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Abstract: The quality of videos varies due to the different capabilities of sensors. Video super-
resolution (VSR) is a technology that improves the quality of captured video. However, the devel-
opment of a VSR model is very costly. In this paper, we present a novel approach for adapting
single-image super-resolution (SISR) models to the VSR task. To achieve this, we first summarize a
common architecture of SISR models and perform a formal analysis of adaptation. Then, we propose
an adaptation method that incorporates a plug-and-play temporal feature extraction module into
existing SISR models. The proposed temporal feature extraction module consists of three submod-
ules: offset estimation, spatial aggregation, and temporal aggregation. In the spatial aggregation
submodule, the features obtained from the SISR model are aligned to the center frame based on the
offset estimation results. The aligned features are fused in the temporal aggregation submodule.
Finally, the fused temporal feature is fed to the SISR model for reconstruction. To evaluate the
effectiveness of our method, we adapt five representative SISR models and evaluate these models
on two popular benchmarks. The experiment results show the proposed method is effective on
different SISR models. In particular, on the Vid4 benchmark, the VSR-adapted models achieve at
least 1.26 dB and 0.067 improvement over the original SISR models in terms of PSNR and SSIM
metrics, respectively. Additionally, these VSR-adapted models achieve better performance than the
state-of-the-art VSR models.

Keywords: video super-resolution; single-image super-resolution; plug-and-play; deformable convolution

1. Introduction

Numerous videos are captured every day; however, due to the different capabilities
of sensors, the quality of captured videos can vary greatly, which affects the subsequent
analysis and applications [1–4]. Recently, computer technologies have been applied to
many fields [5–8]. In particular, video super-resolution (VSR) is a technology for improving
the quality of captured video. It produces high-resolution (HR) video frames from their
low-resolution (LR) counterparts. The VSR problem is challenging due to its ill-posed
nature, but its applications include video display, video surveillance, video conferencing,
and entertainment [9].

VSR models take consecutive frames as input. Single-image super-resolution (SISR)
methods process only one image at a time. So, VSR models take both spatial information
and temporal information into account, while SISR models only exploit spatial information
for super-resolution (SR) reconstruction. Thus, many VSR methods adapt SISR models
for spatial information extraction. For example, Haris et al. [10] introduced RBPN, which
employs blocks from DBPN [11] in a recurrent encoder–decoder module to utilize spatial
and temporal information. Tian et al. [12] adapted EDSR [13] as the main design for the
SR reconstruction network in TDAN. Liang et al. [14] utilized residual Swin Transformer
blocks from SwinIR [15] in their proposed RVRT. Although these works have adapted
SISR models, each method utilizes only one SISR model. Applying SISR techniques to the
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VSR models would require considerable effort and they may not perform as effectively as
specialized VSR models.

Meanwhile, several VSR methods do not rely on SISR models. For instance, Xue
et al. [16] proposed TOF, which estimates task-oriented flow to recover details in SR frames.
Wang et al. [17] proposed SOF-VSR, which estimates HR optical flow from LR frames.
SWRN [18] can be utilized in real time on a mobile device. However, the development of a
VSR model without adapting SISR methods is very costly, as the model needs to capture
both temporal and spatial information. Moreover, compared with SISR methods, they may
be less effective in utilizing spatial information.

To alleviate the above issues, we propose a plug-and-play approach for adapting
existing SISR models to the VSR task. Firstly, we summarize a common architecture of
SISR models and provide a formal analysis of adaptation to achieve better effectiveness of
different SISR models. Then, we present an adaptation method, which inserts a plug-and-
play temporal feature extraction module into SISR models. Specifically, the temporal feature
extraction module consists of three submodules. The spatial aggregation submodule aligns
features extracted by the original SISR model. The alignment is performed based on the
result of the offset estimation submodule. Then, the temporal aggregation submodule is
applied to aggregate information extracted from all neighboring frames.

To evaluate the effectiveness of the proposed method, we adapt five representative
SISR models, i.e., SRResNet [19], EDSR [13], RCAN [20], RDN [21], and SwinIR [15], and
the evaluations are conducted on two popular benchmarks, i.e., Vid4 and SPMC-11. On the
Vid4 benchmark, the VSR-adapted models achieve at least 1.26 dB and 0.067 improvements
over original SISR models in terms of peak signal-to-noise ratio (PSNR) [22] and structural
similarity index (SSIM) [23], respectively. On the SPMC benchmark, the VSR-adapted
models achieve at least 1.16 dB and 0.036 gain over original SISR models in terms of PSNR
and SSIM, respectively. Moreover, the VSR-adapted models surpassed the performance of
state-of-the-art VSR models.

