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Abstract: In the wavelength modulation spectroscopy (WMS) gas detection system, the laser diode
is usually stabilized at a constant temperature and driven by current injection. So, a high-precision
temperature controller is indispensable in every WMS system. To eliminate wavelength drift influence
and improve detection sensitivity and response speed, laser wavelength sometimes needs to be locked
at the gas absorption center. In this study, we develop a temperature controller to an ultra-high
stability level of 0.0005 ◦C, based on which a new laser wavelength locking strategy is proposed to
successfully lock the laser wavelength at a CH4 absorption center of 1653.72 nm with a fluctuation of
fewer than 19.7 MHz. For 500 ppm CH4 sample detection, the 1σ SNR is increased from 71.2 dB to
80.5 dB and the peak-to-peak uncertainty is improved from 1.95 ppm down to 0.17 ppm with the
help of a locked laser wavelength. In addition, the wavelength-locked WMS also has the absolute
advantage of fast response over a conventional wavelength-scanned WMS system.

Keywords: index terms; temperature controller; laser wavelength locking; wavelength modulation
spectroscopy; signal-to-noise ratio; methane detection

1. Introduction

Laser wavelength stabilization techniques have been widely used in various advanced
applications, such as quantum communication [1], optical atomic clocks [2], photonic
microwave synthesizer [3], gravitational wave detection [4], relativity test [5] and cavity
ringdown spectroscopy (CRDS) for sensitive molecular detection [6], where a laser source
with ultra-stable wavelength/frequency and narrow linewidth is indispensable, or at
least preferred. Over the last few decades, different types of semiconductor lasers have
developed rapidly toward the direction of narrow linewidth, easy tunability, compactness
and cost-effectiveness. Concomitantly, a series of wavelength stabilization techniques are
also proposed, including the famous Pound–Drever–Hall (PDH) method [7], the saturated
absorption method [8], the spectral hole burning effect [9] and so forth.

In the field of tunable diode laser absorption spectroscopy (TDLAS) gas detection,
the laser wavelength stabilization technique also plays an important role in improving
detection performance. We are all aware that free-running lasers are susceptible to thermal
disturbance, electronic aging, and mechanical vibration [10]. As a result, the consequent
wavelength fluctuation (dozens of MHz to hundreds of MHz) would affect the stability
of laser output and even broaden the laser linewidth, which is prone to undermine the
detection performance of TDLAS-based gas sensing systems. Therefore, active wavelength
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stabilization is usually applied in practice to eliminate this kind of influence. For example,
the PDH method has been applied to CRDS and cavity-enhanced absorption spectroscopy
(CEAS) to lock the probe laser in cavity mode [11,12]. As to photoacoustic spectroscopy [13],
Dr. Wang applied the PDH method to lock a high-finesse photoacoustic cavity in 2019, real-
izing an ultrasensitive detection on acetylene detection. The normalized noise equivalent
absorption coefficient was improved to 1.1× 10−11cm−1WHz

−1
2 , which was unprecedented

sensitivity among all the photoacoustic gas sensors by that moment [14]. In addition, by
virtue of the PDH method, doubly resonant photoacoustic systems were proposed and
continuously developed recently, and sub-ppt gas detection sensitivity was achieved with
eight decades dynamic range [15,16]. However, even though the performance of the PDH
method is very attractive, the optical design and electronic control for PDH are very compli-
cated, so it is quite challenging to apply the PDH method to field applications that demand
strong robustness.

