
Citation: Liu, Z.; Zhou, W.

Energy-Efficient Algorithms for Path

Coverage in Sensor Networks.

Sensors 2023, 23, 5026. https://

doi.org/10.3390/s23115026

Academic Editors: Alvaro Araujo

Pinto and Hacene Fouchal

Received: 13 April 2023

Revised: 14 May 2023

Accepted: 23 May 2023

Published: 24 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Energy-Efficient Algorithms for Path Coverage in
Sensor Networks
Zhixiong Liu 1,* and Wei Zhou 2

1 School of Computer Science and Engineering, Changsha University, Changsha 410022, China
2 Department of Computer Science and Software Engineering, Swinburne University of Technology,

Hawthorn 3122, Australia; weizhou@swin.edu.au
* Correspondence: z20120988@ccsu.edu.cn

Abstract: Path coverage attracts many interests in some scenarios, such as object tracing in sensor
networks. However, the problem of how to conserve the constrained energy of sensors is rarely
considered in existing research. This paper studies two problems in the energy conservation of sensor
networks that have not been addressed before. The first problem is called the least movement of
nodes on path coverage. It first proves the problem as NP-hard, and then uses curve disjunction to
separate each path into some discrete points, and ultimately moves nodes to new positions under
some heuristic regulations. The utilized curve disjunction technique makes the proposed mechanism
unrestricted by the linear path. The second problem is called the largest lifetime on path coverage.
It first separates all nodes into independent partitions by utilizing the method of largest weighted
bipartite matching, and then schedules these partitions to cover all paths in the network by turns. We
eventually analyze the energy cost of the two proposed mechanisms, and evaluate the effects of some
parameters on performance through extensive experiments, respectively.

Keywords: sensor network; path coverage; least movement; curve disjunction; weighted bipartite
matching

1. Introduction

Wireless sensor networks (WSNs) are generally regarded as a type of smart network
which consists of multiple nodes with limited capabilities on energy, computation, and
storage [1]. In certain popular scenarios of these networks (e.g., target tracing), people have
a great interest in guarding an object’s moving trail. This type of problem is called path
coverage [2,3]. For nodes that are normally deployed at some sparse regions at random,
a portion of them need to be moved to cover the path of the target, and minimizing the
total moving distance of nodes should be considered seriously in resource-constrained
networks [4]. Moreover, it is usually feasible to schedule these intensively deployed nodes
for monitoring in some efficient ways to extend the life cycle of the network [5].

On minimizing the movements of nodes in sensor networks, some solutions have
been presented for target coverage rather than for path coverage. Considering this, we
propose a heuristic algorithm for minimizing the movements of nodes in sensor networks
for path coverage for the first time in the heuristic algorithm; each path is divided into
some discrete points by utilizing the curve disjunction technique. After finding out all
redundant sensors and paths, sensors are then moved gradually to cover the given path
under a set of regulations. As a result, path coverage can be achieved with the fewest
movements of sensors.

On maximizing the lifetime of sensor networks, plenty of algorithms have been
proposed, but most of them mainly focus on scenarios of point coverage and region
coverage, rather than on those of path coverage. Therefore, we propose another heuristic
algorithm on path coverage with the largest monitoring lifetime, which suits common
sensor networks. Nodes are first divided into groups that can cover the path independently

Sensors 2023, 23, 5026. https://doi.org/10.3390/s23115026 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23115026
https://doi.org/10.3390/s23115026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2548-6348
https://doi.org/10.3390/s23115026
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23115026?type=check_update&version=1

Sensors 2023, 23, 5026 2 of 14

in the algorithm. Then, the largest weighted bipartite matching is utilized to schedule the
nodes in each group. As a result, maximizing the lifetime of the network can be achieved.

The main contributions of this paper can be summarized as follows:
First, the problem of path coverage with the fewest movements of sensors is proved

to be NP-hard, and then a new algorithm is proposed. The adopted curve disjunction
technique overcomes the limitations of the linear path, which is a challenge in most of the
existing schemes. Additionally, the effects of some parameters on moving distance are
evaluated through further simulations.

Second, we present a heuristic algorithm for the problem of maximizing the lifetime of
sensor networks on path coverage. In the experiments, we inspect not only the relationship
between the number of nodes and lifetime of coverage, but also the relationship between
the initial battery level and lifetime of coverage.

