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Abstract: Changes in pig behavior are crucial information in the livestock breeding process, and
automatic pig behavior recognition is a vital method for improving pig welfare. However, most
methods for pig behavior recognition rely on human observation and deep learning. Human ob-
servation is often time-consuming and labor-intensive, while deep learning models with a large
number of parameters can result in slow training times and low efficiency. To address these issues,
this paper proposes a novel deep mutual learning enhanced two-stream pig behavior recognition
approach. The proposed model consists of two mutual learning networks, which include the red–
green–blue color model (RGB) and flow streams. Additionally, each branch contains two student
networks that learn collaboratively to effectively achieve robust and rich appearance or motion
features, ultimately leading to improved recognition performance of pig behaviors. Finally, the
results of RGB and flow branches are weighted and fused to further improve the performance of
pig behavior recognition. Experimental results demonstrate the effectiveness of the proposed model,
which achieves state-of-the-art recognition performance with an accuracy of 96.52%, surpassing other
models by 2.71%.

Keywords: pig breeding; behavior recognition; computer vision; two stream mutual learning;
animal welfare

1. Introduction

Behavior changes play a crucial role in the pig breeding process. Accurately monitoring
and understanding pig behavior is essential for improving pig welfare [1], predicting their
health status, and facilitating the development of intelligent farming. To achieve promising
pig behavior recognition performance, numerous researchers have conducted extensive
studies. These studies can be broadly classified into two categories: sensor-based and
computer vision-based approaches.

The first group of techniques relies on sensor-based monitoring of pig behavior. Several
researchers have designed automatic monitoring systems that use sensors, such as infrared-
sensitive cameras for real-time monitoring of pig activities [2] and behavior measurement.
Other methods employ high-frequency radiofrequency identification (HF RFID) systems
for monitoring individual drinking behavior [3] or pressure pads to track lame behavior in
pigs [4]. However, these techniques involve physical contact with the pigs that can lead to
stress and inaccurate measurements.

The second group of methods is based on computer vision. For instance, Zhang et al. [5]
proposed a two-stream convolutional neural network for pig behavior recognition, where
the feature extraction network is either a residual network (ResNet) or an inception network.

Zhuang et al. [6] developed a pig feeding and drinking behavior recognition model
based on three models: VGG19, Xception, and MobileNetV2. They also designed two
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systems to monitor pig behaviors. Their final results demonstrated that the MobileNetV2-
trained model had a significant advantage in pig behavior recognition, with a recall rate
above 97%.

Wang et al. [7] implemented an improved HRNet-based method for joint point detec-
tion in pigs. By employing CenterNet to determine the posture of pigs (whether they are
lying or standing), and then implementing the HRST approach for joint point detection in
standing pigs, they achieved an average detection accuracy of 77.4%.

Luo et al. [8] proposed a channel-based attention model for real-time detection of pig
posture. They compared their model with other popular network models, such as ResNet50,
DarkNet53, and MobileNetV3, and showed that their proposed model outperformed the
other models in terms of accuracy. They proved that the channel-based attention model is a
promising approach for real-time pig posture detection [9].

Zhang et al. [10] presented an SBDA-DL, which is a deep learning-based real-time
behavior-detection algorithm for sows. They designed it to detect three typical behaviors
of sows: drinking, urinating, and sitting. The algorithm utilizes a combination of convolu-
tional neural networks (CNN) and recurrent neural networks (RNN), along with a transfer
learning approach, to achieve a high level of accuracy in behavior detection.

The experimental results showed that the average detection accuracy, measured by
mean average precision (mAP), reached 93.4%, indicating the effectiveness of the proposed
approach. The SBDA-DL algorithm provides a non-invasive method for monitoring sow
behavior, which can reduce labor costs and enhance animal welfare in pig farming.

Li et al. [11] proposed a multi-behavioral spatio-temporal network model for pigs.
By comparing it with a single-stream 3D convolutional model, the proposed model achieved
a top-one accuracy of 97.63% on the test set. This multi-behavioral spatio-temporal network
model provides a new approach for recognizing pig behaviors [12]. It has the potential to
improve the efficiency of pig farming and to ensure animal welfare [13].

In summary, sensor-based methods are vulnerable to collision damage, resulting
in inaccurate recognition and causing stress to the pigs both mentally and physically.
Meanwhile, although deep-learning-based methods have achieved successful recognition
results, their large parameter sizes lead to lengthy training and testing times, limiting their
practical deployment on low-memory and low-capacity devices.