In some general conditions of wavelength modulation spectroscopy (WMS) [17–20],
a multi-pass long-path cell is usually used for gas detection instead of a high-finesse
optical or photoacoustic cavity, where strict wavelength locking is not essential. So, some
other wavelength stabilization techniques are also studied and qualified for low-precision
wavelength locking. The most frequently used method is based on the monotonicity of
absorption-induced odd harmonics in the WMS system. In this method, the linear region
around the zero-intersection of the first or third harmonic signal is always served as an
error signal to provide feedback into the laser driving current to lock the wavelength to the
absorption line center [21,22]. This method was reported widely by virtue of its simplicity
and compact size. Wang et al. [23] developed a photoacoustic spectroscopy (PAS) methane
sensor and successfully locked the wavelength of a DFB laser at 1.65 µm within 10.6 MHz.
Zhang et al. [24] reported a 2.004 µm DFB laser locked with a frequency deviation of
6 MHz over 10 min for CO2 measurement. Recently, Cheng et al. [25] demonstrated a DFB
laser locked at 1653.72 nm with a fluctuation of less than 406 kHz by virtue of optimized
PID parameters and successfully applied it for CH4 detection. Compared with the PDH
method, the odd harmonic-based wavelength locking technique is already simplified so
much. However, it still requires a software-based servo loop and additional electronic
circuits to monitor and adjust the laser current in real-time.

As a matter of fact, temperature controllers are always needed in every TDLAS- or
WMS-based gas detection system to make sure that the laser diode operates at a constant
temperature. So, can we figure out a strategy to stabilize the laser wavelength by the
temperature controller itself without adding more software or hardware to the system
anymore? If so, the first step is to develop a high-precision laser temperature controller. To
serve this, a series of temperature controllers have been developed and commercialized
by many manufacturers, such as Thorlabs, Wavelength Electronics, and Stanford Research
Systems. Integrated circuits (ICs) and modules for the applications are also widely available
on the market, such as AMC7820, WTC3243, MAX8521, LTC1923 and so on. In addition,
compact, low-cost laser temperature controllers are developed in the laboratory, achieving
a stability of ±0.01 ◦C [26,27]. However, higher temperature stability is usually needed
in some conditions such as, for example, when the laser wavelength is highly sensitive to
temperature. In this study, we develop a temperature controller based on a commercial
chip MAX1978 and successfully improve the temperature stability to an ultra-high level of
0.5 m ◦C. To our knowledge, this is almost the best temperature-controlling result reported
so far. Considering that the wavelength response towards the temperature of the CH4 laser
diode used in our lab is 100 pm/ ◦C [25], the laser wavelength can be potentially stabilized
at 1653.72 nm with a fluctuation of 5.5 MHz (0.05 pm), ideally. Therefore, the second part
of this study is proposing a strategy to introduce a feedback signal to the temperature
controller to stabilize the laser wavelength dynamically. In the verification experiment, the
central wavelength of the laser diode is locked to the CH4 absorption line at 1653.72 nm
with a fluctuation of less than 19.7 MHz (~0.18 pm). The result reaches the same level as
reported in a previous study [23], but without adding an additional software or hardware
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component. To our knowledge, this is the first report using this kind of strategy for laser
wavelength stabilization. In the end, the temperature controller-based wavelength locking
module is applied to a WMS CH4 sensing system to improve its detection performance and
compare with conventional wavelength scanned WMS mode. For the same concentration
of 500 ppm CH4 sample detection, the 1σ SNR is increased from 71.2 dB to 80.5 dB and the
peak-to-peak uncertainty is improved from 1.95 ppm down to 0.17 ppm. In addition, the
wavelength-locked WMS also has the absolute advantage of fast response speed over a
conventional wavelength-scanned WMS system.

2. Methodology Demonstration

Considering that a temperature controller is utilized for laser wavelength locking in
this study, in the very beginning, the principle of temperature controlling for the laser
diode is introduced briefly based on Figure 1. For commercial applications, a negative
temperature coefficient (NTC) thermistor and a thermoelectric cooler (TEC) are usually
packaged together with the laser chip within the same copper shell. The resistance of
the thermistor indicates the internal temperature of the laser diode, and the TEC can be
controlled to heat and cool the laser chip. The relationship between the thermistor resistance
Rt and its temperature T can be expressed as:

Rt = R0 × exp
[

B ×
(

1
T
− 1

T0

)]
(1)

where R0 is 10 kΩ and T0 is 25 ◦C (297.15 K), B is the material coefficient which is 3950
for our laser diode used in this study. Obviously, the relationship between Rt and T is
nonlinear. In a temperature-controlling loop, the thermistor is usually connected to an
H-bridge circuit as shown in Figure 1c, and the variable resistor Rset is used to set the target
temperature. Differential voltage between VRt and Vset is calculated as error feedback to a
PID controller, and then the output of the PID controller is used to modulate the TEC for
temperature stabilization. At last, the H-bridge is balanced, which means the temperature
is stabilized at the target. At this moment, VRt and Vset can be expressed:

VRt =
Rt

R1 + Rt
·Vre f (2)

Vset =
Rset

R2 + Rset
·Vre f (3)

It is obvious that the relationship between VRt and Rt is nonlinear as well. However, if
we combine Equations (1) and (2) together and simulate the relationship between VRt and
T in a small range, approximate negative linearity is observed, as shown in Figure 1b.

In the next part, the CH4 absorption line at 1653.72 nm is chosen as an example
to explain how wavelength locking works. Standard 2nd and 3rd harmonic curves are
simulated in Figure 2, and the maximum value H2max of 2nd harmonic signal is always
measured to predict gas concentration. However, the symmetric point H3ref of 3rd harmonic
signal as labeled in Figure 2 has nothing to do with the gas concentration and laser power
fluctuations, which has been employed as a reference to locate the absorption center λ0 for
wavelength locking in many studies [21–25]. The monotonic region near H3ref is utilized
as the input of PID controller to dynamically stabilize the laser wavelength at λ0. As to
the reason why 1st harmonic signal is not selected as the reference, it is because a strong
background exists in the 1st harmonic signal due to the residual amplitude modulation
(RAM) effect of the DFB laser [23,28].
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Figure 1. (a) Laser wavelength response towards operating temperature (100 pm/ ◦C) [23]; (b) the
relationship between NTC thermistor voltage and laser temperature; (c) an example of H-bridge
circuit used in temperature-controlling PID loop.
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Figure 2. Simulated 2nd and 3rd harmonic signals based on CH4 absorption line at 1653.72 nm. λ0 is
the absorption center of CH4 gas.

Comparing Figure 1a,b and the monotonicity around H3ref in Figure 2, we find out
that the 3rd harmonic signal can be connected to Vset point for automatic wavelength
locking. The logic chart is depicted in Figure 3. We suppose that the laser wavelength is
fixed at λ0 in the very beginning by constant temperature and driving current. Disturbed by
environmental factors, the laser wavelength may drift to the direction of λ > λ0, and then
the measured 3rd harmonic value would increase from the reference point H3ref, which
means the Vset increase as well. Because the PID controller keeps operating all the time
to make the H-bridge balanced, as a result, the thermistor voltage VRt also increases. The
increase in VRt implies that the resistance Rt of the thermistor increases, which means the
laser temperature decreases referencing Figure 1b. As a result, the laser wavelength would
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decrease back to original λ0 due to the decreased operating temperature. Similarly, if the
laser wavelength drifts to the direction of λ < λ0, the negative feedback controlling loop
also works as displayed in Figure 3. Therefore, the flow chart in Figure 3 indicates that
the temperature controller itself can be used for wavelength locking function so long as it
links the real-time measured 3rd harmonic signal to the Vset point instead of the variable
resistor Rset.
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3. Experiment Verification
3.1. Ultra-Stable Temperature Controller Development