The rest of the paper is organized as follows. Related works on coverage in sensor
networks are surveyed in Section 2. The algorithm on path coverage with the fewest
movements in sensor networks is presented In Section 3, followed by Section 4, which
presents the details of the largest lifetime of path coverage. Finally, Section 5 concludes the
whole work.

2. Related Work

In recent years, some works have been presented to cope with the moving problems of
sensors [5–9]. Liao et al. [5] gave a solution for the Mobile Nodes Deploying problem (MND)
by decomposing it into two sub-steps. The first is the Target Coverage problem (TCP),
and the second is the Network Connectivity problem (NCP). The named TCP problem
concerns, supposing there exist m objects and n randomly located nodes, moving nodes to
cover all objects with the least distance. It proved the NP-hardness of TCP, then solved TCP
and NCP one by one, and finally addressed the MND problem through the combination
of their solutions. Hefeeda et al. [6] proposed an approximated algorithm for k-coverage
in intensively deployed sensor networks. Without considering the mobility of sensors,
Zhang et al. [7] proposed a probabilistic mechanism. However, due to the fact that each
node only works for another one that is out of service, the largest moving distance of each
node is restricted. Attea et al. [8] modeled the Minimum Set Covering Problem (MSCP) to
move sensors that can achieve energy-efficient coverage. Han et al. [9] proved that finding
the largest number of crossed barriers is NP-hard, and presented a heuristic algorithm
called MSPA based on a multi-round shortest path to solve the problem.

For maximizing the lifetime of sensor networks, many algorithms have been presented
in recent years [7,10–18]. Dhawan et al. [10] proposed a mechanism to prolong the lifetime
of the network by constructing the Lifetime dependency Graph (LG) to select a subset of
sensors that can cover the target. Mini et al. [11] utilized the artificial bee colony algorithm
and particle swarm optimization to schedule sensors to achieve the theoretical upper
bound of a network’s lifetime. Abrams et al. [12] proved the problem of maximizing
sensor network lifetime to be NP-Complete and presented a heuristic mechanism to solve
it. Based on the method of separating nodes into the largest quantity of disjoint collections,
Cardei et al. [13] proposed a scheme to extend networks’ monitoring lifetime. In the case
of bounding the density of targets, Lu et al. [14] presented a PTAS mechanism to prolong
the monitoring lifetime of the network and verified that, even in specialized conditions for
nodes possessing the same sensing range and transmission range, the problem of scheduling
nodes aimed to maximized lifetime belongs to NP-hard. Pointing to the scenario where
nodes form a barrier to trace moving objects, Zhang et al. [7] provided an approximated
algorithm for path coverage without considering energy optimization. Gu et al. [15] had a
joint consideration of energy efficient routing and sleep scheduling, and mathematically
formulated the lifetime maximization problem under multiple constraints (i.e., routing,
end-to-end delay bounds, sleep scheduling, the energy consumption of transmission,
receiving and listening, etc.). Considering that the formulated problem is a mixed integer
non-linear programming (MINLP) problem and NP-hard to solve, they relaxed it into a

Sensors 2023, 23, 5026 3 of 14

linear programming (LP) problem and solved the relaxed problem for the upper bound.
Weng et al. [16] proposed an Efficient k-Barrier Construction Mechanism (EBCM), aiming
to schedule the sleep-wake time of all the constructed barriers to achieve energy balance.
Yoon et al. [17] derived the upper and lower bounds on the coverage of a 2-D deployment
of static sensors, and then used these bounds in constructing a method of estimating the
coverage of deployment by assuming that there are only pair-wise intersections between
the disks representing the range of each sensor. Ma et al. [18] proposed a hybrid strategy-
improved butterfly optimization algorithm based on the elite-fusion and elite-oriented
local mutation strategies.

As can be seen from the above, most of the existing works focus on point coverage
or region coverage-related problems, while little attention has been paid to path coverage.
This paper utilizes curve disjunction and largest weighted bipartite matching to achieve
energy-efficient path coverage in sensor networks. The comparison of the main coverage
algorithms is illustrated in Table 1.

Table 1. Comparison of the coverage algorithms.

