** 0.79 (0.49–1.09) ***
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Table A2. Cont.

Model 1c
Total Steps Only

Model 2c
Faster-Paced Walking Steps

Only

Model 3c
Faster-Paced Walking and

Slower-Paced Steps

Slower-paced steps
(20–62 steps/min)

Baseline N/A N/A 0.03 (−0.05–0.12)
6 Months N/A N/A 0.06 (−0.03–0.15)
12 Months N/A N/A 0.08 (−0.02–0.17)
24 Months N/A N/A 0.17 (0.07–0.27) **

Goodness-of-fit

AIC 8573 8570 8557
Log-likelihood −4249 −4247 −4236

Unstandardised coefficient estimates are log-odds-ratios reported per 1000 steps with 95% confidence intervals.
All models are adjusted for age, sex, site, allocation to Control or Intervention, SF-36 Score, comorbidities, IMD
quintile, and highest education in addition to the stepping variables shown. The reference level for all interactions
is the baseline visit. Note that only models 2 and 3 are nested. N/A = not applicable (variable not included in
model) AIC = Akaike Information Criterion (lower by 2 units is considered a better model) ** p < 0.01, *** p < 0.001
(coefficient statistically significantly greater than reference baseline coefficient).

Table A3. Comparing models fitted to Control group data only, containing ‘total steps’ and ‘faster-
paced walking steps’ separately and concurrently, in the prediction of physical function.

Model 1d
Total Steps Only

Model 2d
Faster-Paced

Walking Steps Only

Model 3d
Faster-Paced
Walking and

Slower-Paced Steps

Total steps
(20–175 steps/min)

Baseline 0.04 (−0.03–0.10) N/A N/A
6 Months 0.00 (−0.07–0.16) N/A N/A
12 Months 0.08 (0.00–0.16) * N/A N/A
24 Months 0.19 (0.11–0.27) *** N/A N/A

Faster-paced walking steps
(63–175 steps/min)

Baseline N/A 0.08 (−0.13–0.29) 0.05 (−0.19–0.29)
6 Months N/A 0.09 (−0.17–0.35) 0.13 (−0.16–0.42)
12 Months N/A 0.36 (0.06–0.67) * 0.32 (−0.01–0.66)
24 Months N/A 0.57 (0.30–0.84) *** 0.45 (0.16–0.74) **

Slower-paced steps
(20–62 steps/min)

Baseline N/A N/A 0.03 (−0.05–0.12)
6 Months N/A N/A −0.03 (−0.13–0.07)
12 Months N/A N/A 0.03 (−0.08–0.14)
24 Months N/A N/A 0.13 (0.03–0.23) *

Goodness-of-fit

AIC 4026 4032 4027
Log-likelihood −1989 −1992 −1986

Unstandardised coefficient estimates reported per 1000 steps with 95% confidence intervals. All models are
adjusted for age, sex, site, SF-36 Score, comorbidities, IMD quintile, and highest education in addition to the
stepping variables shown. The reference level for all interactions is the baseline visit. Note that only models 2 and
3 are nested. N/A = not applicable (variable not included in model) AIC = Akaike Information Criterion (lower
by 2 units is considered a better model) * p < 0.05, ** p < 0.01, *** p < 0.001 (coefficient statistically significantly
greater than reference baseline coefficient).
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Table A4. Comparing models fitted to Intervention group data only, containing ‘total steps’ and
‘faster-paced walking steps’ separately and concurrently, in the prediction of physical function.

Model 1e
Total Steps Only

Model 2e
Faster-Paced

Walking Steps Only

Model 3e
Faster-Paced
Walking and

Slower-Paced Steps

Total steps
(20–175 steps/min)

Baseline 0.04 (−0.03–0.10) N/A N/A
6 Months 0.13 (0.06–0.20) *** N/A N/A
12 Months 0.15 (0.08–0.22) *** N/A N/A
24 Months 0.22 (0.15–0.30) *** N/A N/A

Faster-paced walking steps
(63–175 steps/min)

Baseline N/A 0.09 (−0.11–0.30) 0.07 (−0.16–0.30)
6 Months N/A 0.37 (0.14–0.59) ** 0.25 (0.00–0.51) *
12 Months N/A 0.45 (0.23–0.69) *** 0.35 (0.09–0.60) **
24 Months N/A 0.82 (0.55–1.09) *** 0.62 (0.31–0.92) ***

Slower-paced steps
(20–62 steps/min)

Baseline N/A N/A 0.02 (−0.06–0.11)
6 Months N/A N/A 0.10 (0.00–0.20) *
12 Months N/A N/A 0.09 (−0.01–0.19)
24 Months N/A N/A 0.14 (0.03–0.24) *

Goodness-of-fit

AIC 4744 4749 4740
Log-likelihood −2348 −2351 −2342

Unstandardised coefficient estimates reported per 1000 steps with 95% confidence intervals. All models are
adjusted for age, sex, site, SF-36 Score, comorbidities, IMD quintile, and highest education in addition to the
stepping variables shown. The reference level for all interactions is the baseline visit. Note that only models 2 and
3 are nested. N/A = not applicable (variable not included in model) AIC = Akaike Information Criterion (lower
by 2 units is considered a better model) * p < 0.05, ** p < 0.01, *** p < 0.001 (coefficient statistically significantly
greater than reference baseline coefficient).
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