
Citation: Zhang, X.; Wu, W.; Li, J.;

Dong, F.; Wan, S. MVDR-LSTM

Distance Estimation Model Based on

Diagonal Double Rectangular Array.

Sensors 2023, 23, 5094. https://

doi.org/10.3390/s23115094

Academic Editors: Jinrui Wang,

Zongzhen Zhang, Xingkai Yang and

Ke Zhao

Received: 19 April 2023

Revised: 20 May 2023

Accepted: 22 May 2023

Published: 26 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

MVDR-LSTM Distance Estimation Model Based on Diagonal
Double Rectangular Array
Xiong Zhang 1,2,3 , Wenbo Wu 3, Jialu Li 3, Fan Dong 3 and Shuting Wan 1,2,3,*

1 Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric
Power University, Baoding 071003, China; hdjxzx@ncepu.edu.cn

2 Hebei Engineering Research Center for Advanced Manufacturing & Intelligent Operation and Maintenance of
Electric Power Machinery, North China Electric Power University, Baoding 071003, China

3 Department of Mechanical Engineering, North China Electric Power University, Baoding 071003, China;
w15031435169@163.com (W.W.); ljl2481390881@163.com (J.L.); df20000109@163.com (F.D.)

* Correspondence: 220212224080@ncepu.edu.cn; Tel.: +86-137-0332-3816

Abstract: Deep learning algorithms have the advantages of a powerful time series prediction ability
and the real-time processing of massive samples of big data. Herein, a new roller fault distance
estimation method is proposed to address the problems of the simple structure and long conveying
distance of belt conveyors. In this method, a diagonal double rectangular microphone array is used
as the acquisition device, minimum variance distortionless response (MVDR) and long short-term
memory network (LSTM) are used as the processing models, and the roller fault distance data are
classified to complete the estimation of the idler fault distance. The experimental results showed that
this method could achieve high-accuracy fault distance identification in a noisy environment and
had better accuracy than the conventional beamforming algorithm (CBF)-LSTM and functional beam-
forming algorithm (FBF)-LSTM. In addition, this method could also be applied to other industrial
testing fields and has a wide range of application prospects.

Keywords: diagonal double rectangular array; MVDR; LSTM; idler failure distance estimation

1. Introduction

In recent years, due to the increasing emphasis on energy conservation and emission
reduction, straw power plants have developed rapidly. As an important piece of equipment
for conveying materials, the safety of idlers in belt conveyors has a crucial impact on
the smooth operation of the entire conveying system. As the key support and rotating
component of the belt conveyor, the chain reaction caused by the failure of the idler poses
a safety threat to the entire straw power station. The long-term operation, substantial
conveying distances, and huge weight of idlers in harsh working environments necessitate
daily inspections and regular maintenance that not only entail significant time and money
costs, but also allow for some seriously degraded parts to be overdue for replacement.
Therefore, it is of great significance to design non-contact acoustic signal measurement and
fault distance estimation methods suitable for belt conveyor idlers in power stations, so as
to reasonably arrange maintenance activities; reduce time, manpower, and material costs;
and ensure the reliability and safety of mine belt conveyor operation.

In the field of idler bearing fault diagnosis, a method of energy collection was proposed
in [1] that was of certain practical value for bearing fault diagnosis. The authors of [2]
proposed an electromagnetic energy collector for bearing fault diagnosis that improved the
diagnosis efficiency and reduced the difficulty of diagnosis.

With the acceleration of industrial processes, the safety of machinery and equipment
has become the top priority, and methods for the fault diagnosis and condition detection
of machinery and equipment are also constantly improving and upgrading. In recent
years, the use of deep learning to diagnose bearings has also become a popular research
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direction. Zhou proposed a novel combination of discrete probabilistic entropy-based
health indicators (HIs) and long short-term memory (LSTM)-based methods to predict
bearing health. The LSTM model included in the proposed method could accurately predict
bearing health [3]. Aljemely et al. designed a combination of long short-term memory
and large margin nearest neighbor (LSTM-LMNN), which improved work efficiency and
diagnostic accuracy and was superior to traditional diagnostic methods in terms of stability
and reliability [4]. In order to increase the effectiveness of convolutional neural networks
(CNNs) for bearing fault feature recognition, Xie et al. proposed four different CNN hybrid
models, and after an experimental comparison, the CNN-random forest (RF) and CNN-
support vector machine (SVM) algorithms were found to make full use of CNN feature
extraction capabilities [5]. Yang et al. proposed a method based on the combination of
variable mode decomposition (VMD) and a CNN. Firstly, after collecting the motor bearing
fault signal, the motor bearing data were denoised through VMD, and the denoising data
were extracted through a CNN for diagnosis. Experiments showed that the accuracy
of VMD-CNN for motor bearing fault diagnosis was better than that of a CNN [6]. Yu
et al. proposed a novel real-time monitoring method for sediment particles, combining
a stepoelectric nanogenerator driven by particle droplets (PLDD-TENG) and deep learning
technology. By analyzing the output signal of PLDD-TENG, this method could sensitively
reflect different particle types and concentrations [7].