To overcome these challenges, we propose a novel two-stream mutual-learning (TSML)
model for pig behavior recognition, aiming at improving the efficiency of pig farming and
ensuring animal welfare. In comparison to other methods, TSML is more accurate and
efficient in recognizing pig behavior. Our method is characterized by the cooperation
between the RGB and flow streams that enables it to extract both appearance and temporal
information efficiently. It also allows the model to extract critical feature information while
avoiding irrelevant interference. Moreover, the mutual learning strategy improves the
accuracy of behavior recognition by enabling the two student networks in each stream to
learn collaboratively, gaining more robust and richer features in a shorter time. Compared
with other methods that use either single-stream convolutional networks or multi-stream
networks, our proposed model outperforms them in terms of accuracy, while being more
efficient with a smaller number of parameters. This makes it more feasible to deploy on
low-memory and low-capacity devices. Additionally, our unique dataset of pig behavior
videos allows for more precise and reliable behavior detection and analysis, making our
method practical for use in pig farming applications. Overall, our proposed two-stream
mutual-learning method offers significant improvements over existing methods in terms of
accuracy and efficiency while being practical for real-world applications.

The impact of our research on pig breeding is significant. Efficient monitoring of pig
behavior is essential for improving pig welfare and for increasing the economic benefits
of pig farms. Accurately monitoring and understanding pig behavior also allows for the
prediction of their health status and facilitates the development of intelligent farming.
The proposed TSML model offers a non-invasive and efficient method for monitoring pig
behavior. In addition, by utilizing our unique dataset of pig behavior videos, future pig
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farming can be modernized with more precise and reliable behavior detection and analysis.
Overall, our proposed method and dataset could significantly impact the pig breeding
industry and enhance animal welfare.

Overall, the contributions of this paper can be summarised below:

• We established a novel dataset of pig behavior recognition dataset, which contains six
categories. To provide a comprehensive understanding of pig behavior recognition, we
have included six categories in our dataset, with each category consisting of roughly
600 videos. Each video varies in length from 5 to 10 s, providing sufficient footage
to detect and analyze behavior patterns in pigs. These videos were collected over
a period of one month utilizing six Hikvision cameras capturing over 85 pigs on a
farm. All of the factors mentioned above have contributed to the creation of a unique
and diverse dataset, collected on this farm, that exhibits better diversity in terms
of illumination, angles, and other variables. This approach ensures that the dataset
accurately represents the various scenarios and environments in which pigs behave,
thereby resulting in more precise and reliable behavior detection and analysis.

• We first propose a novel pig behavior recognition method based on a two-stream
mutual-learning framework. This model can efficiently extract more robust and richer
features via mutual learning in RGB and flow paths separately and will extract both
appearance and temporal information. Simultaneously, the decisions of the RGB and
flow branches can be merged to gain improved pig behavior recognition performance.
Specifically, our model achieves the best performance for pig behavior recognition
task, with about a 2.71% improvement in the existing model.

• Several experiments were conducted to validate the superiority of the proposed
model. The experiments included evaluating the performance of the proposed models,
evaluating the behavior recognition performance of different models with or without
mutual learning, evaluating the performance of the proposed model based on two
identical networks, and evaluating the performance of the proposed model based on
two different networks.

The rest of this paper can be organized as follows: Section 2 provides a detailed de-
scription of the methods and dataset used in the study. Section 3 presents the experimental
results and analysis. In Section 4, we discuss the findings of our research. Finally, we
conclude the paper in Section 5.

2. Materials and Methods
2.1. Datasets

The video data were collected from a pig farm located in Xiangfen County Agricul-
tural Green Park Agricultural Company Limited, Linfen City, Shanxi Province. The farm
encompasses 20 pig barns, each of which contains drinking water and feeding equipment
as shown in Figure 1. For this study, six barns were selected, housing a total of 85 three-
yuan fattening pigs. To ensure effective data collection, one camera was installed on each
of the six barns at a height of approximately 3 m from the ground. The cameras were
angled at 45 degrees diagonally toward the aisle and recorded videos at 25 fps with a
resolution of 1920× 1080 pixels. The specific camera utilized in this research was Hikvision
DS-2DE3Q120MY-T/GLSE, and the whole data collection process lasted for 45 consecutive
days, from 12 August 2022 to 25 September 2022.