For this paper, the main contributions are as follows: (1) We propose a plug-and-play
approach for adapting SISR models to the VSR task. Instead of adapting one SISR model,
the proposed method is based on a common architecture of SISR models. (2) A plug-and-
play temporal feature extraction module is introduced. Thus, the adapted model gains
the capability to exploit temporal information. (3) Extensive experiments are conducted to
evaluate its effectiveness.

2. Related Work
2.1. Single-Image Super-Resolution

The SISR problem is an ill-posed problem, and learning-based methods have signifi-
cantly improved the performance in terms of accuracy [13,15,19–21,24,25] and speed [26–29].
In 2014, Dong et al. [30] introduced a learning-based model, namely SRCNN, into the SISR
field. Inspired by ResNet [31], Ledig et al. [19] proposed SRResNet in 2017. SRResNet [19]
accepts LR images directly and achieves high performance and increased efficiency. Kim
et al. [13] improved the SRResNet by removing unnecessary batch normalization in resid-
ual blocks and expanding the number of parameters. In 2018, Zhang et al. [21] employed a
densely connected architecture. All extracted features are fused to utilize hierarchical infor-
mation. Subsequently, Zhang et al. [20] introduced the channel attention mechanism that
adaptively weights features channel-wisely. In 2021, Liang et al. [15] proposed SwinIR by
making use of the Transformer [32]. Additionally, SwinIR uses the Swin Transformer [33]
variation, which is more appropriate for computer vision tasks. By appropriately employ-
ing convolution layers and Swin Transformer modules, SwinIR can capture local and global
dependencies at the same time, resulting in SOTA performance.

2.2. Video Super-Resolution

In recent years, deep-learning-based models have been used to solve the VSR problem,
and have become increasingly popular [9]. We roughly divide VSR models into two categories:
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(1) Models adapting SISR models: Sajjadi et al. [34] proposed FRVSR, which takes
EnhanceNet [35] as the subnetwork for SR reconstruction. Haris et al. [10] applied the
iterative up- and downsampling technique [11] in RBPN. The representative deep learning
SISR model, EDSR [13], is utilized by many VSR models. Tian et al. [12] applied a shallow
version of EDSR [13] in TDAN. EDVR [36] and WAEN [37] both employed the residual
block and upsampling module from EDSR [13] in the reconstruction module. Inspired
by [12], Xu et al. [38] adapted EDSR as the reconstruction module. EGVSR [39] applied
ESPCN [26] as the backbone for the SR net. The recently proposed RVRT [14] utilized the
residual Swin Transformer block, which is proposed in SwinIR [15].

(2) Models without adapting SISR models: DUF [40] reconstructs SR frames by esti-
mating upsampling filters and a residual image for high-frequency details. Kim et al. [41]
employed 3D convolution to capture spatial–temporal nonlinear characteristics between
LR and HR frames. Xue et al. [16] proposed a method, namely TOF. It learns a task-specific
representation of motion. Wang et al. [17] proposed SOF-VSR, which estimates HR optical
flow from LR frames. To better leverage the temporal information, TGA [42] introduced a
hierarchical architecture. Recently, Chan et al. [43] proposed BasicVSR by investigating the
essential components of VSR models. Liu et al. [44] applied spatial convolution packing to
jointly exploit spatial–temporal features. For better fusing information from neighboring
frames, Lee et al. [45] utilized both attention-based alignment and dilation-based align-
ment. Lian et al. [18] proposed SWRN to achieve real-time inference while producing
superior performance.

Because VSR models have to capture both temporal and spatial information, proposing
a VSR method requires more effort. Thus, many researchers turn to adapting SISR models.
Based on SISR models, proposing a VSR method can focus on capturing temporal infor-
mation. However, these models either utilize a SISR model as a subnet or adapt modules
from a SISR model to extract features. Additionally, they may be less effective than those
methods that do not adapt SISR methods. Our work proposed a plug-and-play approach to
adapt SISR models to the VSR task. The proposed method works on different SISR models
as it follows the common architecture of SISR models we have summarized. The spatial
information and temporal information are both extracted in the proposed method.