Beamforming suppresses signals in non-selected directions and enhances signals in
selected directions by merging the signals collected by the microphone array; in addition,
it can realize focused pickup in the specified direction, which can effectively improve
the signal-to-noise ratio of the received signal. As beamforming algorithms have become
more popular, they have also played an increasingly important role in the field of sound
source identification [8–11]. MVDR, a commonly used beamforming algorithm, is widely
used in the field of fault diagnosis. The main advantages of the MVDR algorithm are
summarized below.

Efficient fault feature extraction: The MVDR algorithm can effectively extract fault
signal features. Due to its distortion-free nature, the MVDR algorithm can minimize
noise and interference while retaining the fault signal, thereby improving the accuracy of
fault detection.

Excellent spatial resolution: In terms of fault source location, the high spatial resolution
of the MVDR algorithm can provide more accurate fault source location information.

Adaptability: In complex industrial environments, troubleshooting conditions can
change. As an adaptive algorithm, MVDR can automatically adjust parameters according
to changes in the environment, so as to effectively diagnose faults under various conditions.

Robustness: The MVDR algorithm has good robustness for independent and uniformly
distributed noise signals, which allows it to maintain good fault diagnosis performance in
various noise environments.

Subramanian et al. used a deep learning neural network to identify and locate multi-
ple sound sources on the basis of direction of arrival estimation, and experimental results
showed that the proposed method could classify DOAs with high resolution [12]. Con-
sidering the problem of far-field speech processing, Zhang et al. proposed a deep special
beamforming technology that combined a microphone array with multi-channel speech
enhancement based on deep learning and significantly reduced the probability of a far-
field acoustic environment [13]. Yang et al. proposed an MVDR algorithm based on deep
learning for extracting target speakers from hybrid speech that first used the target voice
signal for estimation as the basis for channel selection and then applied the selected signal
to the MVDR algorithm based on deep learning to extract the target speaker from hybrid
speech. This method has achieved good results in both simulation and practical applica-
tions [14]. Ramezanpour and Mosavi proposed a neural beamformer for estimating the
desired signal in noisy and interference environments that consisted of a convolutional
neural network (CNN) and bidirectional long short-term memory (BiLSTM) to estimate
the interference vector of the signal received by the antenna subarray and the sample of
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the desired signal, respectively, achieving a higher signal-to-noise ratio than traditional
beamforming algorithms [15].

The combination of deep learning and beamforming algorithms can better solve some
tricky problems and has unique advantages in accelerating fault diagnosis efficiency and
improving fault diagnosis accuracy, which not only reduces manual operation, but also
makes mechanical equipment run more safely and smoothly. In order to solve the problem
of the harsh working environment and serious noise interference of idlers, an MVDR-LSTM
fault distance estimation model with a diagonal double rectangular array is proposed. This
model can greatly suppress the interference of noise and non-coherent sound sources and
realize the accurate estimation of the failure distance of idlers. At the same time, compared
with the CBF-LSTM and FBF-LSTM models, our model has better robustness.

This article will first explore the relevant theory and historical background of the
MVDR-LSTM roller fault distance estimation model. Secondly, the methods and processes
adopted in this study will be introduced, including the specific steps of data collection and
analysis. Then, we will elaborate on our research results and attempt to provide a deeper
understanding of the MVDR-LSTM idler fault distance estimation model by comparing
and interpreting these results. Finally, we will summarize our findings and explore their
potential impact on the field of fault detection, as well as future research directions.

2. Theory
2.1. Microphone Array

A microphone array is an advanced technology used to capture sound signals that
consists of multiple tiny microphones and can receive sound signals in different direc-
tions. Microphone arrays provide a more accurate and clear sound signal than a single
microphone, because they suppress ambient noise and echo and can focus on receiving
sound in different directions. Microphone arrays are widely used in many fields, such as
video conferencing, speech recognition, and audio signal processing. In video conferencing,
microphone arrays can provide clear voice signals, improving the efficiency and quality of
meetings. In speech recognition, microphone arrays can improve the accuracy of speech
recognition, because they reduce the impact of ambient noise. In audio signal processing,
microphone arrays can realize functions such as spatial filtering and sound source localiza-
tion to improve the quality of audio signals. As a result, microphone arrays have become
an important part of modern communication and audio technology, and they are constantly
improving our daily lives and work experiences [16].

The formation of a microphone array refers to the arrangement of microphones, and
different formations can be adapted to different application scenarios. The common forms
of microphone arrays are shown in Figure 1.
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manner, which is suitable for sound source localization and speech recognition scenarios. 

Figure 1. Microphone array formations: (a) line array, (b) cross-shaped array, (c) L-array.

Line array: Multiple microphones arranged in a straight line. This array is suitable for
scenarios wherein the sound source is moving horizontally.

Cross-shaped array: An array that positions multiple microphones in a cross-shaped
manner, which is suitable for sound source localization and speech recognition scenarios.
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Rectangular array: Multiple microphones arranged in a rectangle. This is suitable for
scenarios wherein sound sources move horizontally and vertically.

U-shaped array: The microphones are arranged in a special U-shape, suitable for
high-quality language recognition. For example, Translator 4.0 developed by iFlytek was
paired with a U-shaped microphone array, which helped improve the accuracy and quality
of sound capture.

L-Array: Multiple microphones arranged in an L-shape. This array is suitable for
scenarios wherein sound needs to be captured within a specific area.