The final pig behavioral recognition dataset contains six categories, including fighting,
drinking, eating [14], investigating, lying, and walking (as shown in Figure 2). Specifically,
each category consists of approximately 600 videos, each lasting between 5 and 8 s. In total,
the dataset contained 3606 videos, of which 80% (2886 samples) were utilized for training,
and 20% (720 samples) were employed for testing. Further, the detailed distribution of the
collected videos of different behavioral categories is shown in Table 1.



Sensors 2023, 23, 5092 4 of 16

Table 1. Number of videos of different pig behaviours.

Behavior Number

Fighting 605
Drinking 597

Eating 607
Investigating 602

Lying 601
Walking 594

Total 3606

Figure 1. Environment of the pig farm.

Lying

Drinking Eating Fighting

Walking Investigating

Figure 2. Sample of pig behavioural recognition dataset.
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2.2. Problem Definition

This paper presents a novel TSML approach for pig behavior recognition. The model
comprises two branches, spatial and temporal, each of which contains two student networks
that perform mutual learning. The spatial branch extracts appearance features from still
image frames while the temporal branch focuses on the optical flow motion in the video
frames. The results of the two branches are subsequently weighted and fused to yield
the final recognition result for pig behavior. The two-stream strategy employed in this
approach effectively captures the complementary nature of the appearance and motion
information underlying the video [15], while the mutual learning design further enhances
the efficiency and accuracy of the model in recognizing pig behavior [16].

The framework of the proposed TSML is presented in Figure 3. The input to the
framework are M videos V = {vi}M

i=1 from C classes, with the corresponding video
behavior label set denoted as Y = {yi}M

i=1, where yi ∈ {1, 2, . . . , C}.
The probability, pc

s1(xs
i ), of the RGB image xs

i from the ith video vi belonging to class c
in the first student network of the spatial stream can be calculated as follows:

pc
s1(xs

i ) =
exp(Sc

s1(xs
i ))

∑C
c=1 exp(Sc

s1(xs
i ))

(1)

Here, Sc
s1(xs

i ) represents the logit output of the softmax layer from the first student
network in the spatial stream for input xs

i .
The probability, pc

s2(xs
i ), of the RGB image xs

i from the ith video vi belonging to class c
in the second student network of the spatial stream can be written as follows:

pc
s2(xs

i ) =
exp(Sc

s2(xs
i ))

∑C
c=1 exp(Sc

s2(xs
i ))

(2)

Similarly, Sc
s2(xs

i ) represents the logit output of the softmax layer from the second
student network in the spatial stream for input xs

i .
The probability, pc

t1(xt
i ), of flow image xt

i corresponding to the RGB image xs
i from the

ith video vi belonging to class c in the first student network of the temporal stream can be
described as follows:

pc
t1(xt

i ) =
exp(Sc

t1(xt
i ))

∑C
c=1 exp(Sc

t1(xt
i ))

(3)

On the other hand, Sc
t1(xt

i ) denotes the logit output of the softmax layer from the first
student network in the flow stream for input xt

i .
The probability, pc

t2(xt
i ), of flow image xt

i corresponding to the RGB image xs
i from the

ith video vi belonging to class c in the second student network of the temporal stream can
be calculated as follows:

pc
t2(xt

i ) =
exp(Sc

t2(xt
i ))

∑C
c=1 exp(Sc

t2(xt
i ))

(4)

Similarly, Sc
t2(xt

i ) represents the logit output of the softmax layer from the second
student network in the flow stream for input xt

i .
The loss functions for the spatial and temporal two branches in the TSML can be

defined as:

Ls = (1− α)× Ls1 + α× Ls2

Lt = (1− α)× Lt1 + α× Lt2
(5)

Here, Ls and Lt represent the loss of the spatial stream and the temporal stream,
respectively. The hyperparameter α controls the balance between these two loss terms. Fur-
thermore, Ls1 and Ls2 denote the losses for the two student networks in the spatial stream,
while Lt1 and Lt2 denote the losses for the two student networks in the temporal stream.
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The formulations for Ls1 and Lt1 are as follows:

Ls1 = Lc_s1 + DKL(ps1||ps2)

Lt1 = Lc_t1 + DKL(pt1||pt2)
(6)

Here, Lc_s1 and Lc_t1 represent the cross-entropy loss that measures the difference
between the predicted value and the actual value. DKL(ps1||ps2) represents the Kullback–
Leibler (KL) divergence between the probability distributions ps1 and ps2. Lc_s1 and Lc_t1
can be calculated using the following equation:

Lc_s1 = −
M

∑
i=1

C

∑
c=1

yc
i log(pc

s1(xr
i ))

Lc_t1 = −
M

∑
i=1

C

∑
c=1

yc
i log(pc

t1(xt
i ))

(7)

Among them, yc
i is an indicator, if yi = c, yc

i = 1; and if yi 6= c, yc
i = 0.