3. Methodology

In this section, we first summarize the common architecture of SISR models. Then, we
provide a formal analysis of adaptation. Following that, a general VSR adaptation method
is proposed. Finally, we present a plug-and-play temporal feature extraction module.

3.1. Revisit of Single-Image Super-Resolution Models

For the effectiveness on different SISR models [13,15,19–21,46], we first summarize
a common architecture, as shown in Figure 1. For simplicity, some operations such as
element-wise addition and concatenation are omitted. As shown in Figure 1a, the common
architecture of SISR models can be divided into three modules: shallow feature extraction
(FE) module, deep FE module, and reconstruction module. Figure 1b–e illustrate the details
of four SISR models. As one can see, the shallow FE module takes one LR image as input
and extracts features by a few convolution layers. The deep FE module consists of several
submodules or blocks, where advanced techniques, such as dense connection [21], channel
attention [20], and self-attention [15], are applied. Thus, the deep FE module is where the
key novelty of SISR models lies. Finally, the features from the deep FE module are fed to
the reconstruction module to produce the SR image.
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Figure 1. The architectures of typical SISR models.

Thus, given an LR image y ∈ RH×W×3, these SISR models can be generalized using
the following representation:

x = MethodSISR(y), (1)

where MethodSISR(·) is the SISR model. x ∈ RsH×sW×3 represents the SR result with upscale
factor s. H and W denote the height and width of LR image, respectively. According to the
common architecture of SISR models, Equation (1) can be expanded as

x = Recons(FEdeep(FEshallow(y)) + FEshallow(y)), (2)

where the shallow and deep FE modules are noted as FEshallow(·) and FEdeep(·), respectively.
The reconstruction module is denoted as Recons(·).

Different from the SISR problem, the VSR methods have to exploit both spatial and tem-
poral information. Thus, we make use of sliding window framework [12] to capture tempo-
ral dependency. Given consecutive 2n + 1 LR frames Y = {yt−n, · · · yt−1, yt, yt+1, · · · yt+n},
the representation of VSR models is formulated as

xt = MethodVSR(Y), (3)

where the VSR method is MethodVSR(·). xt represents the reconstructed SR frame, the
frame index of which is t.

Note that the main difference between Equations (1) and (3) is the input, and Equation (2)
is an expanded representation of Equation (1). In order to adapt existing SISR models to
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the VSR task, a straightforward method is to modify the shallow FE module. Then, the
adapted model can be represented as

xt = Recons(FEdeep(FE′shallow(Y)) + FE′shallow(Y)), (4)

where FE′shallow(·) is the modified shallow FE module.

3.2. Proposed Video Super-Resolution Adaptation Method

According to the analysis in Section 3.1, we propose a general method to easily adapt
SISR models to the VSR task. As shown in Figure 2, the architecture of the proposed
VSR-adapted models consists of 4 modules. Firstly, the VSR-adapted model applies the
shallow FE module FEshallow(·) to obtain low-level features Fs,i ∈ RH×W×C for each LR
frame yi. The subscript i represents the relative index of the center frame. The center frame
is denoted as 0, and C stands for the number of channels in a feature. The shallow feature of
center frame Fs,0 is skip-connected to the output of the deep FE module with element-wise
addition for global residual leaning. Secondly, the temporal FE module FEtemporal(·) is
employed to exploit spatial–temporal information. It takes LR frames to estimate the offsets
of pixels. It also takes shallow features which will be spatially aggregated based on the
offsets. In order to enable the deep FE module to leverage information from all LR frames,
spatial-aggregated features are temporally aggregated in the temporal FE module. Thirdly,
the deep FE module FEdeep(·) is responsible for estimating accurate residual features with
advanced techniques. Finally, the reconstruction module Recons(·) upsamples features
with specific scale factors and produces SR frames. The architecture can be represented as

Fs,i = FEshallow(yi), (5)

FT = FEtemporal(Fs,−n, · · · , Fs,0, · · · , Fs,n, y−n, · · · , y0, · · · , yn), (6)

x0 = Recons(FEdeep(FT) + Fs,0), (7)

where i denotes the relative index of the target frame, ranging from −n to n. The temporal
feature FT ∈ RH×W×C is the output of temporal FE module.

LR
FrameLR

Frame
SR

Frame
Shallow

FE Module
Deep 

FE Module
Reconstruction 

Module
Temporal 

FE Module

Center Skip

LR
Frame

Figure 2. The Architecture of Proposed General VSR-Adapted Models.

