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Abstract: Several recent studies have indicated that upper extremity injuries are classified as a
top common workplace injury. Therefore, upper extremity rehabilitation has become a leading
research area in the last few decades. However, this high number of upper extremity injuries is
viewed as a challenging problem due to the insufficient number of physiotherapists. With the recent
advancements in technology, robots have been widely involved in upper extremity rehabilitation
exercises. Although robotic technology and its involvement in the rehabilitation field are rapidly
evolving, the literature lacks a recent review that addresses the updates in the robotic upper extremity
rehabilitation field. Thus, this paper presents a comprehensive review of state-of-the-art robotic
upper extremity rehabilitation solutions, with a detailed classification of various rehabilitative robots.
The paper also reports some experimental robotic trials and their outcomes in clinics.
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1. Introduction

A study conducted by the Bureau of Labor Statistics agency has revealed that there
were more than 4.4 million upper extremity injuries from 1992 to 2018 in the USA, which
makes upper extremity injuries the second most common workplace injury in the USA [1].
The main cause of upper extremity impairments is stroke. It has been reported that 70% of
stroke survivors have upper extremity disability [2]. Upper extremity injuries can include
any injury in the upper part of the body, such as the hand, elbow, arm, and shoulder. It
is known that upper limb disabilities following a stroke result from brain injuries [3]. A
stroke occurs when blood flow to the brain is disrupted, leading to brain cell damage
and sometimes even death. The specific location of the brain injury determines the type
and severity of stroke-related disabilities, which can affect speech, mobility, and cognitive
function. In the case of upper limb disabilities, stroke can result in weakness, spasticity,
or lack of coordination, making it difficult to perform everyday tasks, such as dressing,
eating, or using tools. Therefore, effective stroke rehabilitation programs should target
the underlying brain injury and aim to promote neural plasticity and functional recovery.
Upper extremity rehabilitation has become a top research area due to the increasing number
of patients and due to the seriousness of this disorder [4,5].

The primary objective of rehabilitation is to help people restore their physical abilities
to improve their performance and help patients return to a “normal” state where they can
perform Activities of Daily Living (ADL) [6,7]. Classically, rehabilitation is performed by
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physical therapists to restore and maintain health using repetitive physical exercises and
through patient education.

However, due to the nature of traditional therapy and the ever-increasing shortage of
physiotherapists, physical rehabilitation has not been accessible to a large number of people.
A recent study conducted by the Chartered Society of Physiotherapy (CSP) reported that the
number of newly graduated UK physiotherapists should annually grow by 500 graduates
for several years to keep pace with the high demand. Moreover, the UK Charity Muscular
Dystrophy has revealed that muscular-impairment patients lack an “on life-improving
treatment” experience due to the insufficient number of specialist physiotherapists. Based
on the charity’s report, 60% of patients having muscle-wasting problems did not receive
appropriate physiotherapy treatment. Furthermore, 40% of UK neuromuscular clinks have
declared that they urgently need higher physiotherapists capacity [8] (Note: The UK and
the USA’s statistics were used due to competent data collection. However, upper extremity
impairments and the shortage of physiotherapists are a worldwide problem).

With the great advancements in technology within the last few decades, researchers
have found technology a potential solution to the issues of classical rehabilitation. Indeed,
robotics are viewed as the best candidate to adopt in order to overcome the rehabilitation
growing challenges. Robots are well known for their abilities to efficiently perform dull,
dirty, and dangerous tasks (the triple D’s). Rehabilitation exercises are repetitive and
a single session can last for multiple hours. Therefore, researchers have been seriously
interested in robotic rehabilitation. Moreover, robots as a versatile tool have been proven to
be effective and favored by patients over traditional occupational therapy.

This article offers a comprehensive review of robotic systems in the assessment and
treatment of upper extremity disorders and impairments. The review also goes deeper
than most of the literature by exploring how these robots are created, how popular motor
learning principles operate, and how they could be applied, as well as exploring some of the
clinical trials and their results. The main contribution of this paper is to conduct a compre-
hensive review of the advancements in robotic systems to treat upper extremity disorders
and impairments. The main theme of the paper is to review what has been achieved so far
in this field and discuss the gaps and the challenges that need to be addressed to achieve
higher dependence on robotic systems to effectively deal with rehabilitation systems

The rest of the paper is organized as follows. Section 2 provides a detailed classification
of various robots used in rehabilitation. Different strategies to control rehabilitative robots
are discussed in Section 3. Motor learning strategies are discussed in Section 4. Section 5
illustrates some experimental clinical trials, while Section 6 presents the conclusion.

2. Classification of Rehabilitative Robots

Rehabilitative robots can be classified in two ways, i.e., according to their structure
and according to the type of provided therapy. Figure 1 shows the classification tree.

2.1. Structure-Based Classification

Rehabilitative robots can be classified in similar ways to any other robots [9]. In
this section, they are classified based on their mechanical structure. The two types of
structure-based classifications for rehabilitation robots are exoskeletons and End-Effector
(EE)-based systems.
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Figure 1. Classification diagram.

2.1.1. End-Effector-Based Systems

The earliest literature on robotic UE therapy was using EE-based systems. These
systems only have one interface, the hand/forearm of the patient. This type of system
is simpler and easier to manufacture; moreover, they are more flexibly adjustable to fit
different arm lengths, although determining the patient’s posture proves difficult with this
type of system. It also disallows generating isolated movements at specific joints, since
movement at the EE can cause a combination of movements in the entire limb’s joints (wrist,
elbow, and shoulders) [10]. Examples of EE-based systems include:

• MIT-MANUS, a system with five degrees of freedom (DOF) that helps in the reha-
bilitation of three degrees of freedom of wrist motion: extension-flexion, abduction-
adduction, and pronation-supination [11,12];

• Bi-Manu-Track (Figure 2a), a single DOF robot that supports pronation and supination
for the forearm and the wrist [13];

• Mirror-Image Motion enabler (MIME), a six-DoF robot that is used for the shoulder
and elbow [14,15].

More examples of EE-based systems are included in Table 1.

(a) (b)

Figure 2. Structure-based classification. (a) Bi-Manu-Track end-effector-based robot (2013). (b) The
FLEXO-arm1 exoskeleton (2021).

2.1.2. Exoskeletons

Exoskeleton robots resemble human limbs and are connected to patients at multiple
points, where their joint axes match with human joint axes. As such, they provide more



Sensors 2023, 23, 5054 4 of 31

accurate joint isolation and increase gait transparency. They also allow the training of fo-
cused muscles as controlling specific joint movements is possible. Examples of exoskeleton
robots include:

• FLEXO-arm1 (Figure 2b): The FLEXO-arm1 was developed collaboratively by the
Shanghai Engineering Research Center of Assistive Devices and the University of
Shanghai for Science and Technology [16].

• Harmony: The exoskeleton known as Harmony is equipped with a shoulder mecha-
nism that follows the natural anatomy of the human body, allowing for unrestricted
movement of all joints. It is capable of bearing the weight of the upper body and
applying assisting force to help patients carry out desired movements [17].

• ANYexo: The ANYexo exoskeleton is a flexible and adaptable device with six degrees
of freedom, intended for use on the upper limb. It is equipped with a series of
elastic actuators that allow for low-impedance torque control. The device is primarily
used as an experimental platform to test new hardware concepts and algorithms for
autonomous therapy of patients with varying degrees of neural impairment. The aim
of the device is to provide greater independence and functionality to individuals with
arm impairments [18].

• ETS-MARSE (Figure 3a): The ETS-MARSE is a seven-DoF robot that consists of a
shoulder motion support part, an elbow and forearm motion support part, and a wrist
motion support part [19].

• MyoPro: (https://myomo.com/what-is-a-myopro-orthosis/, accessed on 25 April
2023) MyoPro is a powered upper limb orthosis developed by Myomo Inc. (Boston,
MA, USA). The device is designed to help individuals with upper limb paralysis
due to conditions such as stroke, spinal cord injury, or brachial plexus injury regain
movement and function in their affected arm.