In the spatial stream, to enhance the generalization capacity of the first student network
on testing samples, another peer network is employed to provide training experience via
its posterior probability p2. The KL divergence is used to quantify the matching degree
between the predictions p1 and p2. DKL(ps2||ps1) indicates the KL distance from ps1 to ps2
and can be calculated using the following formula:

DKL(ps2||ps1) =
M

∑
i=1

C

∑
c=1

pc
s2(xr

i )log
pc

s2(xr
i )

pc
s1(xr

i )
(8)

Here, ps1 and ps2 represent the predicted probability distributions from the first and
second student networks, respectively, in the spatial stream.

In the temporal stream, DKL(pt2||pt1) indicates the KL distance from pt1 to pt2 and
shares a similar meaning with DKL(ps2||ps1) in the spatial stream.

Moreover, the meanings of Ls2 and Lt2 are similar to those of Ls1 and Lt1.

Feature

fusion

Spatial stream convnet

Video

Block

Block

Temporal stream convnet

RGB Image

Flow Image

z1

z2

Block1 Block2 Block3 Block4

Student Network1

Block1 Block2 Block3 Block4

Student Network1

Block1 Block2 Block3 Block4Block1 Block2 Block3 Block4

Logits Predictions labelsLogits Predictions labels

p1

p2

KL(p2||p1) KL(p1||p2)

LC1

LC2

Logits Predictions labels

p1

p2

KL(p2||p1) KL(p1||p2)

LC1

LC2

Student Network2

Video 

class

Figure 3. The structure diagram of the two-stream network model based on the idea of mutual learning.

2.3. The Implementation Details

The software and hardware system settings used in this paper are presented in Table 2.
For fair comparison, we optimized all experimental models with a gradient descent algo-
rithm using a momentum of 0.9, a batch size of 16, a learning rate of 0.001, and an Alpha
value of 0.5, and we trained them for 500 epochs.
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Table 2. Experimental environment configuration information.

Categories Type or Version

Operating system Ubuntu 18.04.5 LTS 64-bite
CPU Intel Core i7-7800X @ 3.5 GHz*12
GPU NVIDIA TITAN Xp

Memory 128 GB
Hard Disk 4TB SSD*3

Python 3.6.9
Pytorch 1.2.0
CUDA 11.2

CUDNN 10.0.130

2.4. Evaluation Criteria

In order to compare the performance of different models, several evaluation criteria
were used, including accuracy, parameters, FLOPs (floating point operations per second),
and loss. The accuracy reflects how well the model performs, while the number of param-
eters indicates the efficiency of the model—a smaller number of parameters is generally
better. The FLOPs metric also indicates efficiency—again, a smaller number is better. It
specifies the number of floating point operations required per second. All experiments
were conducted on TITANX GPUs.

3. Experimental Results and Analysis

In this section, we will provide a detailed report on the experimental results and
analysis. The overall experiment consists of several design parts, including evaluating
the superiority of the proposed model, evaluating the efficiency of two stream mutual
learning based on two identical networks, and evaluating the efficiency of two-stream
mutual learning based on two different networks.

3.1. Evaluating the Superiority of the Proposed Model

To validate the superiority of the proposed TSML, several models were utilized for
comparison, including ResNet18, ResNet34, ResNet50, Vgg16 [17] and MobileNetv2 [18].
The results are shown in Table 3.

Table 3. Comparison of different network models for pig behaviour recognition.

Model Accuracy (%)

ResNet18 92.35
ResNet50 95.69

MobileNetv2 94.45
Vgg16 94.44
Ours 96.52

Table 3 shows that the proposed model outperforms other common models in pig
behavior recognition. Specifically, the proposed model achieves 96.52% accuracy, which is
4.51%, 0.87%, 2.19%, 2.18% better than the accuracy rates of ResNet18 [19], ResNet50 [19],
MobileNetV2, VGG16, respectively. These results demonstrate the superiority of the
proposed model.