For adapting different SISR models, the proposed method maintains the shallow
FE module, deep FE module, and reconstruction module unmodified. Furthermore, we
employ the temporal feature extraction module between the shallow FE module and the
deep FE module in accordance with accuracy and latency concerns.

From an accuracy perspective, the main difference between an input LR frame and its
ground truth HR frame is the high-frequency content. Thus, the better the residual feature
that is extracted, the better the achieved performance. The proposed architecture takes
advantage of the deep FE module, where the key novelties of SISR models lie [46]. Further,
with the information from neighboring frames, the deep FE module is able to extract more
accurate features for reconstruction. Thus, the temporal FE module is employed before
deep FE module.

From a latency perspective, the temporal FE module aggregates the features extracted
from all input frames. It requires previous modules to complete their processing for each
frame. To minimize the overall computation time, the proposed temporal FE module is
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employed after shallow FE module because its relatively small number of layers has a
negligible impact on inference latency.

3.3. Plug-and-Play Temporal Feature Extraction Module

In order to exploit spatial–temporal information, the temporal FE module is proposed.
The detailed architecture is illustrated in Figure 3, which consists of three submodules, i.e.,
offset estimation, spatial aggregation, and temporal aggregation.
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Figure 3. The Temporal Feature Extraction Module.

The offset estimation submodule takes the center LR frame y0 and each neighboring
frame yi as inputs. The intermediate feature extraction is performed by a convolution layer
and five residual blocks, and the parameters are shared across all input LR frames. The
intermediate features are noted as Fo,i ∈ RH×W×C. The offset feature Fo f f ,i ∈ RH×W×C is
estimated from the intermediate feature Fo,0 and Fo,i using a convolution layer and two
deformable convolution layers. The offset estimation submodule can be formulated as

Fo,i = RB5(· · · RB1(Conv1(yi)) · · · ), (8)

Fo f f ,i = DConv2(DConv1(Conv2(CAT(Fo,i, Fo,0)))), (9)

where RB(·) is residual block. Conv(·) and DConv(·) are convolution and deformable
convolution, respectively. The concatenation is denoted as CAT(·).

The shallow feature Fs,i and the estimated offset Fo f f ,i are then fed into the spatial
aggregation submodule. Here, a variation of deformable convolution is used to extract
features Fs,i, which takes Fo f f ,i for offset. This allows the offset feature Fo f f ,i to guide
the alignment in the spatial aggregation submodule. Another deformable convolution is
applied for refinement, resulting in output feature FT,i ∈ RH×W×C. The spatial aggregation
submodule can be given by

FT,i = DConv3(DConvA(Fs,i, Fo f f ,i)), (10)

where DConvA(·, ·) is the variation of deformable convolution. The variation of deformable
convolution DConvA(·, ·) takes the first input for feature extraction and the second input
for offset.

After spatial aggregation, the temporal aggregation submodule fuses these spatial-
aggregated features FT,−n · · · FT,n. For fusing a feature with (2n + 1) × C channels, a
simple convolution layer is not sufficient. Therefore, a residual channel attention block [20]
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is employed to adaptively weight these features channel-wise. A convolution layer for
channel reduction is then applied. The channel shrinkage is performed in two steps to
minimize information loss: first reducing to twice the SISR features’ channels and then
reducing to once. The temporal aggregation submodule can be represented as

FT = Conv4(RCAB2(Conv3(RCAB1(CAT(FT,−n, · · · , FT,n)))), (11)

where RCAB1(·) and RCAB2(·) are residual channel attention blocks. The number of
channels of the features output by Conv3(·) and Conv4(·) is 2× C and C, respectively. The
temporal-aggregated feature is FT ∈ RH×W×C.

Overall, the spatial aggregation aligns neighboring features based on the result of
the offset estimation submodule. Then, the temporal aggregation submodule fuses the
spatial-aggregated features, resulting in an output containing information from all input
LR frames. Finally, the plug-and-play module extracts feature FT , which contains spatial–
temporal information from all input frames. Further, we summarize the detailed algorithm
of the VSR-adapted method with plug-and-play temporal feature extraction module in
Algorithm 1. For easy understanding, we divided the loop into multiple ones.

Algorithm 1: Video Super-Resolution with SISR Model and Plug-and-Play Tem-
poral Feature Extraction Module.