The circular microphone array positions multiple microphones in a circle and has the
following benefits: (1) 360-degree omnidirectionality. The circular microphone array can
achieve 360-degree omnidirectionality in the horizontal direction and can evenly receive
sound from all directions without mechanical rotation or adjusting the orientation of the
microphone. This is useful for applications that need to capture the sounds from the
whole environment, such as speech recognition, voice conferencing, and voice commands.
(2) Eliminating noise and echo. The circular microphone array can use the delay difference
and amplitude difference between multiple microphones in the array to achieve spatial
sound source localization and sound source separation, so that the influence of noise and
echo can be effectively eliminated. This is very helpful for collecting clear speech signals in
noisy environments, thus improving the performance of speech recognition and speech
processing [17,18].

The diagonal double rectangular array proposed in this article consists of two rect-
angles. The distance between the adjacent microphones is equal, and the centers of the
two rectangles are staggered from each other, forming a diagonal line. The advantages of
diagonal double rectangular arrays include: (1) The improved accuracy of sound source
positioning. Since the microphones in a diagonal double rectangular array are staggered,
more sound direction information can be captured, thereby improving the accuracy of
sound source positioning. (2) Reduction in echo and noise interference. The diagonal
double rectangular array can use the signals of multiple microphones for noise reduction
processing, thereby reducing the interference of echo and noise. This is useful for speech
recognition and sound source localization in some noisy environments. (3) Supporting
spatial filtering. The diagonal double rectangular array can use the signals of multiple
microphones for spatial filtering processing, thereby improving the quality of voice signals.
(4) Supporting multi-sound source separation. The diagonal double rectangular array
can realize the separation of multiple sound sources by analyzing the time domain and
frequency domain characteristics of multiple microphone signals. This is of great benefit
for idlers working in environments with complex sounds. In general, the diagonal double
rectangular array has unique advantages in improving the positioning accuracy of sound
sources, reducing echo and noise interference, supporting spatial filtering, and supporting
multi-source separation. Hence, the diagonal double rectangular microphone array was
selected as the acquisition array for idler fault distance signals.

2.2. MVDR

Beamforming technology and signal space wavenumber spectrum estimation are the
two main research directions of free space signal array processing. In order to maximize the
array gain, Capon proposed the MVDR beamformer, also known as the Capon beamformer,
in 1969. MVDR is an adaptive beamforming algorithm based on the maximum signal-to-
noise ratio (SNR) criterion. The MVDR algorithm can adaptively minimize the power in the
desired direction of the array output and maximize the signal-to-drying ratio. It can greatly
improve the resolution and suppress noise in spatial spectral estimation [19–21]. This
study implemented traditional MVDR beamforming in the frequency domain based on the
Acoular library. In the Acoular library, time-domain signals are first processed through the
PowerSpectra class, which performs framing and windowing on the time-domain signals.
Then, they are converted into frequency-domain signals through fast Fourier transform.
Next, the cross spectra between signals at each frequency are calculated, and these cross
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spectral values are stored in a matrix. Subsequently, the SteeringVector class is used to
calculate the steering vector. The steering vector contains the phase information of the
microphone array relative to the signal source. This phase information is used to weight
and add the signals of the microphone array to form a sound beam pointing in a specific
direction. Afterwards, the cross spectral matrix and steering vector are passed to the
BeamformerCapon class. Then, the signal frequency band is divided, and the envelope
spectral slope value is used as an indicator to search for the optimal sub-band and select
the center frequency. By setting the center frequency f0 according to the frequency band
division method of 1/3 octave bandwidth, the upper frequency of the 1/3 octave band
fh = f0 × 3

√
2, and the lower limit frequency fh = f0 ÷ 3

√
2. According to the specified

center frequency and frequency band index, a synthetic beam is synthesized from the
processed microphone channel data to form a sound signal, the feature matrix of the target
sound signal is obtained, and the feature matrix is processed as the input layer of the
LSTM model.

The specific operation steps of MVDR are as follows. Suppose the desired target
location P’ in space is (r0, θ0), the jamming signals are ij(j = 1, 2, 3, 4 · · · J), the interference
location is

(
rj, θj

)
, the array element noise is nt, and the nth element signal at the receiving

end is

x(t) = a(θ0)s(t) +
j=1

∑
J

a
(
θj
)
ij(t) + n(t) (1)

In this formula, the direction of the receiving guide vector a(θ) is based on (r, θ),
which can be expressed as

a(θ) =
[

1, e−j2π
f0d sin(θ)

c , · · · , e−j(N−1)2π
f0d sin(θ)

c

]
(2)

When the constraints are also satisfied, in order to minimize noise, the result of the
objective function optimization is

min
ω

[∣∣∣y(t)2
∣∣∣] = min

ω

(
wHRw

)
(3)

Then, the MVDR weight optimization problem can be expressed as

min
ω

(
wHRw

)
(4)

s.t.
{

wHa(θd) = 1
wHa

(
θij
)
= 0

(5)

The essence of the MVDR beamformer is to solve the weight coefficients of each array.
Then, using the Lagrange multiplier yields

L(w) = wHRw + λ
[
wHa(θd)− 1

]
(6)