In this section, we design an ultra-stable temperature controller and improve it to
a higher stability level of 0.5 m ◦C by optimizing the PID parameters and power supply
noise. Figure 4 provides the primary electrical connection of the developed temperature
controller, and the H-bridge circuit mentioned in Figure 1c is connected to the differen-
tial input of the PID controller by two voltage followers. The difference between VRt
and Vset is calculated and amplified by 50 times as the error input of the PID network
(C1, C2, C3, R3, R4, R5). The PID controller is a very important part of MAX1978, and its
parameters (C1, C2, C3, R3, R4, R5) could be configured independently outside the commer-
cial chip. The output of the PID controller Vout is used to drive the PWM generator. The
generated PWM signal is used to open and close the MOS gates to control the driving
current of TEC for heating and cooling the laser diode. A single-pole double-throw (SPDT)
switch is set in the diagram, and when the switch S is turned to position a, the circuit acts
as a standard temperature controller. If the switch S is turned to position b, the measured
3rd harmonic signal can be introduced to the temperature-controlling loop for dynamic
wavelength locking. A physical picture of the developed temperature controller is dis-
played in Figure 5, and pins of the laser diode and power supply can be connected to the
circuit board by sockets on the top left. The reference voltage Vref is 2.048 V, provided by
the ADR420 chip, which has an ultralow noise of 1.75 µV. A variable resistor is soldered
to the bottom right corner of the circuit board for Vset adjustment. The voltage VRt of the
thermistor is monitored through an SMA interface by a multimeter (DMM6500, Tektronix,
Beaverton, OR, USA) to calculate the laser diode internal temperature based on Equations
(1) and (2) to evaluate the temperature stability. Another SMA interface soldered on the
right is utilized for 3rd harmonic signal input. The function of the SPDT switch marked
with a yellow arrow has been demonstrated in Figure 4. The circuit parameters used in this
module are listed in Table 1. R1 and R2 are set to 10 kΩ to match the thermistor Rt as part of
the H-bridge sampling circuit. Rset is a high-precision rheostat with a low-temperature drift
of 50 ppm/◦C to guarantee the precision of Vset. C1, C2, C3, R3, R4, R5 are key parameters
of the PID controller, which are chosen based on our experience reported in a previous
study [25]. L1, L2, C4, R5 constitute the basic LC filter to rectify the TEC driving current
from MOS gates.
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Table 1. The important parameters used in the temperature-controlling circuit.

Designator Value Designator Value

R1 10 kΩ C1 0.47 µF

R2 10 kΩ C2 10 µF

R3 1.1 MΩ C3 0.047 µF

R4 20 kΩ C4 1 µF

R5 75 kΩ C5 1 µF

Rset 100 kΩ variable L1 3.3 µH

Rt 10 kΩ @ 25 ◦C L2 3.3 µH

In the following step, the performance of the temperature controller is tested in
advance when it operates in the standard mode (the SPDT switch is turned to position a
in Figure 4). A butterfly-packaged DFB laser [25] is chosen as the object for temperature
control. In the very beginning, as shown in Figure 6a,b, the temperature controller is not
activated, the voltage of the thermistor inside the DFB laser is recorded for a while and the
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corresponding temperature is calculated. It is easy to find that the internal temperature of
the DFB laser changes a lot with room temperature.
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Next, the temperature controller is activated, and the internal temperature of DFB laser
is stabilized at the setpoint immediately. Similarly, the thermistor voltage VRt is monitored
for nearly ten minutes, as shown in Figure 6c, and a fluctuation of 11 µV is achieved. Based
on Equations (1) and (2), the temperature stability is calculated and plotted in Figure 6, and
histogram analysis is performed on the database as displayed in Figure 7. As a result, we
can determine that the collected temperature data has a 98% probability of falling within
the 0.5 m ◦C range. Referencing the wavelength response of 100 pm/ ◦C reported in our
previous paper [29], this gives us confidence that it has the potential to stabilize laser
wavelength within 0.05 pm (5.5 MHz) by virtue of the developed temperature controller.
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Figure 7. Histogram analysis of temperature stability.