Input : Consecutive low-resolution frames yi. i is relative index to the center
frame ranging from −n to n.

Output : Super-resolution center frame x0.
// Shallow FE module from SISR model

1 for i = −n,−n + 1, · · · , n do
2 Fs,i = FEshallow(yi) ;
3 end

// Offset estimation submodule of temporal FE module
4 for i = −n,−n + 1, · · · , n do
5 Fo,i = RB5(· · · RB1(Conv1(yi)) · · · ) ;
6 Fo f f ,i = DConv2(DConv1(Conv2(CAT(Fo,i, Fo,0)))) ;
7 end

// Spatial aggregation submodule of temporal FE module
8 for i = −n,−n + 1, · · · , n do
9 FT,i = DConv3(DConvA(Fs,i, Fo f f ,i)) ;

10 end
// Temporal aggregation submodule of temporal FE module

11 FT = Conv4(RCAB2(Conv3(RCAB1(CAT(FT,−n, FT,−n+1, · · · , FT,n))))) ;
// Deep FE module and reconstruction module from SISR model

12 x0 = Recons(FEdeep(FT) + Fs,0) ;

4. Experiment
4.1. Datasets

Following previous studies [12,16,47], we utilized the widely used Vimeo90K dataset
for training. This dataset includes videos with different scenarios, such as moving objects,
camera motion, and complex scene structures. It consists of 90,000 video clips with a
resolution of 448× 256. As per the official split, we use 64,612 video clips for training.
The HR frames of these videos were used as the ground truth. For training, we randomly
cropped these HR frames to patches with the size of 256× 256, and these patches were
bicubically downsampled to the size of 64× 64 using the Matlab function imresize. We
randomly flipped and rotated the data during training.

For testing, we evaluated the effectiveness of our proposed model on two public
benchmarks, i.e., the Vid4 [48] and SPMC-11 [47]. The quantitative metrics were PSNR [22]
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and SSIM [23], computed in the luminance (Y) channel. We also cropped 8 pixels near the
image boundary, similar to the previous approach [12].

4.2. Implementation Details

To evaluate the proposed method, we employed it on five representative SISR models:
(1) SRResNet [19] is the generator model in SRGAN. (2) EDSR [13] is a representative SISR
model. (3) RCAN [20] makes use of channel attention. (4) RDN [21] has the advantage of a
dense connection. (5) SwinIR [15] introduces Swin Transformer [33]. For SISR models, we
generated SR videos frame by frame.

In our implementation of SRResNet [19], we removed all batch norm layers. We
used the EDSR baseline [13] with a feature channel count and block count of 64 and 16,
respectively. For SwnIR [15], the LR patch size was 48× 48, and the GT patch size was
192× 192. We used a smaller patch size for SwinIR for lower memory consumption. The
batch size for training all models was 16. We empirically set n = 2, indicating that a
VSR-adapted model takes five frames as input. For SISR models, the number of input
frames was one. Each SISR model and its VSR-adapted model were trained from scratch
using the same setting except for the number of input frames.

We used the mean square error (MSE) as the loss function, defined as Loss = ‖HR− SR‖2.
The parameters were updated using the Adam optimizer [49] with β1 = 0.9 and β2 = 0.99.
The learning rate was initialized as 1× 10−4 and halved for every 1× 105 iterations. We
trained the models for 3× 105 iterations. All experiments were implemented in Pytorch
and ran on a server with NVIDIA GPUs.

4.3. Effectiveness on Different Single-Image Super-Resolution Models

To evaluate the effectiveness of the proposed method, we conducted experiments on
five representative SISR models. Table 1 displays the quantitative results on two popular
benchmarks. The PSNR and SSIM metrics of VSR-adapted models improved by at least
1.16 dB and 0.036, respectively. It demonstrates that the proposed method works effectively
on various SISR models. Moreover, the performance of the VSR-adapted models is posi-
tively correlated with the capacity of the original models. In the SISR task, EDSR [13] is
better than SRResNet [19] but underperforms RCAN [20] and RDN [21]. The performance
of RCAN and RDN is on par, and SwinIR [15] has the best performance. As shown in
Table 1, the VSR-adapted models exhibit similar trends. We use the suffix “-VSR” to rep-
resent the VSR-adapted models. The performances of SRResNet-VSR and EDSR-VSR are
weaker than those of RCAN-VSR and RDN-VSR, and SwinIR-VSR achieves the best results
on both benchmarks. Moreover, we computed the PSNR metric on the Vid4 benchmark
during training. As illustrated in Figure 4, the VSR-adapted models benefit from the in-
formation aggregated from neighboring frames, and they performed better in the early
iterations during training. Thus, the proposed method is effective on different SISR mod-
els, and the plug-and-play temporal feature extraction module enables the VSR-adapted
models to exploit spatial and temporal information.