Algorithms Application Field Object

MND [5] point coverage nodes movement
MTPCA [7] point/region coverage nodes movement
MSCP [8] point/region coverage nodes movement
MSPA [9] barrier coverage nodes movement
ABC [11] point coverage network lifetime
MC-MIP [13] point coverage network lifetime
MLCS [14] point coverage network lifetime
MSPA [16] barrier coverage network lifetime
HBOA [18] point coverage network lifetime
Our proposal path coverage nodes movement/network lifetime

3. Least Movement of Sensors on Path Coverage
3.1. Problem Description

We first define the problem under study and then prove its hardness in this section.

Definition 1. Path coverage with least nodes’ movements Problem (noted as PCP). Supposing
there exists a path P and a group of nodes belonging to collection S, move nodes to cover P with the
least distance making the probability of each point in P being covered not less than d. The covering
probability of a point is defined as follows in [3].

Definition 2. Covering probability. The probability of node s covering object t is

Pts =

1, 0 ≤|s, t|≤ R1;
eβ(dis(s,t)−R1), R1 ≤

∣∣∣s, t
∣∣∣≤ R2;

0, |s, t|≥ R2.
(1)

When point j is covered by several nodes (s1, s2, . . . , sN), then Pj is the accumulative covering
probability of s1, s2, . . . , and sN.

Pj = 1−∏N
i=1

(
1− Pji

)
(2)

Note S(v) and P(u) as the collection of nodes covering point v, and the collection of points
being covered by node u, respectively. Supposing Q is the collection of multiple disconnected points
(p1, p2, . . . , pN), we note Mj(pi) as pi+j and Nj(pi) as pi−j, respectively.

Theorem 1. PCP is an NP-hard problem.

Sensors 2023, 23, 5026 4 of 14

Proof. The proof is a deduction of TCP [5], which has already been verified as an NP-hard
problem. First, supposing there exist m objects and n nodes in TCP, move nodes to cover all
objects, making the total movement the least. Second, construct PCP as follows: sort all
objects according to the x-axis, then connect all objects successively to form a path P, and
finally, move nodes to cover P with the least distance.

In one case, suppose m new locations of nodes covering all objects with the fewest
movements existed. The m discrete points mentioned above in P can be covered for the
reason that P is constructed by m objects. As a result, m nodes in the new locations can
cover P with the fewest movements in PCP.

In another case, assuming m new locations of nodes existed, which led to covering P
with the fewest movements. It is easy to know that there are m discrete points in P being
covered by these nodes. Here, m points are corresponding objects in TCP; thus, these new
locations of nodes can cover all objects with the fewest movements in TCP.

Therefore, PCP is also NP-hard. �

3.2. The Least Movement Algorithm

The algorithm to solve PCP is divided into three steps: (1) separate the path into a
partition of discrete points; (2) for nodes that do not cover any point in the path, move each
of them to cover the closest point in P; and (3) move nodes to cover all discrete points with
the least distance.

3.2.1. Path Disjunction

Path disjunction is to separate the given path P into multiple points in collection Q,
which is implemented as follows: define a step-size threshold d, and in each run, fetch a
point in P whose range is d far away from the former one according to the x-axis; carry
this out continuously, until all of the n points are included in the collection Q finally. The
corresponding pseudo-code is shown in Algorithm 1, which consumes time O(n).

Algorithm 1: Curve disjunction

1. Let step-size d be (big-coordinate −min-coordinate)/n;
2. Let the collection Q be NULL;
3. For i from 1 to n do
4. xi = (i − 1/2)d;
5. Insert the fetched point (h(xi), xi) into collection Q;
6. Return collection Q.

3.2.2. Initial Movement

After deployment, we need to find out the nodes which are free of work and move
each of them to cover at least one point, respectively. The aim of the initialized movement
is illustrated below. Preset a group of nodes belonging to collection S and a group of points
belonging to collection Q in path P; move each node that is not covering any point in P to
cover the closest point in P. Here, we note the distance between the corresponding node
and the point as R2. The pseudo-code is shown in Algorithm 2. As finding out the closest
point in the path runs in O(n), judging every node needs time O(nm).

Algorithm 2: Initializing movement

/* Input: points in collection Q with size n in path P, deployed node collection S with size m.
Output: move S shortest such that for si in S, there exists pj in Q, where |si, pj| ≤ R2; */
1. For i from 1 to m do
2. If |si, every point in Q| > R2, then
3. move si to its closest point pj such that |si, pj| = R2;
4. Return.

Sensors 2023, 23, 5026 5 of 14

3.2.3. Last Movement

After the initial movement, we need to move nodes further such that all discrete
points in the path are covered. We first define the redundant node and redundant path,
respectively, and then present the moving regulations.