• Neofect Rapael Smart Glove: (https://www.neofect.com/us/smart-glove, accessed
on 25 April 2023) Neofect Rapael Smart Glove is a wearable glove that uses sensors and
haptic feedback to provide interactive training for individuals with hand weakness
due to neurological conditions. The device is designed to help patients regain fine
motor control and dexterity in their hands.

(a) (b)

Figure 3. Passive assistive devices. (a) ETS-MARSE. (b) PNEU-WREX.

https://myomo.com/what-is-a-myopro-orthosis/
https://www.neofect.com/us/smart-glove
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Table 1. Comparison between exoskeletons and end-effector-based systems.

End-Effector-Based Systems Exoskeletons

Advantages
Faster to set up Increased gait transparency
Easier to manufacture Isolated joint control

Disadvantages
Less sophisticated Expensive
Limited joint control Not easily adjustable to different arm lengths

Examples [11–15,20–38] [19,39–87]

Home-based end-effector neuro-rehabilitation systems are an emerging area of re-
search and development that holds promise for improving access to therapy for individuals
with neurological impairments. These systems typically consist of a robotic device that
is attached to the distal end of the affected limb and provides assistance or resistance to
movement during therapy sessions. One advantage of home-based systems is that they
can provide more frequent and intensive therapy than is typically available in a clinical
setting, which may lead to better outcomes. Additionally, home-based systems can be
more convenient and cost-effective for patients, who may have difficulty traveling to a
rehabilitation center or who may not have access to specialized therapy services in their
area. Recent studies have shown the potential effectiveness of home-based end-effector
neuro-rehabilitation systems, such as the pilot study by Bressi et al. [88]. The study aimed
to investigate the effects of a robotic home-based treatment rehabilitation using the iCONE
robotic device on stroke patients with chronic conditions and without the presence of a
therapist during exercise. Patients underwent an initial and final assessment, followed by
10 days of at-home treatment. Results revealed significant improvements in robot-evaluated
indices and patient satisfaction, indicating the potential of the robotic rehabilitation ap-
proach in reducing healthcare costs, ensuring continuity of care, and reaching patients in
distant or resource-limited areas.

Another home-based end-effector neuro-rehabilitation system is presented in [89].
This research aims to develop a telerehabilitation framework that can remotely provide
home-based passive rehabilitation therapies to individuals with upper limb dysfunctions
using a desktop-mounted rehabilitation robot (DMRbot) and PTC’s Industrial Internet
of Things (IIoT) platform. An experiment was conducted with two healthy male hu-
man subjects, where the rehab robot data and therapists’ commands were transported
by ThingWorx to evaluate the ability of the therapist to provide telerehabilitation and the
device’s performance. The results showed that the proposed end-effector type therapeutic
robot for home-based upper limb rehabilitation resulted in 100% trajectory movement of the
patient’s hand, with a network latency of approximately 0.15 s, indicating that the proposed
framework can make therapies more approachable to remote areas with convenience and
affordability. Although promising results were obtained with home-based end-effector
neuro-rehabilitation systems, further research is needed to fully evaluate the feasibility,
safety, and efficacy of home-based end-effector systems and to identify the optimal design
features and protocols for home-based therapy.

2.2. Therapy-Based Classification

It is important to choose the appropriate type of therapy for the patient at hand [90],
as it influences the effect of the treatment to a great extent. There are three types of therapy,
i.e., passive, active, and bilateral [91]. Passive therapy is when the patient does not have
to exert any force or effort to complete the exercise. In occupational therapy, this is done
when the therapist moves the patient’s afflicted limb to do a specific motion. This type of
therapy is usually utilized in the early stages of post-stroke symptoms when the impaired
limb does not respond [92]. On the other hand, patients who can move their damaged limb
to a certain extent are prescribed active therapy, which is when a patient at least attempts
the exercise with assistance as needed from the therapist. Finally, there is bilateral therapy,
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which is used when the patient can move one but not both of their arms, doing a mirror-like
exercise where the impaired limb is copying the functional limb. Table 2 illustrates a brief
comparison between therapy types.

Table 2. Comparison between therapy types.

Active Therapy Passive Therapy Bilateral Therapy

Subtypes Active Assistive Passive Assistive -Active Resistive Continuous Passive Motion

Advantages
- Efficient for advanced rehabilita-
tion treatments

- Ideal for early stages of post-stroke
symptoms

- Ideal for specific cases (e.g.,
Hemiplegia)

- Has feedback information - Easy to implement - Simplicity

Disadvantages
- Needs patient interaction - Does not get feedback from

the patient
- Needs having some undamaged
parts in the patient’s body

- Can be complex to design - Needs to be tuned continuously - Only used for a few specific cases
(e.g., hemiplegia)

Examples [11,12,14,15,19–33,35,36,38–45,47–
72,74–82,84–86] [13–15,19,26,37,46,58–60,62,73,83] [13–15,34,70]

2.2.1. Passive Therapy

In the context of rehabilitative robots, passive therapy is where there is no input
provided from the patient. As such, passive robots are further divided into two categories,
i.e., CPM and passive assistive robots.

CPM: In Continuous Passive Motion, a machine is used to move the joint without
the patient having to exert any effort. The motorized device gently bends the joint back
and forth to some degree to complete preprogrammed motions without any interference
from the patient. One such CPM device is the ETS-MARSE (Figure 3a) [19], which is an
exoskeleton capable of performing both passive and active therapy. In its passive operation
mode, the ETS-MARSE moves the user’s arm to a preprogrammed trajectory.

Passive Assist: Unlike CPM robots, passive assistive devices do not move in prepro-
grammed trajectories; however, being passive devices, their movement does not depend
on any control input. These usually come in the form of gravity compensation, such as
the T-WREX [83], the non-robotic actuated version of the PNEU-WREX (Figure 3b) [46],
both of which give the patient a sense of floating, making it easier for the patient to move
their arms.

2.2.2. Active Therapy

As the antithesis of passive devices, active devices read input from the patient using
them to determine how the device should move, whether assistive or resistive motion.

Active Assistive: Active Assistive devices are similar to Passive Assistive devices in
that they both assist the user to complete the motion. However, active robots use some
sort of sensor to detect the patient’s motor activity, such as the surface Electro-Myography
(sEMG) sensor implemented in Kiguchi et al. (Figure 4a) [76], which uses a neuro-fuzzy
controller to determine the user’s intention of shoulder motion and uses a perception
assistance control strategy. On the other hand, the force/torque sensors are used for
admittance control to determine how fast the robot should move or stop.

Active Resistive: Active resistive devices follow the same control principles as active
assistive devices, since they are controlled based on some sort of input from the user.
However, instead of promoting skill acquisition similar to active assistive devices, they
promote motor adaptation [93]. Similar to a force field, active resistive devices make
completing the movement harder, introducing a perturbation to which the brain can adapt.
HandCARE (Figure 4b) is an EE-based system with five DoF for the independent linear
movement of each finger. It has both modes of active therapy, which use the position of the
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fingers for control of assistance/resistance. In the case of resistance, that is done through
impedance control [31].

(a) (b)

Figure 4. (a) Active Assistive: Kiguchi et al. uses a neuro-fuzzy controller and controls admit-
tance [76]. (b) Active Resistive: HandCARE, in its resistive mode of operation, resists motion by
controlling impedance[31].

2.2.3. Bilateral

Bilateral therapy is performed by mirroring the motion of the patient’s arm, and the
mirrored arm is used to complete the exercise. This is done by the robot, and the patient is
not involved [94]. Bilateral therapy first came into existence with the development of the
Mirror-Image Motion Enabler, or MIME for short [15]. Tables 3 and 4 give a summary of
the robotic rehabilitation systems based on the therapy type, while Table 5 discusses the
advantages and disadvantages of known rehabilitation robots.

Table 3. A summary of robotic rehabilitation systems based on the therapy type. CPM = Continuous
Passive Motion; PA = Passive Assistance; AA = Active Assistance; BT = Bilateral.