Further, we visualized the results of the Vid4 and SPMC-11 benchmarks for qualitative
comparison. Several processed frames are shown in Figures 5 and 6. We can observe that
the VSR-adapted models provide visually appealing results. By contrast, the original SISR
models produce blurry SR frames and incorrect textures. Overall, the VSR-adapted models
reconstruct results with clearer text, richer textures, and fewer artifacts. Among the results
of the VSR-adapted models, SRResNet-VSR and EDSR-VSR produce more artifacts than
other VSR-adapted models. This is consistent with the capabilities of original SISR models.
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Table 1. Quantitative Comparison of SISR Models and VSR-Adapted Models on Vid4 and SPMC-11.
The best results are in bold.

Original VSR Adapted
Benchmark Method PSNR SSIM PSNR SSIM

SRResNet [19] 25.30 0.728 26.56 0.797
EDSR [13] 25.27 0.726 26.58 0.798

Vid4 RCAN [20] 25.45 0.737 26.74 0.804
RDN [21] 25.40 0.734 26.75 0.806

SwinIR [15] 25.41 0.738 26.84 0.811

SRResNet [19] 27.92 0.815 29.16 0.853
EDSR [13] 27.85 0.813 29.14 0.853

SPMC-11 RCAN [20] 28.32 0.823 29.48 0.859
RDN [21] 28.24 0.821 29.55 0.862

SwinIR [15] 28.46 0.826 29.74 0.866
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Figure 4. The PSNR Curve on Vid4 Benchmark During Training.

4.4. Comparisons with State-of-the-Art Methods

We compared these VSR-adapted models with 10 state-of-the-art VSR algorithms, i.e.,
STAN [50], EGVSR [39], TOFlow [16], STMN [51], SOF-VSR [17], ST-CNN [44], TDAN [12],
D3Dnet [47], FRVSR [34], and WAEN [37]. Table 2 shows the quantitative metrics on
the Vid4 and SPMC-11 benchmarks. The values with † are reported in [47]. As shown
in Table 2, the VSR-adapted models achieve competitive performance on both Vid4 and
SPMC-11 benchmarks. All VSR-adapted models perform better than D3Dnet. Compared
with D3Dnet, the SRResNet-VSR and EDSR-VSR achieve comparative performance. The
performances achieved by RCAN-VSR and RDN-VSR are between FRVSR and WAEN.
Among them, the SwinIR-VSR outperforms all models in terms of PSNR metrics.
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Figure 5. The Qualitative Comparison of SISR Models and Corresponding VSR Adaptations on Vid4
Benchmark.
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Figure 6. The Qualitative Comparison of SISR Models and Corresponding VSR Adaptations on
SPMC-11 Benchmark.
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Table 2. Quantitative comparison of Vid4 and SPMC-11. The best results are in bold. The values
with † are reported in [47].

Vid4 SPMC-11
Method PSNR (dB) SSIM PSNR (dB) SSIM

STAN [50] 25.58 0.743 — —
EGVSR [39] 25.88 0.800 — —
TOFlow [16] 25.90 0.765 — —
STMN [51] 25.90 0.788 — —

SOF-VSR [17] 26.02 0.772 28.21 † 0.832 †

ST-CNN [44] 26.12 0.823 — —
TDAN [12] 26.42 0.789 28.51 † 0.841 †

D3Dnet [47] 26.52 0.799 28.78 0.851
FRVSR [34] 26.69 0.822 — —
WAEN [37] 26.79 — — —

SRResNet-VSR 26.56 0.797 29.16 0.853
EDSR-VSR 26.58 0.798 29.14 0.853
RCAN-VSR 26.74 0.804 29.48 0.859
RDN-VSR 26.75 0.806 29.55 0.862