Definition 3. Redundant node. Assume that the covering probability of point j is not smaller than
d in Q, i.e., Pj ≥ d; if the equation still works after taking node si out of S(j), then node si is called a
redundant node.

In order to find out a redundant node of pi, we need to judge whether there is a
redundant node: if point j has an initial covering probability not less than d, which becomes
less than d after removing node s, then s is not redundant. Further, we need to check if
the redundant node is closest among all neighbors of i. The pseudo-code of finding a
redundant node is listed in Algorithm 3, which runs in time O(nm2).

Algorithm 3: Find-redundant-nodes

/* Input: points collection Q with size n in P, nodes collection S with size m, point i.
Output: the closest redundant node in S(i) to N(pos(i)).*/
1. For (1≤ i ≤ n) & (Pi ≥ d), then
2. If Pi < d after moving s, then
3. Return Ø;
4. If orient = left, then
5. Set N(pos(i)) as Mj(pi)
6. Else if orient = right, then
7. Set N(pos(i)) as Nj(pi)
8. Else if orient = self
9. Set N(pos(i)) as i;
10. Take i out of Q;
11. If exist a closest redundant node s to N(pos(i)), then
12. Insert i into Q;
13. Return s.

Definition 4. Redundant path. For points p1, . . . , pi, assume the covering probability of p1 is
less than d, and there are no redundant nodes in p2, p3, . . . , and pi−1, except that pi possesses a
redundant node si. Find a partition of nodes s2, . . . , si, and move si to monitor pi−1, . . . ; similarly,
move s2 to monitor p1, such that all points have covering probability not smaller than d. Then, the
path (p1, pi) is redundant.

We then present the heuristic regulations to move nodes.

Regulation 1. To a point pj, whose covering probability is smaller than d, examine all redundant
nodes in collection S(pj) and move the closest one to guarantee the probability of covering pj is not
smaller than d.

Regulation 2. Given path (pi, pk) and a redundant node in S(pj), if j = i − 1, we move the closest
redundant node to guarantee pj is not smaller than d; otherwise, we move the closest redundant
node of pj−1 to guarantee pj−1 not smaller than d.

When pj is smaller than d, we chase a redundant node in S(pj). If it works, Regulation
1 is applied to move nodes. Otherwise, we have to chase a redundant path. If it works,
Regulation 2 is used.

The total algorithm for solving PCP is given in Algorithm 4. Combined with curve
disjunction, initial movement, and last movement, PCP can be solved in O (n4m + n3m2).

Sensors 2023, 23, 5026 6 of 14

Algorithm 4: PCP solution

/* Input: points collection Q with size n in P, nodes collection S with size m.
Output: move S shortest distance to cover P, or report failure.*/
1. Rank all points in line with x-axis;
2. Compute covering probability of all elements in collection Q;
3. Let mv_len = 0;
4. Initializing node movement; /*Algorithm 2*/
5. For (0 ≤ i ≤ n) & For (1 ≤ j ≤ n)
6. If exists redundant node s in S(Mi(pj)) or S(Ni(pj)), then
7. When (i = 0), move s to s0 according to Regulation 1;
8. mv_len = mv_len + |s0, s|; else
9. If s in S(Mi(pj)), then let orient be left
10. Else let orient be right.
11. If x0 in Mi(pj) or Ni(pj) possesses a redundant node;
12. Note path (pf, pf−1, . . . , p1);
13. For (r = f, r–, r ≥ 1)
14. If exists redundant node s in S(pr), then
15. When (r ≥ 2) then move node according to Regulation 2.
16. Else move s according to Regulation 1;
17. Move node to s0; add |s0, s| to mv_len.

3.2.4. Simulations

To confirm the effectiveness of the proposed scheme, we establish the simulated
platform using the Python and C++ languages. Due to the limitation of space, we only
present results for the changing conditions of the total moving distance of nodes, according
to variations of the number of discrete points in the path, parameters R1 and R2, respectively.
The size of the monitoring region is 100 × 100 m2, where 120 nodes are located at random
in it. Additionally, we use function y = 0.1 × (x − 10) × (x − 20) (0 < x < 100) to generate
points in the path. The threshold of covering probability d is set as 0.5, and β is set as
0.5. The sensing radius R1 changes from 0 to 2.5 m, and R2 changes from 2.5 m to 5 m,
respectively. We also observe the moving conditions of nodes. The results are averaged
over 10 simulated topologies.