After deriving Equation (6), let it be 0, which can be obtained as

∂L(w)

∂w
= 2Rw + λa(θd) = 0 (7)

Then, it is solved as follows:

w = µR−1a(θd) (8)
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According to the MVDR criterion, the optimal value of the array weight is obtained:

wMVDR =
R−1a(θd)

aH(θd)R−1a(θd)
(9)

2.3. LSTM

Recurrent neural networks (RNNs) are robust deep neural networks with high perfor-
mance that process serial data of varying lengths for end-to-end distribution [22]. Long
short-term memory (LSTM) is an advanced RNN architecture that includes the memory
unit proposed by Hocklet and Schmiduber to solve the gradient vanishing problem in
RNNs. As a time-loop network, it uses the “three-gate structure” to obtain the correlation
of large-scale time series data and extract the optimal features [23–25]. The forgetting gate
of the LSTM architecture avoids long-term dependencies and trains valuable information
from historical network units to obtain more meaningful and autonomous information in
sequential data. The data for the input sequence are represented as X = [x1, x2, x3 · · · xm].
Through each time step t, xt ∈ Rs is the input vector, and the hidden layer status is ht ∈ Rl ,
providing the following formula:

ht = f (ht−1, xt) = f (Uht−1 + Wxt−1 + b) (10)

In this formula, U ∈ Rl∗l , W ∈ Rl∗s, and b ∈ Rl are blended learning parameters; f is
a nonlinear activation function; m is the sequence length; s is the size of the input; and l is
the hidden size.

A diagram of the LSTM unit is shown in Figure 2a with hidden state variables ht.
LSTM retains the encoding time phase t of the storage unit ct. The efficiency of the storage
unit is determined by three gates: the input gate it, output gate ot, and forgetting gate ft.
The upgraded equation can be expressed as:

it = sigm(Uiht−1 + Wixt + bi) (11)

ft − sigm
(

U f ht−1 + W f xt + b f

)
(12)

ot = sigm(Uoht−1 + Woxt + bo) (13)

c̃t = tanh(Ucht−1 + Wcxt + bc) (14)

ct = ft � ct−1 + it � c̃t (15)

ht = ot � tanh(ct) (16)

where U ∈ Rl∗l , W ∈ Rl∗s, and b ∈ Rl are the learning optimization parameters; sigm
is an S-type function; tanh is the hyperbolic cut function; and operator � represents the
element-level product.

The main operating points of the LSTM unit are defined according to each phase
of the time t and comprise the following three steps: (1) From the new input functions
xt and early hidden state ht−1, one can obtain the forgetting gate ft, whose values range
from 0 to 1. When the value of ft reaches 1, the last memory cell ct−1 of incoming data
is strongly preserved. On the other hand, when the value of ft reaches 0, the incoming
data are distributed and cannot be retained. (2) Input gates can be removed from the new
input functions xt and early hidden state ht and added to the memory cell, specifying ct.
(3) Therefore, the output gate must select an item from the memory cell that can be processed
to form a new hidden state ht [26–29].
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The overall LSTM model is shown in Figure 2b. The LSTM model has two hidden
layers, an input layer, and an output layer. When viewed separately, it is a simple BP neural
network, but as time passes, the hidden layer information h, c also begins to be processed,
forming a complete LSTM model.

3. Simulation
3.1. MVDR Algorithm Simulation

The MVDR algorithm was simulated by MATLAB, and the parameters set are shown
in Table 1. The desired signal angle was set to 10, and two interfering signals were added
at angles of −30 and 30. The simulation analysis showed that the waveform signal with
an angle of 10 was convex, and the angle in the −30 and 30 directions was effectively
suppressed. It can be seen that the effect of MVDR in the direction of noise suppression
was obvious. See Figure 3.

Table 1. Simulation parameters.

Parameter Name Parameter Value

Number of arrays 18
Desired signal angle 10

Interference signal angle −30, 30
SNR 10
INR 10

Number of stories 100
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3.2. Microphone Array Formation Selection

The simulation results of the microphone array are shown in Figure 4, and the sound
source position of the diagonal double rectangular array was closest to the true value
and the suppression effect on the side lobes. The main lobe of the uniform straight array
was narrower but it covered a greater area, and the results were less accurate. Although
the position of the main sound source could be accurately located, the interference from
other sound sources appeared, and the suppression effect on the side lobe was not ideal,
producing an error. The cross-shaped array was relatively uniform, and the main lobe of
the linear array was more prominent, but there was still a problem of inaccurate positioning.
Due to the existence of too many main lobes, the rectangular array had the most obvious
inhibition effect on the side lobes, but the localized main lobe area was too large to play
the role of precise positioning. Therefore, the proposed double rectangular diagonal array
had the best robustness and was most suitable as a microphone array for an idler failure
distance estimation model.
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4. Experiments
4.1. LSTM Model Parameter Settings