Therapy Movement Paper Year DoF Comment

CPM Finger [61,73], 2007, 2009 4,1 [59,73] are single-finger systems

Shoulder [95] 2022 2 Provides the movements of dorsiflexion (DF), plantarflex-
ion (PF), abduction (AB), and adduction (AD).

PA Sholder, Elbow,
and Forearm

[46,83] 2006, 2005 5,5 [46,83] are Exoskeletons with Gravity
Compensation technique

Sholder and Elbow [96] 2019 4 Upper-limb neurorehabilitation and treatment of spasticity

AA Finger [23,30,32,
40,42,43,45,
47,49,51,53,
56,57,61,65,
66,72,78,84,
86,97,98]

2022, 2018,
2011, 2010,
2010, 2009,
2009, 2009,
2009, 2008,
2008, 2007,
2007, 2007,
2006, 2005,
2005, 2005,
2004, 2004,
2002, 1998

4, 1, 5, 2,
10, 6, 1,
4, 20, 6,
2, 8, 5, 3,
2, 1, 2, 4,
3, 7, 5, 5

Controlled Independently: [49,65,66,72,86,97]. Controlled
Together: [30,32,43,56,98], Single Finger: [23,47,78]. The au-
thors in [97] adopted four slider-crank mechanisms, each
fixed, and with movement of one finger. In the reference
[98]: A device consisting of a glove, a microcontroller, and
a motor has been considered.
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Table 3. Cont.

Therapy Movement Paper Year DoF Comment

Elbow [29,33,35,
41,52,69,70,
79,82,85,
99]

2018, 2009,
2008, 2007,
2007, 2005,
2004, 2003,
2001, 2000,
1999

[29] is 3,
others: 1

[99]: The design consists of an array of pneumatically pres-
surized soft actuators, End-Effector systems: [29,33,35],
others: Exoskeletons

Wrist [11,12,27,
39,44,48,
75]

2009, 2007,
2007, 2005,
2005, 1992,
1992

1, 1, 1, 1,
1, 5, 5

End-Effector systems: [11,12,27], others: Exoskeletons

Shoulder [76] 2003 2 Exoskeleton robot

Shoulder and Elbow [20,21,25,
28,36,38,
64]

2010, 2009,
2009, 2007,
2007, 2005,
2005, 2005

4, 2, 4, 3,
3, 5, 2, 2

All techniques have adopted Admittance Control

Forearm and
Wrist

[54] 2008 3 Exoskeleton robot

Shoulder, Elbow,
and Forearm

[24,67] 2012,2006, 6,3 All techniques have adopted Admittance Control

Shoulder, Elbow,
Forearm, and Wrist

[63,68,80,
81]

2014, 2009,
2009, 2009

7,7,7,7 All techniques have adopted Admittance Control

AR Forearm and
Wrist

[50,74,100] 2018, 2008,
2007

1, 4,3 In the reference [100], an electromyography signal is used
as an input to drive the joint movement [50] includes El-
bow movement also

Elbow, Forearm,
and Wrist

[50] 2007 3 Exoskeleton robot

BT Shoulder and Elbow [34] 2007 2 End-Effector robot

Table 4. List of robotic rehabilitation systems capable of having multiple therapy strategies.
CPM = Continuous Passive Motion; PA = Passive Assistance; AA = Active Assistance; BT = Bilateral.

Therapy Movement Paper Year DoF Comment

CPM, AA Finger [59,62] 2009, 2009 6,2 [59] is a single-finger system
Elbow [58,60] 2009, 2009 1,1 [58,60] are Exoskeletons
Shoulder [19] 2015 7 Exoskeleton robot
Forearm [26] 2007 1 End-Effector robot

AA, AR Elbow [101] 2018 1 Surface EMG measurements are used to implement
a force-based active and resistive control.

Finger [102] 2022 1 The device was actuated by six twisted string actu-
ators (TSAs)

[31] 2008 5 Have used Admittance and Impedance Control
Elbow, Forearm,
and Wrist

[55] 2008 4 Have used Admittance and Impedance Control

BT, CPM Forearm, and Wrist [13] 2003 1 End-Effector robot

BT, AA Elbow [70] 2001 1 Exoskeleton robot

AR, BT, AA, CPM Shoulder and Elbow [14,15] 2000, 2000 6,6 Have used Admittance and Impedance Control
PA, AA, AR Arm [103] 2020 6 Tested with an elderly female participant

Wrist [104] 2020 Up to 3 Robot consists of Series elastic actuators with high
torque-to-weight ratios
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Table 5. Advantages and disadvantages of known rehabilitation robots.

Robot Advantages Disadvantages

ETS-MARSE [19] - Mimics natural human spine motion
- Can be used for studying the biomechanics
of the spine and testing spinal implants and
surgical techniques

- Not designed for use in clinical rehabilita-
tion settings
- Expensive and complex to build and operate

Handcare [31] - Designed specifically for hand and finger therapy
- Lightweight and easy to use
- Provides personalized and goal-oriented therapy

- Limited to hand and finger therapy only
- Relatively new technology, may not be
widely available

PNEU-WREX [46] - Can assist with wrist and hand movements
- Lightweight and easy to put on and take off
- Has shown promise in improving upper limb func-
tion and independence

- Limited to upper limb therapy only
- May not be suitable for individuals with
severe upper limb impairments
- Requires additional training for clinicians
and therapists to use

surface Electro-
MyoGraphy (sEMG) [76]

- Adaptive assistance that is natural
and responsive to patient’s movements
- Fine-tuned adjustments based on patient’s needs
- Can learn and adapt to patient’s needs over time.

- Requires sophisticated con-
trol algorithms and sensors
- May be expensive and complex to de-
velop and maintain.

MyoPro (https://myomo.
com/what-is-a-myopro-
orthosis/, access on 25 April
2023)

- Provides powered assistance for upper
limb movement
- Easy to use

- Expensive
- Limited evidence of efficacy

Rapael Smart Glove
(https://www.neofect.
com/us/smart-glove, access
on 25 April 2023)

- Interactive training with haptic feedback
- Wearable design

- Limited range of motion supported
- Expensive

Harmony [17] - Anatomically aligned shoulder mechanism
- Unconstrained mobility of all joints
- Supports body weight
- Provides assistive force

- Expensive
- Limited evidence of efficacy
- Limited range of motion supported

ANYexo [18] - Adaptable and customizable to different arm sizes
and levels of assistance
- Controlled by a smartphone app or joystick

- Experimental device not yet widely tested
in clinical trials
- Limited evidence of efficacy

3. Control Strategies

This section explores different control strategies applied within a robotic upper ex-
tremity rehabilitation system. A control system is responsible for ensuring the stability of
the robotic system by calculating the forces needed to follow a pre-defined path. Figure 5
shows a general illustration of a feedback control system applied to a robotic system.

Desired path Controller Actuators

Sensors

+
-

𝒆 Control Signal 

𝜽𝒓𝟏 , 𝜽𝒓𝟐 , … , 𝜽𝒓𝑵

𝜽𝒅𝟏 , 𝜽𝒅𝟐 , … , 𝜽𝒅𝑵

e.g: Torque (𝝉)

Figure 5. General illustration of the different components of a robotic system being controlled using
a feedback control system.

https://myomo.com/what-is-a-myopro-orthosis/
https://myomo.com/what-is-a-myopro-orthosis/
https://myomo.com/what-is-a-myopro-orthosis/
https://www.neofect.com/us/smart-glove
https://www.neofect.com/us/smart-glove
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The three components that build a robotic system are the controller, the actuators, and
the sensors. The sensors are the devices that measure signals in the environment. The
controller processes the data from the sensors, and in turn, uses the data to control the
actuators. As stated in the previous section, passive devices do not require input to the
controller. However, when speaking in terms of active and bilateral devices, controllers
implemented in the literature have employed the use of numerous signals to determine
how the actuators should move.