Figure 1 plots how the total moving distance changes as a function of the number of
discrete points in the path, with 80 nodes located randomly in the area. Discrete points in
the path are produced using the following function: y= 0.1(x − 20)(x − 10) (0 ≤ x ≤ 100).
Other parameters are set as d = 0.5, R1 = 2.5, R2 = 5, and β = 0.5, respectively. As can be seen
in Figure 1, there exists turning points in the curve on about five discrete points. At first,
with few discrete points, all nodes have to move to their closest places. With the increase in
the number of points, the moving distance decreases. However, as the number of points
increased to some critical value (about eight here), more movements would be required to
meet the covering expectations of all points.

Figure 2 illustrates the changing conditions of the total moving distance according
to variations in the sensing radius. We also use the same curve function, y, to generate
80 discrete points in the path, and then deploy 120 nodes randomly in the region. R1
ranges from 0 to 2.5 m, and the other parameters are set as d = 0.5, β = 0.5, and R2 = 5 m,
respectively. It can be noticed from Figure 2 that moving distance decreases gradually
in accordance with the increase in R1. This is because when R1 increases, the covering
probability of all discrete points around it will become larger.

Sensors 2023, 23, 5026 7 of 14Sensors 2023, 23, x FOR PEER REVIEW 7 of 15

Figure 1. Moving distance changes with number of discrete points.

Figure 2 illustrates the changing conditions of the total moving distance according to
variations in the sensing radius. We also use the same curve function, y, to generate 80
discrete points in the path, and then deploy 120 nodes randomly in the region. R1 ranges
from 0 to 2.5 m, and the other parameters are set as d = 0.5, β = 0.5, and R2 = 5 m, respec-
tively. It can be noticed from Figure 2 that moving distance decreases gradually in accord-
ance with the increase in R1. This is because when R1 increases, the covering probability
of all discrete points around it will become larger.

Figure 2. Moving distance changes with R1.

Figure 3 plots how the total moving distance changes according to R2. The parameters
evaluating covering performance are set as R1 = 2.5, d = 0.5, and β = 0.5, respectively, while
R2 changes from 2.5 m to 5 m. The other parameters are the same as in Figure 2. We ob-
serve that in Figure 3, with the increase of R2, the moving distance decreases. This phe-
nomenon is caused by some discrete points being out of monitoring at the beginning while
they are covered by nodes with the increase in R2.

Figure 1. Moving distance changes with number of discrete points.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 15

Figure 1. Moving distance changes with number of discrete points.

Figure 2 illustrates the changing conditions of the total moving distance according to
variations in the sensing radius. We also use the same curve function, y, to generate 80
discrete points in the path, and then deploy 120 nodes randomly in the region. R1 ranges
from 0 to 2.5 m, and the other parameters are set as d = 0.5, β = 0.5, and R2 = 5 m, respec-
tively. It can be noticed from Figure 2 that moving distance decreases gradually in accord-
ance with the increase in R1. This is because when R1 increases, the covering probability
of all discrete points around it will become larger.

Figure 2. Moving distance changes with R1.

Figure 3 plots how the total moving distance changes according to R2. The parameters
evaluating covering performance are set as R1 = 2.5, d = 0.5, and β = 0.5, respectively, while
R2 changes from 2.5 m to 5 m. The other parameters are the same as in Figure 2. We ob-
serve that in Figure 3, with the increase of R2, the moving distance decreases. This phe-
nomenon is caused by some discrete points being out of monitoring at the beginning while
they are covered by nodes with the increase in R2.

Figure 2. Moving distance changes with R1.

Figure 3 plots how the total moving distance changes according to R2. The parameters
evaluating covering performance are set as R1 = 2.5, d = 0.5, and β = 0.5, respectively, while
R2 changes from 2.5 m to 5 m. The other parameters are the same as in Figure 2. We observe
that in Figure 3, with the increase of R2, the moving distance decreases. This phenomenon
is caused by some discrete points being out of monitoring at the beginning while they are
covered by nodes with the increase in R2.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 15

Figure 3. The change in R2 with the moving distance.