Furthermore, to provide readers with a more intuitive understanding of the superiority
of TSML in pig behavior recognition, we report the accuracies and losses of different
comparison models under different epochs in Figure 4. Here, Figure 4a shows the accuracy
of different models under different epochs, while Figure 4b shows the loss of different
models under different epochs.

The results in Figure 4 demonstrate that the accuracy and loss of TSML exceed those
of other models, which further validates the effectiveness of the proposed TSML.
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The outstanding performance of the TSML model can be attributed to its ability to
effectively capture richer appearance and motion features [20], resulting in improved
accuracy in pig behavior recognition tasks [21].

（a） （b）

Figure 4. Comparison accuracies and losses of different models under different epochs for pig
behavior recognition. (a) Accuracy for different models under different epochs. (b) indicates the Loss
of different models under different epochs.

3.2. Evaluating the Efficiency of the Two-Stream Network in Pig Behavior Recognition

To validate the effectiveness of the two-stream network setting in the pig behavior [22]
recognition framework, we compared the single RGB stream, single flow stream, and the
fusion of two streams for several models [23], including ResNet18, ResNet34, ResNet50,
Vgg16, MobileNetv2. The results of the comparison are displayed in Table 4.

Table 4. Comparison of pig behavior recognition accuracy based on two mutual learning models of
the same network.

Model Flow (%) RGB (%) Two-Stream Fusion (%)

ResNet18 61.47 91.24 92.35
ResNet50 86.37 93.18 95.69

MobileNetv2 86.23 93.88 94.45
Vgg16 83.31 94.02 94.44

Table 4 clearly demonstrates that the two-stream network setting consistently outper-
forms the single RGB and the flow networks by a significant margin.

To be more specific, the two-stream version of the ResNet18 model achieved an
accuracy of 92.35%, which is 1.22% and 50.23% higher than its corresponding RGB and flow
versions, respectively. The two-stream version of the ResNet50 model achieved an accuracy
of 95.69%, which is 2.70% and 10.79% better than its corresponding RGB and flow versions,
respectively. The two-stream version of the MobileNetv2 model achieved an accuracy of
94.45%, which is 0.60% and 9.52% better than its corresponding RGB and flow streams.
The two-stream version of the Vgg16 model achieved an accuracy of 94.44%, which is 0.45%
and 13.36% better than its corresponding RGB and flow versions, respectively.

Furthermore, to provide readers with a more intuitive understanding of the two-
stream network, we include Figure 5. These figures illustrate the accuracies and losses of
the RGB, flow, and two stream settings of different basic models at various epochs. Here,
of Figure 5a denotes the comparison results based on ResNet18; Figure 5b indicates the
comparison results based on ResNet50; Figure 5c represents the comparison results based
on MobileNetv2; Figure 5d is the comparison results based on Vgg16.
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（a） （b）

（c） （d）

Figure 5. Comparison accuracies of RGB stream, flow stream and fusion of two streams based on
different basic networks. (a) Comparison results based on ResNet18. (b) Comparison results based on
ResNet50. (c) Comparison results based on MobileNetv2. (d) Comparison results based on Vgg16.

As depicted in Figure 5, the fusion of RGB and flow into two streams consistently
achieved better results compared to using the RGB or flow streams alone. These results
clearly demonstrate the superiority of the two-stream settings in the pig behavior recogni-
tion task. The use of both streams provides complementary information, allowing for more
accurate and robust recognition of pig behaviors [24]. The fusion of multiple modalities
has been a popular trend in many computer vision tasks, and our results provide evidence
supporting this trend in the field of pig behavior recognition.

The results of these comparisons provide evidence of the superiority of the two-stream
network in the pig behavior recognition task. The reason for this is that the two-stream
network is capable of capturing both the appearance and motion information in the video,
so that effective spatiotemporal features can be extracted, ultimately facilitating improved
performance in pig behavior recognition. The RGB stream is capable of capturing ap-
pearance features such as color and texture, while the flow stream focuses on motion
features such as the intensity and direction of movement. By combining both streams, our
proposed two-stream network can effectively capture the complex spatiotemporal informa-
tion for more precise and reliable recognition of pig behavior. Compared with traditional
single-stream convolutional networks [25], using two streams allows for more efficient
extraction of information. This approach reduces noise and irrelevant information while
improving the accuracy of the recognition process. As a result, our proposed two-stream
network provides a practical and viable approach for reliable pig behavior recognition in
real-world applications.