3.1. Controller Input

The sensor and the processor work together in what is called impedance control,
where the computer uses the data gained from the sensor to determine how much “action”
the effectors should perform. Some exciting ways were implemented to achieve impedance
control. We shall start off with what is probably the most unique: perception assistance.
The idea of perception assistance is to read EMG signals, or in the case of [68], EMG signals
in combination with EEG signals, to predict the patient’s intention of movement and
supplement it accordingly. This method was proposed with the MIT-MANUS [11,105], the
very first robotic device deployed in clinical trials delivering rehabilitation therapy [106],
where EMG signals were to be collected from different muscles on the shoulder and elbow.
The assistance is triggered when the EMG activation amplitude exceeds a threshold (similar
to an on/off controller). The MIT-MANUS does not use that, however; instead, it uses
joint positions, angular velocity, and torque as its control signals [107]. Other devices,
however, rather than use the EMG signals as on/off controllers, as what was proposed with
MIT-MANUS, generate assisting forces proportional to the EMG signal. This was achieved
in [76], where Kiguchi et al. passed the EMG signals to a neuro-fuzzy controller, artificial
neural networks (ANN), and fuzzy logic to accurately determine the impedance of the
exoskeleton’s degrees of freedom. Moreover, as stated earlier, a study was conducted where
EEG signals were used in combination with sEMG signals. That study tested the viability of
using EEG signals in an existing exoskeleton, the SUEFUL-7 [63], and in a later study, this
technique was found to be better than sEMG signals alone, achieving an average hit rate of
84.0% and average miss-hit rate 30.0%, compared to average hit rate 79.7% and average
miss-hit rate of 31.6% when using EMG signals alone [108]. Other systems [64] have used
pneumatic actuators. The impedance was controlled by using the cylinder pressure as the
control input. Generally, for an upper extremity robot, the force/torque mapping from
cylinder coordinates to shoulder joint coordinate can be expressed as follows:

τ = JTC (1)

where τ is the joint torque vector, C is a 4D vector of cylinder forces, and JT is the transpose
Jacobian matrix of the mapping for a given configuration. The majority of the systems,
however, use simpler inputs, such as force/torque of the patient’s movement and EE
positions. Table 6 offers a list of control signals and the references that use them.

Table 6. List of studies based on the type of the input signal.

Controller Input Reference

Force/Torque [13–15,19,21,36,39,79–81]
Optical Encoders [14,15]
Position [11–13,21,23,28,34,36,42,53]
Angular velocity [11,12,33]
EMG [27,35,41,45,52,58,60,62,63,65,66,68,70,72,75,76,78,82,85]
Joint angle [26,27,29,42,43,47,48,51,59,64,69,72,86]
Cylinder pressure [64]
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3.2. Actuation

Along with the sensors, there is a multitude of actuators that can be chosen to control
the system. These include but are not limited to electric (AC/DC) motors and hydraulic
and pneumatic actuators. Some robots, such as the T-WREX [83] do not have any robotic
actuators. Analogous to the EMG sensors that are used for sensing the patient’s intention
of movement, there are Functional Electric Stimulation (FES) [109] actuators which are
used to control the patient’s movement by sending low-level electrical impulses to the
nerves within the muscle. FES differs from other actuators in that it is not used to control
an effector, but instead, the signal is sent to the human user of the robotic device. As with
the previous section, Table 7 includes a list of actuators and some of the robotic devices
that use them.

Table 7. List of studies based on the actuator type used.

Actuator Reference

DC [11,12,14,15,20,23,25,27,30,31,34–38,41,42,45,47,48,51,52,57,59,61–63,66,68,70,72,76,
77,79–82,84–87]

AC [19,21,26,29,58,83,84]
Hydraulic [60]
Pneumatic [22,40,43,46,53,64,78]
FES [36,56]

3.3. Controllers

This section examines the different controller designs which were implemented in an
upper-extremity rehabilitative robotic system. Several control paradigms were utilized
in rehabilitative robotic systems ranging from basic controllers such as the Proportional-
Integral-Derivative controller (PID) to hybrid complex controller designs. The variety of
the available controller designs gave the developers the flexibility to choose the appropriate
controller based on the advantages and disadvantages of each control class. In the literature,
the controllers of an upper-extremity rehabilitation robotic system can be classified into
PID controllers, robust controllers, adaptive controllers, and Artificial Intelligence (AI)
controllers. Table 8 gives a summary of the robotic rehabilitation systems based on the
controller type. Table 9 shows the advantages and disadvantages of each control strategy.

Table 8. Summary of the robotic rehabilitation systems based on the controller type.

Class Technique Paper Year Exp/Sim Comment

PID

Optimized PID [110] 2019 Sim Controlling an exoskeleton of a three-DoF system designed to facilitate
the movements of the elbow and the shoulder

[111] 2015 Sim Controlling a musculoskeletal system based on a five-DoF arm model
and 22 muscles

MIMO PID [112] 2003 Exp A trajectory control of a two-DoF wrist joint with neurologically
intact subjects

Linear PID [113] 2010 Sim EXO-UL7 robot

Robust

Fractional SMC [114] 2020 Sim Design of a 7 DoF upper limb robotic exoskeleton (u-Rob) which was
controlled using fractional SMC

Fuzzy SMC [115] 2019 Sim A seven-DoF upper-limb exoskeleton robot was controlled using
Fuzzy SMC

[116] 2015 Sim A mechanical design of a new three-DOF exoskeleton robot for
shoulder joint rehabilitation was also proposed. The parameters of the
SMC controller were optimized using GA
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Table 8. Cont.

Class Technique Paper Year Exp/Sim Comment

Adaptive

ADRC [117] 2014 Exp The experiments were conducted on a model of a flexible joint robot,
which imitates a real rehabilitation robot.

NLADRC [118] 2021 Sim NLADRC and NLESO were adopted to track a sinusoidal path for a
two-link model of an upper limb rehabilitation exoskeleton.

ADRC [119] 2022 Sim LESO and FTSTD techniques were adopted to estimate the status of the
system and to reject the disturbances.

ADRC [120] 2020 Exp,
Clinical

ADRC and RESO were utilized to control a proposed rehabilitation
device made from elastomeric materials.

AI-Based

EDRFNN
model

[121] 2011 Sim GA, HEP, and BP techniques were adopted to optimize the parameters
of the model.

RBF NN [122] 2019 Exp The proposed control system contained a disturbance observer with a
radial basis function network

Table 9. The advantages and disadvantages of the control classes shown in Table 8 and discussed in
Section 3.3.

Class Advantages Disadvantages Papers

PID

- Simplicity - Not optimal

[110–113]- Process independent - Suffer from derivative noise amplification

- Acceptable performance with tuned parameters - Needs tuning

Robust control

- Advanced performance in the presence of
bounded uncertainties and disturbances

- Cannot handle unbounded uncertainties
and disturbances

[114–116]- Relatively Simple - More complex than PID

- Stability can be proved using Lyapunov theory - Chattering (for SMC controllers)

Adaptive control - Advanced performance in the presence of un-
bounded uncertainties and disturbances

- Not practical with large dimension systems [117–120]

AI-Based control

- applicable to non-mathematical models - Needs to be trained [121,122]

- Efficient in predicting models - Good predictions need large data

- Non-linear nature - Overfitting problems

3.3.1. PID Controllers

One of the most simple and basic controllers is the PID controller. A PID controller
continuously applies a command signal to the actuators to minimize the error between
the desired values and the sensed actual values based on proportional, integral, and
derivative terms. The simple design and philosophy of PID controllers have been utilized
successfully in many different robotic applications with an acceptable accuracy degree.
In [110], the Firefly Algorithm (FA) is used to optimize the PID parameters for the upper
extremity rehabilitation robot. The robotic system was an exoskeleton of a three-DoF system
designed to facilitate the movements of the elbow and the shoulder. Another PID controller
proposed for upper extremity rehabilitation is presented in [111]. The simulated annealing
algorithm was used to optimize two Proportional-Derivative (PD) controller gain sets. The
robot was a musculoskeletal system based on a five-DoF arm model and 22 muscles. The
parameters of the controller were optimized by minimizing a weighted sum of the position,
orientation, and muscle activation errors. In [113], a linear PID controller is designed for
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the exoskeleton system (EXO-UL7). The work claimed to achieve asymptotic stability and
proved the effectiveness of the proposed system in simulation.