Figure 4 presents the changing condition of moving distance according to threshold
d. In the initialized phase, we randomly produce 120 sensors in the monitoring area. Ad-
ditionally, the same path function as in Figure 1 is taken to generate 80 discrete points.
The covering probability threshold is ranged in (0.05, 0.95), and the other parameters are
set as β = 0.5, R1 =2.5, and R2 = 5, respectively. We change the covering probability thresh-
old d gradually. It can be observed from Figure 4 that, with the increase in d, the moving
distance increases accordingly.

Figure 4. The change in d with the moving distance.

Figure 5 shows the conditions of node deployment and movement in order to cover
all discrete points in the path. Twenty discrete points are generated through the function
of y = 0.1 × (x − 20) × (x − 10) (0 ≤ x ≤ 100), and then 30 nodes are located randomly in the
area of 100 × 100 m2. The other parameters are set as d = 0.5, β = 0.5, R1 = 2.5, and R2 = 5,
respectively. We observe from the curve that nodes move efficiently to save energy.

Figure 3. The change in R2 with the moving distance.

Sensors 2023, 23, 5026 8 of 14

Figure 4 presents the changing condition of moving distance according to threshold
d. In the initialized phase, we randomly produce 120 sensors in the monitoring area.
Additionally, the same path function as in Figure 1 is taken to generate 80 discrete points.
The covering probability threshold is ranged in (0.05, 0.95), and the other parameters are set
as β = 0.5, R1 =2.5, and R2 = 5, respectively. We change the covering probability threshold d
gradually. It can be observed from Figure 4 that, with the increase in d, the moving distance
increases accordingly.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 15

Figure 3. The change in R2 with the moving distance.

Figure 4 presents the changing condition of moving distance according to threshold
d. In the initialized phase, we randomly produce 120 sensors in the monitoring area. Ad-
ditionally, the same path function as in Figure 1 is taken to generate 80 discrete points.
The covering probability threshold is ranged in (0.05, 0.95), and the other parameters are
set as β = 0.5, R1 =2.5, and R2 = 5, respectively. We change the covering probability thresh-
old d gradually. It can be observed from Figure 4 that, with the increase in d, the moving
distance increases accordingly.

Figure 4. The change in d with the moving distance.

Figure 5 shows the conditions of node deployment and movement in order to cover
all discrete points in the path. Twenty discrete points are generated through the function
of y = 0.1 × (x − 20) × (x − 10) (0 ≤ x ≤ 100), and then 30 nodes are located randomly in the
area of 100 × 100 m2. The other parameters are set as d = 0.5, β = 0.5, R1 = 2.5, and R2 = 5,
respectively. We observe from the curve that nodes move efficiently to save energy.

Figure 4. The change in d with the moving distance.

Figure 5 shows the conditions of node deployment and movement in order to cover
all discrete points in the path. Twenty discrete points are generated through the function of
y = 0.1 × (x − 20) × (x − 10) (0 ≤ x ≤ 100), and then 30 nodes are located randomly in the
area of 100 × 100 m2. The other parameters are set as d = 0.5, β = 0.5, R1 = 2.5, and R2 = 5,
respectively. We observe from the curve that nodes move efficiently to save energy.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 15

Figure 5. The movement of nodes.

4. Largest Path Coverage Lifetime
4.1. Problem Analysis
4.1.1. Marks

This section introduces the symbols that will be used in later aspects.
• E(s): The remaining battery level of node s, which is also called the lifetime of s;
• S(v): The collection of nodes that covered point v;
• C(s): The collection of points within the covering region of node s.

As illustrated in the network in Figure 6, twelve nodes and four points are located in
the area. According to the definitions, here we have E(s1) = 3, S(p1) = {s1, s2, s3}, and C(s8) =
{p2, p3}.

Figure 6. Path coverage in sensor network.

4.1.2. Preliminaries

Definition 5. Coverage-weighted bipartite graph. In a sensor network, the graph is built as fol-
lows: B = (V1, V2, E). Here, the set V1 is composed of vertices representing the corresponding nodes,
and the collection V2 contains vertices marking the corresponding points. When v belongs to col-
lection C(u), the tuple (u, v) is treated as an edge in E. The value of (u, v) represents the residual
battery level of node u.

Figure 5. The movement of nodes.

4. Largest Path Coverage Lifetime
4.1. Problem Analysis
4.1.1. Marks

This section introduces the symbols that will be used in later aspects.