In summary, the two-stream network is considered superior for pig behavior recogni-
tion tasks due to its ability to capture both appearance and motion information effectively.
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By processing this information jointly, our TSML model can generate more robust and
accurate feature representation, making it a promising choice for pig behavior recognition.

3.3. Evaluating the Efficiency of TSML Based on Two Identical Networks

In this section, we evaluate the performance of our proposed TSML approach based
on two identical student networks. Specifically, TSML utilized different backbone architec-
tures, including ResNet18, ResNet50, MobileNetV2, to validate the generalization of the
proposed approach. To simplify the explanation, we refer to these models as Res18, Res50,
and Mobilev2, respectively. The comparison results are shown in Table 5. Among Table 5,
SigRes18 refers to the RGB and flow two-stream networks that comprise a single Res18
network. MulRes18(Res18) indicates that both the RGB and flow networks consist of two
student networks that perform mutual learning, with each branch of the student network
based on the Res18 architecture. Other single models (SigRes50 and SigMobv2) and other
mutual models (MulRes18, MulRes50 and MulMobv2) share similar meanings with those
of Sig18 and MulRes18 (Res18). Furthermore, MulRes18(18)-i, denotes the index of two
mutual-learning [26] models.

Table 5. Comparison of pig behavior recognition accuracy based on two mutual-learning models of
the same network.

Model Flow (%) RGB (%) Two-Stream Fusion (%)

SigRes18 61.47 91.24 92.35
MulRes18(Res18)-1 66.20 93.60 94.44
MulRes18(Res18)-2 66.62 94.02 94.58

SigRes50 86.37 93.18 95.69
MulRes50(Res50)-1 87.67 95.97 96.52
MulRes50(Res50)-2 87.26 95.41 96.24

SigMobv2 86.23 93.88 94.45
MulMobv2(Mobilev2)-1 87.02 93.32 94.71
MulMobv2(Mobilev2)-2 87.07 92.49 94.58

Table 5 illustrates that the TSML with two identical networks achieves significantly
and consistently superior performance than those of the single network. Specifically,
MulRes18(Res18)-1/MulRes18(Res18)-2 obtain 2.26%/2.41% better accuracy than that of
sigRes18; MulRes50(Res50)-1/MulRes50(Res50)-2 obtain 0.86%/0.57% better accuracy
than that of sigRes50; and MulMobv2(Mobilev2)-1/MulMobilev2(Mobilev2)-2 obtain
0.29%/0.15% better accuracy than that of SigMobilev2. These results validate the su-
periority of the TSML approach, which is based on two identical student networks for both
the RGB and optical flow branches.

Additionally, in order to provide readers with a more intuitive understanding and
visualization of the superiority of TSML based on two identical networks, we include
Figures 6 and 7 that show the accuracies and losses of the different comparison models
with and without mutual learning at various epochs.

Specifically, (a1)/(a2)/(a3) of Figure 6 represent the accuracy of the RGB/flow/fusion
stream on the SigRes18 and MulRes18(Res18) models under different epochs; (b1)/(b2)/(b3)
of Figure 6 present the accuracy of the RGB/flow/fusion stream on the SigRes50 and
MulRes50(Res50) models under different epochs.

Furthermore, (a1)/(a2) of Figure 7 represent the loss of the RGB/flow/fusion stream
on the SigRes18 and MulRes18(Res18) models under different epochs; (b1)/(b2) of Figure 7
present the Loss of the RGB/flow/fusion stream on the SigRes50 and MulRes50(Res50)
models under different epochs. These figures provide useful insights into the performance
of each stream on different backbone networks and how they evolve over time.
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（a1） Flow （a2） RGB

（b1） Flow （b2） RGB

（a3） Fusion

（b3） Fusion

（c1） Flow （c2） RGB （c3） Fusion

Figure 6. Comparison between accurate values of pig behaviour recognition based on mutual
learning models of the two same networks. (a1–a3) represents the accuracy of the RGB/flow/fusion
stream on the SigRes18 and MulRes18(Res18) models under different epochs. (b1–b3) presents
the accuracy of the RGB/flow/fusion stream on the SigRes50 and MulRes50(Res50) models under
different epochs. (c1–c3) denotes the accuracy of the RGB/flow/fusion stream on the SigMobilev2
and MulMobilev2(Mobilev2) models under different epochs.