The LSTM model consisted of one input layer, two hidden layers, one fully connected
layer, and one output layer. When the hidden layer was set to one layer, the effect achieved
was not ideal. After increasing it to two layers, the demand was already met. When
increasing it to three layers, the calculation time of the model increased. Therefore, two
hidden layers were used. The accuracy of the model with different numbers of hidden
layers is shown in Figure 5. We used the cross-entropy loss function as the objective
function to guide the learning of network parameters and selected Softmax as the activation
function. Softmax is an activation function specifically designed for multi-class problems. It
can convert a set of real numbers into an output and a probability distribution of 1, which is
very suitable for the output layer probability prediction of multiple-classification problems.
As the optimization method, we selected Adam. Adam optimizers are some of the most
popular optimizers in deep learning. They are suitable for a wide variety of problems,
including models with sparse or noisy gradients. Their ability to be easily fine-tuned makes
it possible to obtain good results quickly; in fact, the default parameter configuration usually
achieves good results. Adam optimizers combine the best of AdaGrad and RMSProp. Adam
uses the same learning rate for each parameter and adapts independently as the learning
progresses.
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4.2. Experimental Setup

The diagonal double rectangular microphone array was used as a sound signal ac-
quisition device. The sampling frequency was 16,000 Hz, the number of sampling points
was 1024, and the device consisted of 8 MEMS microphones and microphone holders. In
the experiment, five positions were selected as sound source points. The distance between
each sound source points was 0.5 m, and the microphone array was 1 m away from the
ground and 1 m away from the central sound source, as shown in the schematic diagram in
Figure 6.
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Figure 6. Schematic diagram of the experimental layout: (a) experimental schematic diagram,
(b) field experiment diagram.

4.3. Experimental Process

The flow chart of the experiment is shown in Figure 7, and the specific experimental
flow is as follows:

Step 1—The microphone array was used to collect the idler fault audio signal.
Step 2—MVDR processing was performed on the collected signal to generate idler fault
distance data.
Step 3—We processed the data again to build the dataset.
Step 4—We divided the data into the training set (90%) and testing set (10%).
Step 5—We trained and tested the model to draw conclusions.
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4.4. Background Noise Interference Experiment

White noise was used as background noise to collect the sound signal of the idler, and
the waveform diagram obtained is shown in Figure 8. The fault characteristic information
of the idler was masked by the white noise, so as to imitate the environment during
on-site inspection.
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Figure 8. Roller acquisition signal waveform under white noise interference.

After beamforming the acquired sound signal, the processed data were passed to
the LSTM model. The data samples were processed 100 times, and the number of data
(samples) passed to the program for training at a time (batch_size) was 16. The accuracy and
loss rates of the training set and the test set were observed as the model performance, and
the accuracy of the training and test sets of the MVDR-LSTM model gradually converged
after 65 iterations, with the accuracy remaining at 100% for both. The loss rate remained
steady after 65 iterations as the number of iterations increased, and the results are shown
in Figure 9.
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4.5. Impact Noise Interference Experiment

Under the same experimental conditions, the background noise was replaced with
irregular impact interference noise. The obtained waveform is shown in Figure 10, and
the impact noise covered part of the fault characteristics, showing a waveform with higher
amplitude, which increased the difficulty of estimating the fault distance of the idler.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 17 
 

 

4.5. Impact Noise Interference Experiment 
Under the same experimental conditions, the background noise was replaced with 

irregular impact interference noise. The obtained waveform is shown in Figure 10, and 
the impact noise covered part of the fault characteristics, showing a waveform with higher 
amplitude, which increased the difficulty of estimating the fault distance of the idler. 

 
Figure 10. Waveform diagram of idler acquisition signal under impact noise interference. 

Similarly, 100 iterations were performed on the newly generated data samples, and 
the number of data (samples) passed to the program for training (batch_size) was 16. The 
accuracy and loss rates of the training and test sets are shown in Figure 11. The accuracy 
of the training and test sets of the MVDR-LSTM model converged after 80 iterations, and 
the loss rate converged after 85 iterations. 

  
(a) (b) 

Figure 11. LSTM model performance under impact noise interference: (a,b) accuracy and loss rate 
of training and test sets, respectively. 

4.6. Evaluation Criteria and Comparison of Models 
4.6.1. Data Comparison for Diagonal Double Rectangular Microphone Array 

In order to verify the superiority of the proposed model, the diagonal double rectan-
gular array was used as the acquisition device, and the MVDR-LSTM, CBF-LSTM, and 
FBF-LSTM models were used as the comparison models. We set the number of data (sam-
ples) passed to the program for training at a time (batch_size) as 16, the activation function 
was Softmax, and the optimizer was Adam. Under background noise interference, the 
accuracy of the three models, the confusion matrix classification results, and KPCA di-
mensionality reduction analysis were used as evaluation criteria. The accuracy results ob-
tained over 10 experiments are shown in Figure 12. The accuracy of the MVDR-LSTM 
model was higher and more stable than that of the CBF-LSTM and FBF-LSTM models, 
with average accuracy values of 99.74%, 94.60%, and 74.69%, respectively. The highest 
values were 100%, 100%, and 86.78%, and the lowest values were 98.32%, 89.52%, and 
60.33%, respectively. Based on the data of the 10 experiments, we found that the average 
accuracy of the MVDR-LSTM model was higher than that of the other two models. 

Figure 10. Waveform diagram of idler acquisition signal under impact noise interference.