In addition to the temperature stability, the time response of the temperature controller
is tested as well. In the experiment, we continuously set several temperature targets by
manually adjusting the variable resistor Rset. We can find that the internal temperature of
the DFB laser will be stabilized quickly despite the temperature being disturbed greatly. For
instance, in Figure 8 inset, it takes only 9 s for the temperature controller to stabilize the DFB
laser from ~36 ◦C to ~30 ◦C. In practice, the wavelength drift of the DFB laser is gradual
and tiny when it operates in free-running mode. Therefore, a minor adjustment of laser
temperature is able to calibrate such wavelength drift. In other words, the response speed
revealed in Figure 8 is high enough to realize efficient wavelength locking to our experience.
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3.2. Laser Wavelength Locking Evaluation

In this section, a fixed wavelength modulation spectroscopy (FWMS) [25] system is
constructed as depicted in Figure 9 to verify the temperature controller for wavelength
locking. A DFB laser operating at 1653 nm is chosen as the light source, which is utilized to
detect the CH4 absorption line at 1653.72 nm. The operating characteristics of a DFB laser
have been measured in our previous study [29]. Line selection for CH4 detection has been
mentioned in references as well [25,29]. A 4 kHz sinusoidal signal (p-p 800 mV) is converted
into the current to modulate the laser output by a commercial driver (LDC501, Stanford
Research Systems, Sunnyvale, CA, USA) with a 25 mA/V conversion ratio; meanwhile, a
40 mA bias current is added by LDC501. Thus, the DFB laser works in the FWMS mode.
The laser output is split by a 1 × 2 coupler into two beams, one of which is detected by a
photodetector (integrated with a miniatured reference cell including constant concentration
CH4). A transimpedance amplifier (TIA) is made to convert the photocurrent into electrical
voltage, and a lock-in amplifier (LIA) is used to measure the absorption-induced harmonic
signals. The 3rd harmonic signal from LIA can be connected to the developed temperature
controller for wavelength locking. Another beam of 1 × 2 coupler is connected to a 3 m
path-length gas cell for sample CH4 detection. In the experiment of Section 3.2, sample
CH4 in different concentrations is provided by a gas mixing system as shown on the right
side of Figure 9, including two flowmeters, pure nitrogen, and 1% methane.
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Figure 9. Schematic of verifying the temperature controller for wavelength locking. PD: photodetec-
tor; TIA: transimpedance amplifier; LIA: lock-in amplifier.

In the first step of the experiment, the operating parameters of the DFB laser should
be determined so that its wavelength can locate at the CH4 absorption center of 1653.72 nm.
The driving current remains unchanged as mentioned in the above paragraph; meanwhile,
the temperature is increased from 28 ◦C to 33 ◦C to realize the wavelength scanning. In
the period, 2nd and 3rd harmonic values are measured by LIA and plotted in Figure 10. It
is observed that when the DFB laser operates at 30.689 ◦C, its wavelength is located at the
CH4 absorption center. The 2nd harmonic reaches its maximum value and the reference
point H3ref mentioned in Figure 2 is measured to be −0.07 mV. Obviously, the measured
3rd harmonic signal cannot be directly connected to the H-bridge circuit for Vset setting.
Based on Equations (1)–(3), when the H-bridge circuit is balanced, the VRt and Vset must
be 897.64 mV to make the DFB laser operate at 30.689 ◦C. So, the real-time measured 3rd
harmonic signal should be adjusted by:

H3a = H3r +

897.64 mV − (−0.07 mV)︸ ︷︷ ︸
H3re f

 (4)