Figures 6 and 7 demonstrate that the accuracy and the loss of MulRes18(Res18) and
MulMobilev2(Mobilev2) outperform that of SigRes18 and SigMobilev2, which validates
the effectiveness of the TSML based on two identical student networks.

The reason why the TSML model based on two identical student networks achieves
better performance is as follows. Although the two student networks in the TSML model
have the same network structure, their initial parameter values differ, resulting in the
acquisition of different knowledge. Therefore, during the training process, they can obtain
diverse knowledge and experience from each other, leading to the model producing better
and more efficient behavior recognition performance.

3.4. Evaluating the Efficiency of TSML Based on Two Different Networks

In this section, we evaluate the performance of the proposed TSML approach using
two different student networks.TSML utilized different backbone architectures, includ-
ing ResNet18, ResNet34, and ResNet50. For ease of reference, we will refer to these
models as Res18, Res34, Res50, and Mobilev2. The comparison results are shown in
Table 6. In Table 6, the SigRes18 model refers to both the RGB and optical flow streams
of TSML comprising a single Res18 network. Other single models share similar mean-
ings as SigRes18. MulRes18(Res34) and MulRes34(Res18) indicate the two different
mutual-learning student networks in the two streams of TSML that share the same struc-
ture with that of ResNet18 and ResNet34. Other mutual-learning models, such as Mul-
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Res18(Res50)/MulRes50(Res18) and MulRes34(Res50)/MulRes50(Res34), share similar
meanings as MulRes18(Res34)/MulRes34(Res18).

（a1） Flow （a2） RGB

（b1） Flow （b2） RGB

（c1） Flow （c2） RGB

Figure 7. Comparison of loss values for pig behaviour recognition in mutual-learning models
based on the two same networks. (a1,a2) represents the loss of the RGB/flow/fusion stream
on the SigRes18 and MulRes18(Res18) models under different epochs. (b1,b2) presents the Loss
of the RGB/flow/fusion stream on the SigRes50 and MulRes50(Res50) models under different
epochs. (c1,c2) denotes the Loss of the RGB/flow/fusion stream on the SigMobilev2 and MulMo-
bilev2(Mobilev2) models under different epochs.

Table 6 demonstrates that TSML with two different networks consistently achieves
significantly superior performance compared to the corresponding single networks. Specif-
ically, MulRes18(Res34)/MulRes34(Res18) achieve 2.41%/1.61% better accuracy than Si-
gRes18/SigRes34; MulRes18(Res50)/MulRes50(Res18) demonstrate 2.71%/0.52% supe-
rior accuracy than SigRes18/SigRes34; and MulRes34(Res50)/MulRes50(Res34) achieve
1.77%/0.72% better accuracy than SigRes18/SigRes34. These results highlight the superior-
ity of the TSML approach that employs two different student networks for both the RGB
and optical flow branches.
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In some cases, smaller student networks with mutual learning can outperform larger
single neural networks.

Table 6. Comparison of the accuracy of pig behaviour recognition based on mutual-learning models
of two different networks, ResNet18 and ResNet34.

Model Flow (%) RGB (%) Two-Stream Fusion (%)

SigRes18 61.47 91.24 92.35
SigRes34 65.23 93.74 94.16

MulRes18(Res34) 64.67 94.44 94.58
MulRes34(Res18) 67.87 94.99 95.68

SigRes18 61.47 91.24 92.35
SigRes50 86.37 93.18 95.69

MulRes18(Res50) 71.22 94.71 94.85
MulRes50(Res18) 87.36 95.55 96.19

SigRes34 65.23 93.74 94.16
SigRes50 86.37 93.18 95.69

MulRes34(Res50) 72.34 95.55 95.83
MulRes50(Res34) 88.63 95.69 96.38

The above experimental results indicate that the TSML model based on different stu-
dent networks has superiority. This is attributed to the fact that in this model, two student
networks have different network structures and initial parameter values, resulting in differ-
ent knowledge. Consequently, their collaborative learning allows them to obtain different
knowledge and experience from their peers, thereby achieving superior performance.