• E(s): The remaining battery level of node s, which is also called the lifetime of s;
• S(v): The collection of nodes that covered point v;
• C(s): The collection of points within the covering region of node s.

Sensors 2023, 23, 5026 9 of 14

As illustrated in the network in Figure 6, twelve nodes and four points are located
in the area. According to the definitions, here we have E(s1) = 3, S(p1) = {s1, s2, s3},
and C(s8) = {p2, p3}.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 15

Figure 5. The movement of nodes.

4. Largest Path Coverage Lifetime
4.1. Problem Analysis
4.1.1. Marks

This section introduces the symbols that will be used in later aspects.
• E(s): The remaining battery level of node s, which is also called the lifetime of s;
• S(v): The collection of nodes that covered point v;
• C(s): The collection of points within the covering region of node s.

As illustrated in the network in Figure 6, twelve nodes and four points are located in
the area. According to the definitions, here we have E(s1) = 3, S(p1) = {s1, s2, s3}, and C(s8) =
{p2, p3}.

Figure 6. Path coverage in sensor network.

4.1.2. Preliminaries

Definition 5. Coverage-weighted bipartite graph. In a sensor network, the graph is built as fol-
lows: B = (V1, V2, E). Here, the set V1 is composed of vertices representing the corresponding nodes,
and the collection V2 contains vertices marking the corresponding points. When v belongs to col-
lection C(u), the tuple (u, v) is treated as an edge in E. The value of (u, v) represents the residual
battery level of node u.

Figure 6. Path coverage in sensor network.

4.1.2. Preliminaries

Definition 5. Coverage-weighted bipartite graph. In a sensor network, the graph is built as follows:
B = (V1, V2, E). Here, the set V1 is composed of vertices representing the corresponding nodes, and
the collection V2 contains vertices marking the corresponding points. When v belongs to collection
C(u), the tuple (u, v) is treated as an edge in E. The value of (u, v) represents the residual battery
level of node u.

For nodes that are usually deployed densely, only parts of them need to be activated
to cover all points in some fixed time; the others turn to sleep mode.

Definition 6. Path coverage lifetime. It is defined as the period of time that starts at all points being
covered completely by nodes, and ends at any point where all the nodes cannot be covered.

Definition 7. Largest Weighted bipartite Match (noted as LWM in later chapters). A match is
defined in a graph G as a collection of edges that are vertex-disjoint. For a weighted bipartite graph,
if the summation of values of all edges is the largest among all situations, then the weighted bipartite
graph value is called LRM. As in Figure 7, A,B,C and 1,2,3 within each circle represents six different
vertices, while the other numbers represent the value of each edge, respectively. Here LRM is {(1, A),
(2, B), (3, C)}, with the summation of values even.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 15

For nodes that are usually deployed densely, only parts of them need to be activated
to cover all points in some fixed time; the others turn to sleep mode.

Definition 6. Path coverage lifetime. It is defined as the period of time that starts at all points
being covered completely by nodes, and ends at any point where all the nodes cannot be covered.

Definition 7. Largest Weighted bipartite Match (noted as LWM in later chapters). A match is
defined in a graph G as a collection of edges that are vertex-disjoint. For a weighted bipartite graph,
if the summation of values of all edges is the largest among all situations, then the weighted bipar-
tite graph value is called LRM. As in Figure 7, A,B,C and 1,2,3 within each circle represents six
different vertices, while the other numbers represent the value of each edge, respectively. Here
LRM is {(1, A), (2, B), (3, C)}, with the summation of values even.

Figure 7. Largest weighted matching.

4.1.3. Problem Description
Considering the following problem: assuming multiple nodes are located randomly

along a path, we first separate them into h partitions, then seek a way to schedule them in
turn for path coverage with the largest monitoring lifetime (noted as PCLL). As in Figure
5, two partitions of nodes are formed: T1 = {s1, s4, s7, s10} and T2 = {s2, s3, s5, s6, s8, s9, s11, s12},
respectively. T1 is first used to monitor the path, and then T2 is taken to execute the task
after some nodes in T1 exhaust their energy. T1 and T2 might not be the best partitioning
solution; thus, some heuristic regulations are necessary for seeking a nearly optimal way.

In order to solve the PCLL problem, we decompose it into four steps: (1) separate the
path into some discrete points, and divide all nodes into h partitions, respectively; (2) for
the partitions that cannot cover all points completely, combine some of them to cover all
points; (3) schedule all partitions to maximize the covering lifetime; and (4) schedule
nodes within each partition to extensively maximize the covering lifetime. The mechanism
for solving PCLL is formed through the combination of solutions of the above steps.