Similarly, 100 iterations were performed on the newly generated data samples, and
the number of data (samples) passed to the program for training (batch_size) was 16. The
accuracy and loss rates of the training and test sets are shown in Figure 11. The accuracy of
the training and test sets of the MVDR-LSTM model converged after 80 iterations, and the
loss rate converged after 85 iterations.
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4.6. Evaluation Criteria and Comparison of Models
4.6.1. Data Comparison for Diagonal Double Rectangular Microphone Array

In order to verify the superiority of the proposed model, the diagonal double rectan-
gular array was used as the acquisition device, and the MVDR-LSTM, CBF-LSTM, and
FBF-LSTM models were used as the comparison models. We set the number of data
(samples) passed to the program for training at a time (batch_size) as 16, the activation
function was Softmax, and the optimizer was Adam. Under background noise interference,
the accuracy of the three models, the confusion matrix classification results, and KPCA
dimensionality reduction analysis were used as evaluation criteria. The accuracy results
obtained over 10 experiments are shown in Figure 12. The accuracy of the MVDR-LSTM
model was higher and more stable than that of the CBF-LSTM and FBF-LSTM models, with
average accuracy values of 99.74%, 94.60%, and 74.69%, respectively. The highest values
were 100%, 100%, and 86.78%, and the lowest values were 98.32%, 89.52%, and 60.33%,
respectively. Based on the data of the 10 experiments, we found that the average accuracy
of the MVDR-LSTM model was higher than that of the other two models.
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Figure 12. Line chart illustrating the accuracy of the three models for the diagonal double rectangular array.

We used a confusion matrix to compare the classification results with the actual
measured values and displayed the accuracy of the classification results in the same
confusion matrix. As shown in Figure 13, we found that the MVDR-LSTM model achieved
perfect prediction results in all categories without misclassification. The CBF-LSTM model
had some classification errors, while FBF-LSTM demonstrated more misclassification, so
the MVDR-LSTM model was more effective.
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The KPCA dimensionality reduction diagram of the idler fault distance data sample
is shown in Figure 14. The feature expression distribution learned by the MVDR-LSTM
model showed the clearest boundary, so the extracted features were more easily segmented,
which meant that it was easier to classify each fault distance category. There was much
evidence of feature misclassification by the CBF-LSTM and FBF-LSTM models, and the
effect was not good.
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Figure 14. KPCA dimensionality reduction diagram for each model with the diagonal double
rectangular array: (a–c) MVDR-LSTM, CBF-MVDR, and FBF-LSTM KPCA dimensionality reduction
analyses, respectively.

4.6.2. Data Comparison for Circular Microphone Array

The MVDR-LSTM, CBF-LSTM, and FBF-LSTM models in the circular array were
selected as comparison models. We set the number of data (samples) passed to the program
for training at a time (batch_size) as 16, the activation function was Softmax, and the
optimizer was Adam. Under background noise interference, the accuracy of the three
models, the confusion matrix classification results, and KPCA dimensionality reduction
analysis were used as evaluation criteria. The accuracy results obtained over 10 experiments
are shown in Figure 15. The accuracy of the MVDR-LSTM model was higher and more
stable than that of the CBF-LSTM and FBF-LSTM models, with average accuracy values
of 89.72%, 85.33%, and 74.53%, respectively. The highest values were 93.33%, 93.33%, and
82.32%, and the lowest values were 86.78%, 54.28%, and 60.00%, respectively. Based on the
data of 10 experiments, we found that the average accuracy of the MVDR-LSTM model
was higher than that of the other two models.
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Figure 15. Line chart illustrating the accuracy of the three models for the circular array.
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The confusion matrix of the roller failure distance data sample of the circular array is
shown in Figure 16. We found that the sample classification results of the MVDR-LSTM
model included less misclassification, and there were further advantages over the other
two models.
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The KPCA dimensionality reduction diagram of the idler fault distance data sample
obtained by the circular array acquisition signal is shown in Figure 17. Although the
boundary shown by the feature distribution expression of the three types of models was
not obvious, the classification effect of MVDR-LSTM was the best, and it demonstrated less
data misclassified compared with the other two models.
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Through the comparative analysis of the above methods, we observed that the effect
of acquiring signals using a diagonal double rectangular array in a noisy interference
environment was better than when using a circular array, and the MVDR-LSTM model
presented substantial advantages in all aspects compared with the other five models, so the
MVDR-LSTM model was selected as the fault distance estimation model.

5. Conclusions

In this paper, an MVDR-LSTM model for idler fault distance estimation was proposed.
The model was tested in two different interference environments, and the results were
compared with five other models to reach the following conclusions:

1. Due to the special structure of an idler, the human diagnosis steps are cumbersome
and time is wasted. Based on deep learning, our model removed the tedious step of
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manually extracting idler fault features, which could greatly shorten the time required
and improve the efficiency of idler fault diagnosis.

2. Through simulation experiments, we found that the diagonal dual rectangular mi-
crophone array had higher resolution and noise resistance compared to the other
microphone arrays and could be beneficial to the estimation of roller fault distance.

3. After adjusting the model structure and parameters, we trained the generated idler
fault distance samples. The accuracy of the proposed model was 100%, with better
performance than the other models and results closer to the true values.