PID controllers have been widely implemented in commercial-level products. The
main advantage of the PID controller is the simplicity of the design. The PID simply
consists of a single equation and does not need any knowledge of the plant to be controlled.
Acceptable performance can be achieved when operating in normal conditions, which is
usually the case with rehabilitation robots. Rehabilitation robots are usually operating in
stable indoor environments with minimal external disturbances from the environment.
Therefore, as presented earlier, the literature shows a number of successful rehabilitation
robotic systems have adopted PID controllers. However, it is clear from the presented
works that the PID itself was not enough to produce advanced performance, and thus,
an additional optimization step was needed to find the best tuning parameters of the
PID controller.

3.3.2. Robust Controllers

Even though the successful integration of PID controllers in rehabilitation robots, the
performance of PID controllers cannot be always guaranteed. If the system is exposed to a
sudden strong disturbance from the environment, the PID controller might not be able to
handle and maintain the stability of the robotic system. Moreover, rehabilitation robotic
systems are directly connected to the body of a human. A small wrong movement can
cause critical injuries. Therefore, to ensure better performance and to achieve advanced
abilities to reject disturbances, other classes of controllers are adopted in rehabilitative
robots, such as robust controllers, adaptive controllers, and AI-based controllers.

The robust control theory focuses on dealing explicitly with uncertainties and distur-
bances that are defined within a pre-defined boundary. Robust controllers achieve stability
in the presence of bounded modeling errors. A well-known robust control technique is
the Sliding Mode Control (SMC). Figure 6 shows a general block diagram of SMC control
design. An SMC controller commands the system states towards a suitably designed
desired surface, known as the sliding surface. With the assistance of a properly designed
control law, the system states should remain on the surface.

Desired 
path

Actuators

Sensors

+
-

𝒆

SMC controller

𝜽𝒓𝟏 , 𝜽𝒓𝟐 , … , 𝜽𝒓𝑵

𝜽𝒅𝟏 , 𝜽𝒅𝟐 , … , 𝜽𝒅𝑵

𝝉SMC 
law

Switching 
Surface

Figure 6. A block diagram of a general SMC controller design.

It is known that SMC controllers can achieve more robust results compared to basic
PID controllers. Therefore, the literature has shown a number of rehabilitative robotic sys-
tems controlled using SMC controllers. In [114], a fractional sliding mode control (FSMC)
is utilized to control their proposed u-Rob robot, which is a seven-DoF exoskeleton that
features shoulder scapulohumeral rhythm with a wide range of motions. The stability
of the proposed FSMC controller was examined using Lyapunov theory. Moreover, the
proposed FSMC was able to deal effectively with unmodeled dynamics, such as friction and
disturbances. The proposed FSMC was proved to achieve better tracking and enhanced
chatter behavior compared to basic SMC controllers. Another SMC work proposed to
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control an upper rehabilitation robot is proposed in [115]. The system is a fuzzy sliding
mode control named NFSMC which is proposed to control a seven-DoF upper-limb ex-
oskeleton robot. First, a novel sliding surface is designed to be able to overcome external
disturbances and unknown dynamics, including friction, input saturation, and various
upper limb masses. Based on the simulation results, the proposed NFSMC technique was
able to achieve high trajectory tracking. In [116], a new exoskeleton robot is designed
and controlled for shoulder rehabilitation. The measurements of the robot are similar to
the properties of the upper limb of an adult. For the third joint, a novel open circular
mechanism is adopted. The study has also presented the forward and inverse kinematics
of the proposed robot, the singular points, the Jacobian matrix, and the dynamics of the
robot. After that, an SMC controller is proposed to achieve the desired trajectory. The
reason for favoring SMC controllers over conventional PID controllers in this work is to be
able to control the robotic system with an advanced robustness level and higher abilities to
resist uncertainties, parameter changes, and disturbances applying to the system, such as a
patient’s hand tremor. The SMC parameters were optimized using the Genetic Algorithm
(GA). The proposed exoskeleton is a low-weight robot with a special mechanism for the
third joint. This proposed design allows translational degrees of freedom of the shoulder,
which makes the proposed robot comfortable for the patient.

3.3.3. Adaptive Controllers

The third class of controllers used in rehabilitation robots is the adaptive control
method. Figure 7 shows a general block diagram of adaptive controllers. This control
strategy adopts a controller which changes its behavior to adapt to the changes in the
plant parameters or to uncertain parameters. The difference between the robust control
strategy and the adaptive control strategy is that the adaptive control strategy does not
need prior information on the boundary of the uncertain parameters of the system. A
parameter estimator provides updated laws to automatically modify estimates based on the
sensed data. A well-known adaptive-based controller is the Active Disturbance Rejection
Control (ADRC) method. The rationale of the ADRC method is to create a fictitious state
that includes all possible uncertainties and disturbances. An online estimation of the
disturbances is performed using an Extended State Observer (ESO), which is then fed back
to design a suitable controller to detach the system from all uncertainties and disturbances.
Compared to PID controllers, ADRC controllers share the advantage of simplicity. However,
ADRC controllers have advanced abilities to reject disturbances and uncertainties.

Desired 
path

RobotController

Parameter 
Update

Figure 7. A block diagram of a general design of adaptive controllers.

Thus, several recent rehabilitation robots have been proposed to be controlled by
an ADRC controller. In [117], an ADRC controller was implemented for the application
of governing a proper realization of limb rehabilitation exercises. The proposed ADRC
technique was implemented on a flexible joint arm model, which is similar to a real
rehabilitation robot. The modeling and control of such systems are challenging due to the
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multidimensional character of the assisting mechanism. Therefore, the ADRC controller is
adopted to decouple the uncertainty from the system. This has enhanced the robustness
of the robotic system against disturbances. Another ADRC-based control is proposed
in [118]. This work proposed a non-linear ADRC method composed of a non-linear ESO
and a non-linear state error feedback to track a pre-defined trajectory. This non-linear
ADRC controller is implemented in an upper limb exoskeleton consisting of two links. The
links can mimic flexion/extension movements for both the elbow and the shoulder. The
dynamic model of the exoskeleton was developed using the Euler–Lagrange method. The
robustness of the proposed control strategy was tested when applying four disturbance
cases with 20% parameter variation. The simulations have shown that the proposed
ADRC controller was able to reject disturbances and achieve advanced tracking results
compared to PID controllers and even over other conventional ADRC methods. For the
same application of [118], a different controller based on ESO and a finite time stable
tracking differentiator (FTSTD) is proposed that showed superior performance over non-
linear ARDC [119]. In [120], and a novel rehabilitation robot to assist therapists performing
repetitive hand group stretching was also proposed. The actuator of the proposed system
is based on elastomeric materials. Thus, the proposed robot is softer and lighter than
classical rigid exoskeletons which are used for hand rehabilitation. Building an exact model
of such objects is not a trivial task. Therefore, an ADRC technique combined with an
ESO is proposed to deal with the uncertain model of the robot. The proposed technique
showed superior transient and steady-state performances and better disturbance resistance
ability compared to the PID control strategy. Moreover, the Reduced-order Extended State
Observer (RESO) was also studied. The proposed device was experimentally tested and
proved the effectiveness of the system in several clinical tests.

3.3.4. AI-Based Controllers

With the recent advancements in the processing power of modern computers, Artificial
Intelligence (AI) concepts have been widely adopted in control theory. A popular AI-based
tool is Neural Networks (NN). Figure 8 shows a general design of an NN-based control
system. NN-based controllers are gaining increased interest within the few last years due
to their high ability to operate with “black-box” systems. Even with the absence of a model
of the plant, NN-based controllers can obtain the model of the plant by observing the plant
output when changing the input values and develop a relationship between the input and
output. Thus, NN-based controllers are preferable in the cases where the plant is difficult
to model.