SwinIR-VSR 26.84 0.811 29.74 0.866

For a finer quantitative comparison on the Vid4 benchmark, we illustrate the PSNR
metric of each frame in Figure 7. For simplicity, we select four models, i.e., TDAN [12],
FRVSR [34], EDSR-VSR, and SwinIR-VSR. Compared with TDAN, the EDSR-VSR achieves
similar performance. Note that the first two and last two frames show a greater difference
between TDAN and EDSR-VSR. Because there is less neighboring information for VSR
models to exploit, the VSR models exhibit poor performance at the beginning and end
of a video. Compared with FRVSR, the SwinIR-VSR achieved better performance on the
Calendar and Walk. As the frame index increases on the Calendar, the gap between SwinIR-
VSR and FRVSR becomes smaller. Additionally, the performance of SwinIR-VSR is lower
than that of FRVSR after the first five frames on the City. This is because the SwinIR-VSR
makes use of neighboring frames in a sliding window scheme while the FRVSR utilizes
them in a recurrent scheme.
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Figure 7. The PSNR curve of VSR models on Vid4 benchmark.
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For a qualitative comparison, we compared the VSR-adapted models to SOF-VSR [17],
TOF [16], TDAN [12], D3Dnet [47], and FRVSR [34]. As shown in Figure 8, the VSR-adapted
models reconstruct visually attractive results. The text on the Calendar is now easier to
read and the details of the City are clearer. Additionally, the clothes in the Walk image are
more recognizable. Moreover, we observed similar trends in the SPMC-11 benchmark, as
illustrated in Figure 9. The quality of the reconstructed results of EDSR-VSR is equivalent
to that of the compared methods. The RDN-VSR and RCAN-VSR provide results with
better quality. The result of SwinIR-VSR has the least artifacts.

TOF TDAN D3Dnet FRVSR

EDSR-VSR RDN-VSR RCAN-VSR

Calendar

City
SwinIR-VSR

TOF TDAN D3Dnet FRVSR

EDSR-VSR RDN-VSR RCAN-VSR SwinIR-VSR

Walk

TOF TDAN D3Dnet FRVSR

EDSR-VSR RDN-VSR RCAN-VSR SwinIR-VSR

Ground Truth

Ground Truth

Ground Truth

Figure 8. Qualitative Comparison of VSR Models on Vid4 Benchmark.

4.5. Comparisons of Temporal Consistency

To evaluate the temporal consistency of the proposed method, we generated temporal
profiles according to [34] for visualization. As shown in Figure 10, the positions of temporal
profiles are highlighted with red lines. The heights of temporal profiles vary due to the
video length. As shown in the Calendar, the temporal profiles demonstrate that the original
SISR models perform poorly because they are unable to capture temporal information. By
contrast, the VSR methods and VSR-adapted models produce results with fewer artifacts.
However, inappropriate aggregation of temporal information can lead to degraded results.
As illustrated in the City, the original SISR models and our VSR-adapted models exhibit
better temporal consistency than VSR models.
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Figure 9. Qualitative Comparison of VSR Models on SPMC-11 Benchmark.
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Figure 10. Qualitative Comparison of Temporal Profile on Vid4 Benchmark.
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4.6. Ablation Study

We used EDSR [13] as the baseline in the ablation study to evaluate the effectiveness
of the proposed temporal feature extraction module, which consists of offset estimation,
spatial aggregation, and temporal aggregation submodules. We evaluated three models to
determine the effectiveness of each submodule. The first variation is denoted as Model 1.
We fed shallow features from neighboring frames to the spatial aggregation submodule
without the support of the offset estimation submodule. The neighboring features were then
fused with a convolution using a 1× 1 kernel. Model 2 is referred to as the second variation.
We introduced the offset estimation submodule, which makes use of the center frame
and neighboring frames to guide the spatial aggregation. The third variation, denoted as
EDSR-VSR, combines all the components, including channel attention and progressive
channel shrinking.

Table 3 indicates that relying solely on the spatial aggregation submodule does not
lead to performance improvement. However, with the support of the offset estimation
submodule, there is a significant performance improvement. Furthermore, the temporal
aggregation submodule further improved the performance. Three submodules play an
irreplaceable role in our presented temporal feature extraction module.

Table 3. The Effectiveness of Each Component in Temporal Feature Extraction Module.