where H3a is the post-adjusted 3rd harmonic signal which can be connected to the H-bridge
circuit already, H3r is the real-time measured 3rd harmonic signal by LIA.
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In the experiment of wavelength locking, the thermistor voltage VRt is monitored to
analyze the temperature fluctuation of the DFB laser as shown in Figure 11. In the very
beginning, the DFB laser operates at 30.689 ◦C by virtue of the temperature controller
working in the standard mode, which means the Vset is set to 897.64 mV by the variable
resistor Rset. Suddenly, the SPDT switch is turned from position a to position b (Figure 4)
to start the wavelength locking mode; subsequently, the thermistor voltage jitters a lot
but soon is stabilized within 4.8 s as depicted in Figure 11. Unfortunately, the voltage VRt
stability is worse compared with the standard mode in the very beginning. There are two
reasons in our opinion. One is the noise level of the measured 3rd harmonic signal is higher
than the voltage Vset of Rset. The noise level connected to the H-bridge circuit may be the
primary factor that limits the wavelength-locking stability. Another reason may be that 3rd
harmonic detection consumes time, which extends the response time of the temperature
controller so that the temperature jitter cannot be corrected in time. In order to analyze the
wavelength-locking stability in detail, VRt data marked with a dashed box in Figure 11 is
plotted in Figure 12a. The corresponding temperature is calculated based on Equations (1)
and (2) and plotted in Figure 12b; histogram analysis is performed as well to evaluate the
temperature stability as shown in Figure 12c. The long-term recorded temperature values
have a 98% probability of falling within 1.8 m ◦C. Referencing the wavelength response of
100 pm/ ◦C, the laser wavelength is stabilized within 0.18 pm (19.7 MHz) by the developed
temperature controller.

3.3. CH4 Detection Improvement Based on the Wavelength-Locked WMS System

The laser wavelength locking technique would bring a series of advantages compared
to conventional a wavelength-scanned WMS system. Due to the laser wavelength being
locked at the CH4 absorption center, the absorption-induced 2nd harmonic signal is a DC
output instead of a harmonic curve. This kind of characteristic enables us to compress
the bandwidth of the lock-in amplifier to suppress noise, and a cumulative averaging
algorithm could be applied as well thanks to the higher response speed. Therefore, we will
evaluate the SNR improvement in detail in this section. First, the conventional wavelength-
scanned WMS system is constructed by adjusting the schematic in Figure 9, sawtooth
waves in frequency of 10 Hz and 4 kHz sinusoidal signal are added together to drive
the DFB laser. The sensing beam of the laser output is connected to a 3 m path-length
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gas cell for CH4 detection. The transmitted light is measured by a photodetector and
amplified by a TIA; afterward, an LIA is employed for 2nd harmonic detection. In the
experiment, the amplitude of 2nd harmonic signal is used to infer the CH4 concentration,
and the standard deviation of a non-absorption baseline is calculated as the 1σ noise level,
and then the SNR could be computed subsequently. As shown in Figure 13a, absorption-
induced 2nd harmonic curves in different lock-in bandwidths from 30 Hz to 100 Hz are
plotted for comparison. Obviously, the 2nd harmonic amplitude decreases with bandwidth
compression. To explore the optimal bandwidth, the noise level and SNR are provided in
Figure 13b. The system achieves the best SNR of 71.2 dB when the lock-in bandwidth is set
to 60 Hz.
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Based on the optimized 60 Hz lock-in bandwidth, several concentrations of 10 ppm,
20 ppm, 50 ppm, 100 ppm, 500 ppm, 1000 ppm and 2000 ppm are provided by the gas
mixing system presented in Figure 9 and used to do the linear test. As a result, an R-square
of 0.99948 is achieved as shown in Figure 14a. When a 500 ppm sample is measured for
20 s, the measurement uncertainty is estimated to be 1.95 ppm, as displayed in Figure 14b.