Desired 
path

Robot

NN Robot 
Model

+

𝒁−𝟏

NN Controller

Figure 8. A block diagram of a general design of NN controllers.

In [121], a novel impedance controller based on Evolutionary Dynamic Fuzzy Neural
Network (EDRFNN) is proposed. The required impedance between the impaired limb
and the rehabilitation robot is regulated in real time based on the physical condition of the
impaired limb. First, an online estimation of the stiffness and the damping parameters of
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the impaired limbs is performed using a Slide Average Least Squares (SALS) technique.
After that, the Genetic Algorithm (GA), dynamic Back-Propagation (BP), and Hybrid Evo-
lutionary Programming (HEP) algorithms are adopted as the learning algorithms for the
EDRFNN impedance controller. The GA and HEP are utilized to optimize DRFNN param-
eters to obtain semi-optimal parameters. Based on the error gradient descent technique,
the Dynamic BP learning method is fine-tuned in a real-time manner. The stability of the
proposed system was proven using the discrete-type Lyapunov function. Simulations
have shown that the proposed control system can achieve acceptable performance even
when altering the condition of the impaired limb. Another work based on NN concepts
is proposed in [122]. The proposed work is an adaptive admittance control system based
on an NN-based disturbance observer built to control a rehabilitation robot that assists
patients in moving their upper body parts. The disturbance observer NN structure is a ra-
dial basis function network that is responsible to deal with the uncertainties and modeling
errors. Three volunteers have tested the proposed system with several experiments, such as
tracking some desired paths including sinusoidal and circular paths with resistive training
experiments. The experiments have proven the effectiveness and robustness of the pro-
posed control system, which was able to provide patient-passive and patient-cooperative
rehabilitation training.

4. Motor Learning Strategies

While the control methods are the engineer’s point of view, rehabilitative robotics
are a multidisciplinary study that no one short of a polymath can do on their own, and
medical personnel’s input is a must for a successful system. This section aims to provide
the strategies targeted at the human brain, rather than the robotic devices, to induce motor
learning. They are inevitably parallel, and as such, there are many similarities that a
bijection is almost possible between the two perspectives.

4.1. Game Therapy

The study in [93] delved into the motor learning principles for neurorehabilitation,
where they discussed the difference between motor adaptation and skill learning. Two
distinct types of motor learning were considered: adaptation and skill acquisition. Adap-
tation refers to the response to a perturbed environment to regain a previous level of
performance [123]. Conversely, skill learning involves learning new patterns of muscle
activation [124–126]. The clear difference between these two principles is implicitness and
explicitness. Implicit learning refers to acquiring skills without awareness or directing them
to a conscious level. This contrasts with explicit learning, which refers to the acquisition
of a skill that one directs or another directs [127]. With that said, it was found that the
implicit training paradigm could lead to a greater learning effect than that of the explicit
model [128,129]. One way researchers achieved implicit learning in robotic systems in
the literature is by utilizing Game Therapy. The T-WREX and the PNEU-WREX are both
supplemented with the Java Therapy program. Java Therapy has a library of evaluation and
therapy activities that can be played with a commercial force feedback joystick as well as the
robotic systems mentioned earlier [130]. The MIT-MANUS [11] and the MIME [15] also fol-
low such a strategy. Other systems that involve game therapy include [26,38,39,43,53,60,86].
In a randomized controlled trial, game therapy was tested against conventional therapy.
The results conducted that game therapy is not superior to conventional therapy, and can
only act as an additional therapy to increase the amount of rehabilitation. However, it was
found that it may be more effective if game therapy is started before 30 days of the stroke
incident [131]. In [132,133], the same was tested with robotic assistance using the upper
extremity rehabilitation robot Neuro-X (Apsun Inc., Seoul, Korea) (Figure 9). Although the
authors have declared that the study was limited and additional research is needed, the
verdict was that there was no significant difference between the groups. The authors do
however indicate that robot-assisted game training induces patients to perform accurate
motions in a more psychologically non-quantifiable way.
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Figure 9. Neuro-X (Apsun Inc., Seoul, Korea).

4.2. Virtual Reality

Game therapy also takes on a more immersive form by utilizing Virtual Reality (VR)
technology. Previously, VR was limited by the technologies of the time, but as development
advanced, VR technologies have become more accessible, which quickly revealed their
potential in medical use cases [134]. In the context of upper limb rehabilitation, users may
interact with virtual objects that mimic the real world, with feedback ranging from visual
queues on the headset to haptic feedback. Levin et al. [135] described how this technology
can be correctly implemented in upper extremity rehabilitation, and how motor learning
paradigms should be implemented in a virtual setting. In a randomized trial, multiuser
VR therapy was compared to single-user VR therapy, both home-based trials. After four
weeks (two weeks of the single user version and two weeks with the multiuser version) of
in-home training using a multiuser VR system called VERGE (Figure 10) [136], the FMA
score improved significantly across all participants [137].

Unfortunately, a Cochrane review [138] showed that VR may not be more effective
than conventional therapy.
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Figure 10. The VERGE Virtual Reality System [136]. (A) Ball bump. (B) Food fight.
(C) Trajectory Trace.
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5. Clinical Trials

This section aims to showcase a number of randomized trials that were carried out
over the years. We will first cover some of the popular and quantifiable motor ability tests
in the following section, and then some of the trials in Section 5.2

5.1. Quantifying Motor Recovery

In order to assess the effectiveness of the devices used, the effect sizes must be defined.
There exists a number of ways to assess motor recovery that are attested by clinicians,
physiotherapists, and researchers. The following are some of the most common ways to
assess motor recovery, which can be used to understand the results of RCTs and meta-
analyses, as they measure different goals.

5.1.1. Fugl-Meyer Assessment

The Fugl-Meyer [139] scale is a 226-point multipoint Likert scale that was developed
as an assessment measure of recovery from a hemiplegic stroke. This assessment is used
in both clinical settings and research settings to evaluate the aforementioned recovery. It
has been described by Gladstone et al. [140] as “a much-needed instrument for monitoring
the course of recovery from hemiplegic stroke”. It encompasses five areas: motor function,
sensory function, balance, joint range of motion, and joint pain. Each area contains several
items, each of which is rated on a three-point ordinal scale (0 = no performance, 1 = partial
performance, 2 = complete performance). The motor domain includes items that measure
movement, coordination, and reflexes in the shoulder, elbow, forearm, wrist, hand, hip,
knee, and ankle. The motor score ranges from 0 (hemiplegia) to a maximum of 100 points
(normal motor performance), divided into 66 points for the upper limb and 34 points for the
lower limb. There is also a maximum of 24 points for sensitivity, 14 points for sitting and
standing balance, 44 points for joint mobility, and 44 points for joint pain. It is considered by
many in the field of stroke rehabilitation to be one of the most comprehensive quantitative
measures for motor impairment after stroke and is recommended to be used in clinical
rehabilitation studies. This scale is an objective disease-specific deterioration index that
was specially developed as an assessment measure to assess recovery in patients with
hemiplegia after stroke. The upper extremity section of the FMA (FMA-UE) is what we are
concerned about within this review, and is scored out of 66.

5.1.2. Action Research Arm Test

The action research arm test (ARAT) [141] is a 19-item observational method used
by physical therapists and other health care professionals to evaluate upper extremity
performance (coordination, dexterity, and function) in stroke, brain injury, and multiple
sclerosis recovery groups. ARAT was originally described by Lyle in 1981 as a modified
version of the upper extremity function test and was used to study the recovery of upper
extremity function after cortical injury. The elements that make up the ARAT are catego-
rized into four sub-levels (grip, grasp, pinch, and gross movement), ranked in order of
decreasing difficulty, with the hardest task considered first, followed by the least difficult
task. Lyle suggested that this pecking order would improve inspection efficiency, as normal
movement on harder items would be indicative of successful performance on current items.
task performance is rated on a four-point scale, from 0 (no movement) to 3 (normally
performed motion).