4. Five fault locations during idler operation were analyzed, and the experimental results
showed that the proposed model had the ability to estimate the fault distance and
provide better robustness. It could be used as a standard for judging the fault distance
of idlers and provide ideas for combining beamforming algorithms and deep learning
with idler fault diagnosis.

The main advantage of LSTM is its ability to learn and remember long-term sequence
dependencies. However, compared to CNNs, LSTM models have higher computational
complexity because they contain gating mechanisms and time-step dependencies, resulting
in greater computational costs in the training and inference process, which may require
a longer training time and higher computing resources. Thus, it is necessary to continue to
optimize the model in future research to reduce the computational costs and shorten the
computing time.

Author Contributions: Conceptualization, F.D. and J.L.; methodology, S.W.; software, W.W.; val-
idation, S.W., W.W. and X.Z.; formal analysis, S.W.; investigation, F.D. and J.L.; resources, X.Z.;
data curation, W.W.; writing—original draft preparation, S.W.; writing—review and editing, X.Z.
and W.W.; visualization, S.W.; supervision, F.D. and W.W.; project administration, X.Z.; funding
acquisition, X.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (52105098),
the Natural Science Foundation of Hebei Province (E2021502038), and the Fundamental Research
Funds for the Central Universities (2023MS130).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, L.; Zhang, F.; Qin, Z.; Han, Q.; Wang, T.; Chu, F. Piezoelectric energy harvester for rolling bearings with capability of

self-powered condition monitoring. Energy 2022, 238, 121770. [CrossRef]
2. Zhang, Y.; Cao, J.; Zhu, H.; Lei, Y. Design, modeling and experimental verification of circular Halbach electromagnetic energy

harvesting from bearing motion. Energy Convers. Manag. 2019, 180, 811–821. [CrossRef]
3. Zhou, Y.; Kumar, A.; Gandhi, C.P.; Vashishtha, G.; Tang, H.; Kundu, P.; Singh, M.; Xiang, J.W. Discrete entropy-based health

indicator and LSTM for the forecasting of bearing health. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 12. [CrossRef]
4. Aljemely, A.H.; Xuan, J.; Al-Azzawi, O.; Jawad, F.K. Intelligent fault diagnosis of rolling bearings based on LSTM with large

margin nearest neighbor algorithm. Neural Comput. Appl. 2022, 34, 19401–19421. [CrossRef]
5. Xie, W.; Li, Z.; Xu, Y.; Gardoni, P.; Li, W. Evaluation of Different Bearing Fault Classifiers in Utilizing CNN Feature Extraction

Ability. Sensors 2022, 22, 3314. [CrossRef]
6. Yang, Q.; Zhang, J.; Chen, L.; Wu, D.S. Fault diagnosis of motor bearing based on improved convolution neural network based on

VMD. In Proceedings of the 31st Chinese Control and Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 405–409.
7. Yu, J.; Wen, Y.; Yang, L.; Zhao, Z.; Guo, Y.; Guo, X. Monitoring on triboelectric nanogenerator and deep learning method. Nano

Energy 2021, 92, 106698. [CrossRef]
8. Chen, L.; Choy, Y.S.; Wang, T.G.; Chiang, Y.K. Fault detection of wheel in wheel/rail system using kurtosis beamforming method.

Struct. Health Monit. 2020, 19, 495–509. [CrossRef]
9. Cabada, E.C.; Leclere, Q.; Antoni, J.; Hamzaoui, N. Fault detection in rotating machines with beamforming: Spatial visualization

of diagnosis features. Mech. Syst. Signal Process. 2017, 97, 33–43. [CrossRef]

https://doi.org/10.1016/j.energy.2021.121770
https://doi.org/10.1016/j.enconman.2018.11.037
https://doi.org/10.1007/s40430-023-04042-y
https://doi.org/10.1007/s00521-022-07353-8
https://doi.org/10.3390/s22093314
https://doi.org/10.1016/j.nanoen.2021.106698
https://doi.org/10.1177/1475921719855444
https://doi.org/10.1016/j.ymssp.2017.04.018


Sensors 2023, 23, 5094 17 of 17

10. Sun, S.L.; Wang, T.Y.; Yang, H.X.; Chu, F.L. Damage identification of wind turbine blades using an adaptive method for compressive
beamforming based on the generalized minimax-concave penalty function. Renew. Energy 2022, 181, 59–70. [CrossRef]

11. He, T.; Xiao, D.H.; Pan, Q.; Liu, X.D.; Shan, Y.C. Analysis on accuracy improvement of rotor–stator rubbing localization based on
acoustic emission beamforming method. Ultrasonics 2014, 54, 318–329. [CrossRef]

12. Subramanian, A.S.; Weng, C.; Watanabe, S.; Yu, M.; Yu, D. Deep learning based multi-source localization with source splitting
and its effectiveness in multi-talker speech recognition. Comput. Speech Lang. 2022, 75, 101360. [CrossRef]

13. Zhang, X.L. Deep ad-hoc beamforming. Comput. Speech Lang. 2021, 68, 101201. [CrossRef]
14. Yang, Z.; Guan, S.; Zhang, X.L. Deep ad-hoc beamforming based on speaker extraction for target-dependent speech separation.