The results provided by the wavelength-scanned WMS system act as the control group.
Afterward, the laser wavelength is locked at 1653.72 nm, as demonstrated in Section 4,
and the other experimental conditions are consistent with the control group. In the very
beginning, the same optimization experiment is conducted to determine the optimal lock-in
bandwidth. Because the output of LIA is a DC signal in the wavelength-locked mode, the
2nd harmonic amplitude is almost unaffected by the bandwidth as shown in Figure 15.
However, the noise level is continuously decreasing. At last, the wavelength-locked WMS
system achieves a better SNR of 80.5 dB when the low-pass filter bandwidth of LIA is set
to 5 Hz. This bandwidth is much lower than the previous optimal value of 60 Hz in a
wavelength-scanned WMS system.
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Based on the 5 Hz lock-in bandwidth, the same sets of CH4 concentrations are pro-
vided to do the linear test. As a result, an R-square of 0.99973 is achieved as shown in
Figure 16a, which is a little better than wavelength-scanned WMS mode. Correspondingly,
a 500 ppm sample is measured for 20 s for transient uncertainty analysis. In the conven-
tional wavelength scanned mode, only ten valid values can be calculated and collected per
second because the scanning frequency is 10 Hz. However, every data point can be used as
a valid value when the laser wavelength is dynamically locked at the CH4 absorption center.
Figure 16b displays all measured data points in 20 s at a sampling rate of 26.79 kHz. The
peak-to-peak uncertainty is estimated to be 0.33 ppm, which is better than the wavelength-
scanned WMS of 1.95 ppm. This improvement is attributed to the compression of lock-in
bandwidth from 60 Hz down to 5 Hz. In addition, the wavelength-locked WMS mode
provides a large amount of data throughput which only depends on the sampling rate
of an analog-to-digital converter (ADC). This allows us to apply an averaging algorithm
to further reduce the random noise. As shown in Figure 16c, 2679 times averaging is
performed on the raw data in Figure 16b, giving the same response speed of 10 Hz with the
wavelength scanned WMS mode. As a result, the measuring uncertainty has been further
reduced to 0.17 ppm, which is improved by more than one order of magnitude compared to
wavelength-scanned WMS mode, because we discuss the uncertainty improvement based
on a 20 s collected dataset, which is a very short time. In this period, uncertainty coming
from the circuit drift and gas mixing system could be ignored. So, the measurement uncer-
tainty improvement between Figures 14 and 16 is mainly due to the compressed lock-in
bandwidth and averaging algorithm. To our knowledge, 0.17 ppm at a 10 Hz data rate is
a good result for CH4 detection at a wavelength of 1653.72 nm. In other studies, it often
takes tens to hundreds of seconds of integration time to achieve sub-ppm measurement
accuracy or it needs to select a stronger absorption line at mid-infrared region [30–32].
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data in 26.79 kHz sampling rate, (c) Measuring uncertainty analysis after 2679 times averaging.
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4. Conclusions

There are several exciting things reported in this study, as follows. The first one is
the ultra-stable temperature controller is achieved with a 0.0005 ◦C stability. During the
process of development, we conclude that the parameters of the PID network and the
noise level of reference voltage are decisive for making an excellent temperature controller.
Considering that a temperature controller is widely required in laser spectroscopy systems,
we believe this would be interesting to researchers in this field. The second one is that a new
wavelength-locking strategy is proposed based on the developed temperature controller.
This strategy takes advantage of the temperature controller itself without adding additional
software programs or hardware circuits. Compared with the previous methods, it simplifies
the system’s complexity. It should be noted that higher-precision detection of 3rd harmonic
signal would further improve the performance of wavelength locking. The third one is that
the temperature controller-based wavelength locking strategy is successfully applied to the
WMS CH4 sensing system for verification. By virtue of compressed lock-in bandwidth and
averaging algorithm, the system SNR is increased by 9.3 dB and measuring uncertainty
is improved by one order of magnitude. We hope every part reported in this paper, the
ultra-stable temperature controller, new wavelength locking strategy, and improvement
of the WMS system would be helpful for other researchers who are interested in TDLAS
gas sensing.

Honestly, the precision of such a temperature controller-based wavelength locking
technique is not as good as the PDH method or current tuning method. It may be not
competent for applications where a high-finesse optical cavity is required to stabilize. There
are two approaches to further improve the wavelength locking performance. One is to
further boost the temperature-controlling stability, which is very difficult to our knowledge
because 0.0005 ◦C is already challenging. Another approach is to select laser sources whose
wavelength is not sensitive to temperature fluctuation, such as, for example, the vertical
cavity surface emitting laser (VCSEL) instead of the DFB laser.
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