5.1.3. Wolf Motor Function Test

The Wolf Motor Function Test (WMFT) quantifies UE motor ability through timed and
functional tasks [142]. The widely used version consists of 17 tasks, 15 function-based tasks,
and 2 strength-based tasks. The data collection form, including the scoring information of
WMFT is shown in Figure 11 [143].
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DATA COLLECTION FORM 
Subject’s Name: -----------------------------------                    Date: ----------------- 
Test (check one): Pre-treatment: ---- Post-treatment: ---- Follow-up: ---- 

*Arm tested (check one): More-affected: ---- Less-affected: ----  

 
Task Time Functional Ability Comment 
    

1. Forearm to table (side)  0 1 2 3 4 5  
2. Forearm to box (side)  0 1 2 3 4 5  
3. Extend elbow (side)  0 1 2 3 4 5  
4. Extend elbow (weight)  0 1 2 3 4 5  
5. Hand to table (front)  0 1 2 3 4 5  
6. Hand to box (front)  0 1 2 3 4 5  
7. Weight to box -------------- lbs.   
8. Reach and retrieve  0 1 2 3 4 5  
9. Lift can  0 1 2 3 4 5  

10. Lift pencil  0 1 2 3 4 5  
11. Lift paper clip  0 1 2 3 4 5  
12. Stack checkers  0 1 2 3 4 5  
13. Flip cards  0 1 2 3 4 5  
14. Grip strength --------------- kgs.   
15. Turn key in lock  0 1 2 3 4 5  
16. Fold towel  0 1 2 3 4 5  
17. Lift basket  0 1 2 3 4 5  

    

Functional Ability Scale 
Scoring Definitions: 0 = Does not attempt with upper extremity (UE) being tested. 1 = UE being 

tested does not participate functionally; however, an attempt is made to use the UE. In unilateral 

tasks, the UE not being tested may be used to move the UE being tested. 2 = Does, but requires 

assistance of the UE not being tested for minor readjustments or change of position, or requires 

more than 2 attempts to complete, or accomplishes very slowly. In bilateral tasks, the UE being 

tested may serve only as a helper. 3 = Does, but movement is influenced to some degree by 

synergy or is performed slowly or with effort.  4 = Does; movement is close to normal* but slightly 

slower; may lack precision, fine coordination, or fluidity. 5 = Does; movement appears to be 

normal.* 

*For the determination of normal, the less-involved UE can be utilized as an available index for 

comparison, with premorbid UE domi- nance taken into consideration. 

Figure 11. The data collection form for the WMFT [143].
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5.1.4. Stroke Impact Scale

Another scale that is used to assess motor recovery is the stroke impact scale. It is a
stroke-specific self-reporting and health measure. It is designed to evaluate multidimen-
sional stroke outcomes. The scale was first released as version 2.0, which includes 64 items
in 8 domains (strength, hand function, activities of daily living (ADL)/instrumental ADL,
mobility, communication, emotion, memory and thinking, and participation) [144]. Based
on the results of the Rasch analysis, 5 items were removed (with 59 items remaining after
the removal) from version 2.0 to create the current version3.0 [145]. Each item is rated using
a five-point Likert scale, where 1 is an inability to complete the item and 5 is no difficulty
experienced at all.

5.1.5. Barthel’s ADL Index

Barthel’s ADL index [146] is an ordinal scale used to measure performance in ADL
activities. Ten variables describing ADL and mobility are scored: 0 being “in content”,
1 being “occasional accident (once/week)” and 2 being “content”. The Barthel index
measures the degree of assistance required by an individual on 10 items of mobility and
self-care ADL. Thus, overall scoring ranges between 0 and 20, a higher number being a
reflection of greater ability to function independently following hospital discharge [147].

5.2. Trials

Table 10 summarizes the robotic rehabilitation clinical trails attempts. The first clinical
trials employing rehabilitation robots looked at whether they might be useful compared
to traditional treatment. The MIT-MANUS provides therapy that uses repetitive massed
practice of reaching toward an endpoint. In terms of pain, no difference was found between
the groups, with seven controls and five experimental subjects developing pain in joints
or tendons, and of these, three controls and four experimental subjects developed the
shoulder-hand syndrome. Additionally, there were no adverse events in the estimated
500 h of operation, and it was well-received by the patients [12]. In another study [148],
the therapists expressed a qualified acceptance. Clinical values were also reported in [12].
However, there exists a much more recent, randomized controlled trial, dubbed RATULS
(Robot-Assisted Training for the Upper Limb after Stroke), which was carried out at four UK
centers [149]. RATULS had 770 participants enrolled in 3 groups, where 257 were assigned
to robot-assisted training, 259 were assigned to enhanced upper limb therapy (EULT),
and 254 were assigned to usual care. FMA for the robot training group was 68.9 (16.5) at
baseline, 76.6 (22.1) after 3 months, and 78.2 (22.8) at 6 months. The FMA of the EULT
group was 69.0 (17.9) at baseline, 77.8 (22.8) after 3 months, and 79.4 (24.1) at 6 months. The
FMA of the usual care group’s was 68.9 (17.4) at baseline, 74.2 (23.6) after 3 months, and
77.9 (23.2) at 6 months.

Table 10. Summary of robotic rehabilitation clinical trials. Notations: s = number of sessions, n = total
number of participants, AS = at the end of the Study, AF = at follow-up.

Housman et al. [150] Lum et al. [151] Rodgers et al. [149] Hesse et al. [152] Reinkensmeyer
et al. [153]

Study Duration (Weeks) 8, s = 24 4, s = 15 12, s = 36 6, s = 30 8–9, s = 24
Follow-Up (Months) 6 6 6 3 3

n of Sex(m/f)
Control 7/7 4/2 101/153 12/10 12/1
Experimental 11/3 2/3 101/156 12/10 5/8

Age
Control 56.4 ± 12.8 59.9 ± 5.5 62.5 ± 12.5 64.0 ± 11.6 61 ± 13
Experimental 54.2 ± 11.9 72.2 ± 11.7 59.9 ± 13.5 65.4 ± 11.5 60 ± 10
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Table 10. Cont.

Housman et al. [150] Lum et al. [151] Rodgers et al. [149] Hesse et al. [152] Reinkensmeyer
et al. [153]

Stroke Control 8 ischemic,
5 hemorrhagic,
1 unknown

No Info. 214 cerebral infarc-
tion, 38 primary
intracerebral
haemorrhage,
2 subarachnoid
haemorrhage

No Info. 4 ischemic,
6 hemorrhagic,
3 unknown

Experimental 9 ischemic (1 with
hemorrhagic
conversion),
4 hemorrhagic, 1
unknown

No Info. 197 cerebral infarc-
tion, 58 primary
intracerebral
haemorrhage,
2 subarachnoid
haemorrhage

No Info. 9 ischemic,
2 hemorrhagic,
3 unknown

FMA-UE (out of 66)

Control
Baseline 18.1 ± 5.0 26.0 ± 4.72 45.47 ± 11.48 7.3 ± 3.3 22.9 ± 7.4
Change AS 2.2 ± 2.6 5.8 ± 1.99 3.44 ± 10.53 3.1 ± 6.73 0.9 ± 3.04
Change AF 1.5 ± 2.7 13.8 ± 2.77 5.94 ± 10.13 9.3 ± 14.53 0.1 ± 3.04

Experimental
Baseline 21.7 ± 5.9 39.2 ± 6.08 45.47 ± 10.89 7.9 ± 3.4 24.1 ± 8.8
Change AS 3.3 ± 2.4 3.8 ± 1.66 5.09 ± 9.71 16.7 ± 14.5 3.3 ± 7.24
Change AF 3.6 ± 3.9 7.4 ± 1.98 6.14 ± 10.39 22.1 ± 16.5 2.4 ± 6.93

Characteristics of experimental interventions used in clinical trials

Robot [83] [14,15] [11] [13] [46]
Robot Type Exoskeleton End-Effector End-Effector End-Effector Exoskeleton
Degrees of Freedom 5 6 5 1 5
Control Strategem Gravity

Compensation
Admittance
Control

Admittance
Control

Admittance
Control

Gravity
Compensation

Type of Therapy Passive Bilateral Active Bilateral Passive
Motor Learning Strategy Assistance Mirroring Assistance Mirroring Assistance

The ARMin III was tested in a parallel-group randomized trial of 24 sessions [154]. The
results show that the FMA-UE score of the robotic treatment group was 2.6, 3.4, 3.4, and 3.1
at 4, 8, 16, and 34 weeks, respectively. Compared to the control group’s results, which were
2.0, 2.6, 2.8, and 2.9 at 4, 8, 16, and 34 weeks, respectively, it shows a significantly greater
improvement for the robotic treatment group, but the gap between the two groups was
closer as time went on.