Dataset Model
Spatial

Aggrega-
tion

Offset Es-
timation

Temporal
Aggrega-

tion

PSNR
(dB) SSIM

EDSR [13] % % % 25.27 0.726
Model 1 ! % % 25.31 0.725

Vid4 Model 2 ! ! % 26.49 0.793
EDSR-VSR ! ! ! 26.58 0.798

EDSR [13] % % % 27.85 0.813
Model 1 ! % % 27.88 0.813

SPMC-11 Model 2 ! ! % 28.97 0.849
EDSR-VSR ! ! ! 29.14 0.853

To evaluate the efficiency of the proposed method, we conducted a comparison on the
Vid4 benchmark. We evaluated three models, i.e., EDSR [13], EDSR-VSR, and EDSR-VSR 2.
The EDSR-VSR 2 employs the temporal feature extraction module after the deep feature
extraction module. Table 4 shows the performance and average latency of inference. As we
can see, the EDSR-VSR is about 1.6× faster than the EDSR-VSR 2. Although the EDSR-VSR
is slower than EDSR [13], it reaches 24 frames per second. Specifically, we analyzed the
latency of each part of EDSR-VSR. Overall, 0.89% of the latency is consumed by the shallow
feature extraction module from the SISR model. The subsequent offset estimation sub-
module, spatial aggregation submodule, and temporal aggregation submodule occupied
21.25%, 39.99%, and 15.21% of the latency, respectively. Additionally, 22.66% of the time
is spent on the deep feature extraction and reconstruction module from the SISR model.
Note that the temporal feature extraction module has to process all input frames, so each
submodule takes a longer time to complete the computation. Thus, the proposed method
balances the accuracy and latency.

Table 4. The Efficiency of Proposed Method on Vid4 Benchmark.

EDSR [13] EDSR-VSR EDSR-VSR 2

PSNR (dB) 25.27 26.58 26.61
SSIM 0.726 0.798 0.798

Latency (ms) 9.872 41.543 65.003
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5. Discussion and Limitation

The proposed method builds a bridge between the SISR model and the VSR model.
We revisited many SISR models and summarized a common architecture of SISR mod-
els. The proposed method leverages the inherent similarities and differences between
the two tasks, and the plug-and-play temporal feature extraction module is presented
to allow the VSR-adapted model to utilize information from neighboring frames. We
applied it to five representative SISR models to evaluate our method, including a gener-
ator of GAN [19], three representative SISR models [13,20,21], and a Transformer-based
model [15]. Compared with state-of-the-art VSR models, our VSR-adapted models achieve
competitive performance.

There are several strong points of the proposed method. Firstly, the proposed architec-
ture of VSR-adapted models provides a novel scheme to develop VSR models. As long as a
SISR model follows the common architecture, it can be easily adapted to a VSR model. It
reduces the delay of applications of new SISR technologies. Secondly, with the development
of VSR, better temporal feature extraction techniques will be proposed, leading to better
VSR performance. It divides the development of the VSR model into two independent
tasks. Thirdly, the plug-and-play characteristic enables a single model to perform both SISR
and VSR tasks.

Although the VSR-adapted models show promising results, we observed some failure
cases in experiments. As illustrated in Figure 11, these models fail to recover tiny details.
In these cases, the contrast is low in the ground truth, and the contrast is further reduced
in LR frames, making SR reconstruction very challenging. Furthermore, all VSR-adapted
models fail to provide clear results.

TOF TDAN D3Dnet FRVSR

EDSR-VSR RDN-VSR RCAN-VSR

Calendar

SwinIR-VSR

TOF TDAN D3Dnet SOF-VSR

EDSR-VSR RDN-VSR RCAN-VSR

veni5

SwinIR-VSR

Ground Truth

Ground Truth

Figure 11. The Qualitative Comparison of Details in Low-Contrast Areas.

6. Conclusions

In this paper, we propose a method for adapting SISR models to the VSR task. For
effectiveness on various SISR models, we summarize the common architecture of SISR
models. The VSR-adapted models leverage the capability of SISR models to learn the
mapping between LR and HR images. Then, the proposed plug-and-play temporal feature
extraction module allows VSR-adapted models to access spatial–temporal information.
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Thus, the performance in the VSR task is improved by the incorporation of the SISR model
and the temporal feature extraction module. The experiments on several SISR models
and benchmarks show that VSR-adapted models surpass the original SISR models. The
achieved performance is positively related to the capacity of SISR models, indicating the
effectiveness of the proposed method. Further, the VSR-adapted models achieved better
results than the SOTA VSR models. In the future, we plan to solve the problem of poor
performance in low-contrast areas.
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