Speech Commun. 2022, 140, 87–97. [CrossRef]
15. Ramezanpour, P.; Mosavi, M.-R. Two-Stage Beamforming for Rejecting Interferences Using Deep Neural Networks. IEEE Syst. J.

2021, 15, 4439–4447. [CrossRef]
16. Tao, T.; Zheng, H.; Yang, J.; Guo, Z.; Zhang, Y.; Ao, J.; Chen, Y.; Lin, W.; Tan, X. Sound Localization and Speech Enhancement

Algorithm Based on Dual-Microphone. Sensors 2022, 22, 715. [CrossRef]
17. Ahamed, P.S.S.; Duraiswamy, P. Virtual Sensing Active Noise Control System with 2D Microphone Array for Automotive

Applications. In Proceedings of the International Conference on Signal Processing and Integrated Networks, Noida, India, 7–8
March 2019; pp. 151–155.

18. Wakabayashi, Y.; Yamaoka, K.; Ono, N. Rotation-Robust Beamforming Based on Sound Field Interpolation with Regularly
Circular Microphone Array. In Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 771–775.

19. Kidav, J.U.; Sivamangai, N.M.; Pillai, M.P.; Sreejeesh, S.G. A broadband MVDR beamforming core for ultrasound imaging.
Integration 2021, 81, 221–233. [CrossRef]

20. Huang, Q.H.; Hu, R.; Fang, Y. Real-valued MVDR beamforming using spherical arrays with frequency invariant characteristic.
Digit. Signal Process. 2016, 48, 239–245. [CrossRef]

21. Li, J.; White, P.R.; Bull, J.M.; Leighton, T.G.; Roche, B.; Davis, J.W. Passive acoustic localisation of undersea gas seeps using
beamforming. Int. J. Greenh. Gas Control 2021, 108, 103316. [CrossRef]

22. Ngoc, H.V.; Mayer JR, R.; Bitar-Nehme, E. Deep learning LSTM for predicting thermally induced geometric errors using rotary
axes’powers as input parameters. CIRP J. Manuf. Sci. Technol. 2022, 37, 70–80. [CrossRef]

23. Nemani, V.P.; Lu, H.; Thelen, A.; Hu, C.; Zimmerman, A.T. Ensembles of probabilistic LSTM predictors and correctors for bearing
prognostics using industrial standards. Neurocomputing 2022, 491, 575–596. [CrossRef]

24. Liu, J.; Pan, C.; Lei, F.; Hu, D.; Zuo, H. Fault prediction of bearings based on LSTM and statistical process analysis. Reliab. Eng.
Syst. Saf. 2021, 214, 107646. [CrossRef]

25. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2014, 61, 85–117. [CrossRef] [PubMed]
26. Wang, Q.; Yu, Y.; Ahmed, H.O.A.; Darwish, M.; Nandi, A.K. Open-Circuit Fault Detection and Classification of Modular Multilevel

Converters in High Voltage Direct Current Systems (MMC-HVDC) with Long Short-Term Memory (LSTM) Method. Sensors 2021,
21, 4159. [CrossRef]

27. Yin, A.; Yan, Y.; Zhang, Z.; Li, C.; Sánchez, R.-V. Fault Diagnosis of Wind Turbine Gearbox Based on the Optimized LSTM Neural
Network with Cosine Loss. Sensors 2020, 20, 2339. [CrossRef]

28. Zheng, J.; Liao, J.; Chen, Z. End-to-End Continuous/Discontinuous Feature Fusion Method with Attention for Rolling Bearing
Fault Diagnosis. Sensors 2022, 22, 6489. [CrossRef] [PubMed]

29. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.renene.2021.09.024
https://doi.org/10.1016/j.ultras.2013.04.017
https://doi.org/10.1016/j.csl.2022.101360
https://doi.org/10.1016/j.csl.2021.101201
https://doi.org/10.1016/j.specom.2022.04.002
https://doi.org/10.1109/JSYST.2020.3034957
https://doi.org/10.3390/s22030715
https://doi.org/10.1016/j.vlsi.2021.07.006
https://doi.org/10.1016/j.dsp.2015.09.021
https://doi.org/10.1016/j.ijggc.2021.103316
https://doi.org/10.1016/j.cirpj.2021.12.009
https://doi.org/10.1016/j.neucom.2021.12.035
https://doi.org/10.1016/j.ress.2021.107646
https://doi.org/10.1016/j.neunet.2014.09.003
https://www.ncbi.nlm.nih.gov/pubmed/25462637
https://doi.org/10.3390/s21124159
https://doi.org/10.3390/s20082339
https://doi.org/10.3390/s22176489
https://www.ncbi.nlm.nih.gov/pubmed/36080947
https://doi.org/10.1162/neco.1997.9.8.1735

	Introduction 
	Theory 
	Microphone Array 
	MVDR 
	LSTM 

	Simulation 
	MVDR Algorithm Simulation 
	Microphone Array Formation Selection 

	Experiments 
	LSTM Model Parameter Settings 
	Experimental Setup 
	Experimental Process 
	Background Noise Interference Experiment 
	Impact Noise Interference Experiment 
	Evaluation Criteria and Comparison of Models 
	Data Comparison for Diagonal Double Rectangular Microphone Array 
	Data Comparison for Circular Microphone Array 


	Conclusions 
	References