4. Discussions

The proposed TSML approach leverages both the mutual-learning and two-stream
network strategies to gather enhanced appearance and motion information underlying
video in an interactive manner. The cooperation between the RGB and flow streams
enables the TSML to achieve promising accuracy and efficiency. The mutual-learning
strategy allows the two student networks in each stream to learn collaboratively, gaining
more robust and richer features in a shorter time, which further enhances the accuracy of
pig behavior recognition. Our approach not only improves the accuracy of pig behavior
recognition, but it also enhances the efficiency of the recognition process. To validate
the superiority of TSML, several experiments were designed and conducted, including
evaluation of the superiority of the TSML model and evaluation of the TSML model based
on two of the same or different student networks.

The experiments demonstrated that our proposed TSML model outperforms other
models for pig behavior recognition, achieving an improvement of about 2.71% in accuracy.
Specifically, the TSML model achieved 96.52% accuracy, which is 4.51%, 0.87%, 2.19%,
2.18% better than those of ResNet18, ResNet50, MobileNetV2, and Vgg16, respectively.
To sum up, the experimental results demonstrate that our TSML model outperforms the
competition in terms of accuracy when applied to the pig behavior recognition task.

The outstanding performance of the TSML model can be attributed to its ability
to effectively capture richer appearance and motion features. By leveraging the two-
stream mutual-learning framework, the model can efficiently extract both appearance
and temporal information, leading to enhanced feature representation and improved
accuracy in pig behavior recognition tasks. The RGB stream captures appearance features
such as color and texture, while the flow stream captures motion features such as the
intensity and direction of movement. By combining both streams and by collaboratively
learning between them, our TSML model is better able to capture the complex visual
cues that are critical for pig behavior recognition. In contrast to other approaches, our
TSML model is specifically designed to balance the performance and efficiency trade-off
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in pig behavior recognition tasks. By utilizing mutual-learning and two-stream network
strategies, the model can capture more robust features with fewer parameters, making
it more practical for real-world applications. This approach provides a comprehensive
understanding of pig behavior and further insights on the creation of a robust deep network
that can be applied to various tasks.

Furthermore, our experimental results demonstrate that the TSML model with two
different or same networks in both the RGB and flow streams consistently achieves sig-
nificantly superior performance compared to their corresponding single network. This
improvement can be attributed to several factors. Firstly, by using two student networks
with unique initial parameter values or network structures, the TSML model can gain
different knowledge and acquire a more comprehensive understanding of the appearance
or flow of information in the videos. This approach allows the networks to learn from each
other, leading to a more robust and comprehensive feature representation that enhances
the accuracy of pig behavior recognition. Additionally, the collaborative learning of the
student networks allows them to acquire different knowledge and experience from their
peers. This approach enhances their ability to recognize pig behavior more accurately
and efficiently. By combining these mechanisms, our proposed model achieves a high
level of performance in pig behavior recognition. In summary, our experimental results
suggest that using multiple student networks within the TSML model can significantly
improve pig behavior recognition accuracy and efficiency. The benefit of mutual learning
and information fusion between different networks provides a substantial gain that can be
performance-driven in various domains.

However, one potential disadvantage of our TSML model is that it requires a larger
amount of training data to achieve optimal performance. Nonetheless, given the significant
improvement in accuracy, this method is considered suitable for practical applications in
pig farming.

To further improve the accuracy and efficiency of the model, future work could
explore the use of other advanced machine learning techniques such as reinforcement
learning, transfer learning, and attention mechanisms. Additionally, future studies could
apply our proposed approach to other domains such as wildlife conservation for animal
behavior recognition.

5. Conclusions

This paper proposes a novel approach for pig behavior recognition, named TSML,
which combines mutual learning with two stream neural networks that separately learn
both appearance and motion information from videos. The mutual-learning strategy
ensures that the basic student neural networks in the model update parameters collabora-
tively and gain information from each other throughout the training process. Furthermore,
the two-stream network collects both appearance and motion information via its RGB
and flow branches. Leveraging mutual learning and the two-stream network, the TSML
model achieves excellent pig behavior recognition performance with higher efficiency and
effectiveness. The experimental results show that the TSML model can greatly improve
pig behavior recognition performance, delivering 2.71% higher accuracy in comparison to
other models.

In terms of future work, we will explore the application of the proposed model to
behavior recognition tasks for other livestock such as cattle and sheep. Additionally, we
will continue to investigate more efficient and effective network structures to enhance
the accuracy and efficiency of pig behavior recognition. Lastly, we will explore effective
methods for identifying complex group pig behaviors.
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