A single-blinded randomized trial was carried out with the Bi-Manu-Track, where
44 patients were split into a control group and a robot arm trainer (AT) group, who
participated in 30 sessions in either conventional therapy (control group) or robotic therapy
using the Bi-Manu-Track (AT group). In the robot AT group, FM score was 15 points higher
at study end and 13 points higher at 3-month follow-up than the control ES group [152].

The T-WREX also had a randomized controlled trial that had an intervention car-
ried over 24 Sessions. The robotic treatment group saw an FM improvement of 3.3 ± 2.4
(p = 0.001) and 3.6 ± 3.9 after a 6-month follow-up (p = 0.005) compared to control
group’s FM improvement of 2.2 ± 2.6 (p = 0.004) and 1.5 ± 2.7 after a 6-month follow-up
(p = 0.06) [150]. The other robot, the PNEU-WREX, has been tested in a Randomized Con-
trolled Trial, where 26 subjects were split into two groups and partook in 24 sessions across
a 2-month period. The group that received the robotic training saw an FM improvement of
3.0 ± 4.9 (p = 0.02) and 2.4 ± 5.2 after a 3-month follow-up (p = 0.06) compared to control
group’s FM improvement of 0.9 ± 1.7 (p = 0.04) and 0.1 ± 1.4 after the 3-month follow-up
(p = 0.4) [153].

MIME’s Randomized Controlled Trial was 15 Sessions long. Since the MIME has
two modes of operation, they were tested as separate groups in addition to a group that
used both modes of operation. The FM improvement in the unilateral therapy group was
7.9 ± 1.91, the bilateral therapy group saw an improvement of 3.8 ± 1.66, and the combined
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group’s FM improvement was 7.6 ± 1.26. Comparatively, the control group’s improvement
was 2.5± 0.6 [151]. With these trials and their results, the forest plot in Figure 12 can give us
an idea of the effect of robotic systems and how they compare to usual care. However, this
is by no means a meta-analysis, as it does not account for any biases and is not extensive
enough to be considered a meta-analysis, not to mention the randomized controlled trials
are of various lengths and qualities but the forest plot is unweighted. It is merely to give us
an idea of how these robotic systems compare up to their physiotherapy counterparts. For
a more detailed analysis, see [155].

RE Model

-1.0 0.0 1.0 1.0 1.0 1.0 1.0
Observed Outcome

(Reinkensmeyer et al, 2012)

(Hesse et al, 2005)

(Rodgers et al, 2019)

(Lum et al, 2005)

(Housman et al, 2009)

0.98 [-0.01, 1.00]

1.00 [ 1.00, 1.00]

0.80 [ 0.32, 0.95]

0.98 [ 0.03, 1.00]

0.97 [-0.11, 1.00]

0.99 [ 0.73, 1.00]

Study Correlation[95% CI]

Figure 12. Pairwise comparison (Robot vs. Usual Care) [149–153].

As seen in Figure 12, the effect of the robotic systems in the aforementioned RCTs, save
for [152], was minimal. Moreover, that was the conclusion of [155], that “little evidence
supported the superiority of experimented interventions over conventional rehabilitation”.
However, they also state that some interventions were effective in enhancing poststroke
motor recovery, rather than replacing traditional therapy.

5.3. Evaluation of the Current State of Robotic Rehabilitation Systems: The Gaps, Challenges,
and Requirements

This section provides an attempt to answer the question of this paper: “Will your next
therapist be a robot?”. To answer this question, a discussion on the current challenges and
gaps in the robotic rehabilitation field is conducted. This section also suggests strategies to
meet the requirements needed to achieve effective robotic rehabilitation systems. Based
on the comprehensive analysis provided in this paper, it is clear that the current design
of rehabilitation robots has focused more on the technical aspects of the robotic systems
rather than the rehabilitation effectiveness of the variety of operational or training modes
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available to patients. For example, by comparing Tables 3 and 4, it is clear that fewer
systems have adopted multiple therapy modes. Instead, the focus was to increase the
mechanical complexity of the robotic systems by increasing the number of sensors, degrees
of freedom, and motors. However, the requirements of a successful clinical rehabilitative
robotic experience are more than purely technical-based developments. The authors in [156]
suggested that the aspects of the therapeutic psychology, usability, and ergonomics, in
addition to the medical aspects, must also be addressed. The design of robotic systems
for rehabilitation must be compatible with other elements developed by the therapist.
Moreover, the design of a rehabilitation robot should meet the goals of the session instructed
by a therapist. Task allocation is another critical aspect that should be considered when
designing a robotic system. A good robotic therapy experience should be able to determine
the best task allocation strategy by efficiently assigning tasks to be accomplished by the
robot, the patient, or both of them.

Rehabilitation robotic solutions are recommended to be built by considering sen-
sorimotor methods. These methods can help in reducing faulty motor behavior using
proprioceptive and cutaneous stimulations [157]. To the best of the authors’ knowledge,
the literature lacks robotic rehabilitation techniques that adopt proprioceptive and cuta-
neous stimulations. More research is encouraged in this field. The literature shows that
several robotic solutions have utilized biomechanical methods to assist patients recover
motor control. However, some important training modes including active and passive
stretch and isometric exercise with/without resistance have not been widely implemented
within robotic rehabilitation systems. Such exercises can benefit a number of patients with
upper extremity disorders. A few works have considered physical agent modalities in the
design of their robotic systems [158,159]. Adopting physical agent modalities can help in
enhancing the performance of rehabilitation systems. For instance, heat can be utilized to
reduce muscle spasms, cure joint stiffness, increase motion, and increase blood flow. On
the other hand, electrical modalities can be utilized to train muscles, increase motion, and
reduce pain.

Based on the discussion of this section and this paper, the short answer to the question:
“Will your next therapist be a robot?” would be no, at least for the next decade for a fully
dependent robotic system. Even though it is shown throughout this paper that robots have
been effectively integrated into the rehabilitation field, it is clear that there are still some
challenges to achieve an entirely independent robotic rehabilitation system. The following
aspects need to be addressed and studied in future works:

• Cost: Many of the advanced robots used in rehabilitation are expensive, which limits
their accessibility to patients;

• User-friendliness: Robots used in rehabilitation need to be easy to operate and require
minimal training so that they can be used by patients with varying levels of physical
and cognitive abilities;

• Adaptability: Robots need to be adaptable to various patient needs and abilities, which
requires sophisticated algorithms and control systems;

• Safety: Robots must be safe to use, with built-in safety features to prevent accidents
and injuries;

• Evidence-based: There is a need for more research to determine the effectiveness of
robots in rehabilitation, and to identify the specific patient populations and conditions
for which they are most useful;

• Ethical considerations: There are ethical considerations to be addressed, such as how
to balance the benefits of using robots with the potential loss of human interaction
and empathy.

6. Conclusions

This paper has presented a comprehensive review on robotic rehabilitation systems
that have been recently proposed. Various robotic solutions have been presented in the
literature with different configurations and approaches, from devices that simply make
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the patient repeatedly do an exercise to those that go as far as including enriched train-
ing environments to unlock the human brain’s true learning capabilities. Overall, when
used in conjunction with traditional therapy, robots offer an enhanced experience for the
patients. However, there is yet to exist a robotic system that completely replaces traditional
therapy. The review had also discovered the advantages and disadvantages of various tech-
niques used in robotic rehabilitation and pointed to the current gaps in the rehabilitation
robotic field.
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