4.2. Largest Path Coverage Lifetime Algorithm
4.2.1. Nodes Partitioning

Before the phase of node partitioning, we also use Algorithm 1 to make the path dis-
crete, which is omitted here.

For a fixed path P and a collection of distributed nodes S, h partitions of nodes T1, T2,
…, and Th are found, each of which can cover some points on path P. The collection S(p)
of point p is separated into k partitions randomly, and each covers some number of points.
The nodes partitioning solution is given in Algorithm 5. It loops h × n times since some
points from each S(pj) are removed randomly in a round; thus, the algorithm consumes a
total of O(hnm) energy.

Algorithm 5: Nodes-partition (S, Q)
/* Input: deploy nodes collection S = {v1, v2, …, vn}, and points collection Q = {p1,…,pm} in
P.
Output: partitions collection of nodes. */

Figure 7. Largest weighted matching.

Sensors 2023, 23, 5026 10 of 14

4.1.3. Problem Description

Considering the following problem: assuming multiple nodes are located randomly
along a path, we first separate them into h partitions, then seek a way to schedule them in
turn for path coverage with the largest monitoring lifetime (noted as PCLL). As in Figure 5,
two partitions of nodes are formed: T1 = {s1, s4, s7, s10} and T2 = {s2, s3, s5, s6, s8, s9, s11, s12},
respectively. T1 is first used to monitor the path, and then T2 is taken to execute the task
after some nodes in T1 exhaust their energy. T1 and T2 might not be the best partitioning
solution; thus, some heuristic regulations are necessary for seeking a nearly optimal way.

In order to solve the PCLL problem, we decompose it into four steps: (1) separate the
path into some discrete points, and divide all nodes into h partitions, respectively; (2) for
the partitions that cannot cover all points completely, combine some of them to cover all
points; (3) schedule all partitions to maximize the covering lifetime; and (4) schedule nodes
within each partition to extensively maximize the covering lifetime. The mechanism for
solving PCLL is formed through the combination of solutions of the above steps.

4.2. Largest Path Coverage Lifetime Algorithm
4.2.1. Nodes Partitioning

Before the phase of node partitioning, we also use Algorithm 1 to make the path
discrete, which is omitted here.

For a fixed path P and a collection of distributed nodes S, h partitions of nodes T1, T2,
. . . , and Th are found, each of which can cover some points on path P. The collection S(p)
of point p is separated into k partitions randomly, and each covers some number of points.
The nodes partitioning solution is given in Algorithm 5. It loops h × n times since some
points from each S(pj) are removed randomly in a round; thus, the algorithm consumes a
total of O(hnm) energy.

Algorithm 5: Nodes-partition (S, Q)

/* Input: deploy nodes collection S = {v1, v2, . . . , vn}, and points collection Q = {p1, . . . ,pm} in P.
Output: partitions collection of nodes. */
1. Note S(pi) be the collection of nodes covering point pi;
2. Note T1, T2, . . . , Th be collection of node partitions;
3. S1 = Ø;
4. For (1 ≤ i ≤ h) & (1 ≤ j ≤ m)
5. randomly pitch a subset S0 of S(pj);
6. Ti = Ti + (S0 − S1);
7. S(pj) = S(pj) − (S′ − S1);
8. S1 = S1 + (S0 − S1);
9. Return T1, T2, . . . , Th.

4.2.2. Combine Partitions

After obtaining h partitions of nodes, a partition combination is needed to achieve the
object that each new partition can cover all points completely. The problem is defined as
follows: given h partitions of nodes T1, T2, . . . , Th and a collection of points Q, produce
new collections of nodes W1, W2, . . . , Wr (r≤ h), making each collection Wi cover all points
in collection Q.

The solution is as follows: (1) first, arrange all partitions according to the number of
points covered, and then take the first partition Ti out of them; if Ti can cover all the points,
it is merged into collection Wi and then removed from the partitions; (2) otherwise, we
put Ti into collection Wi and then fetch the next partition Ti+1. (3) In the case where Ti+1 is
able to cover the point left by Wi, it is merged into Wi, too; execute the above procedure
continuously, stopping only when all points are covered by Wi or all partitions are handled
completely. (4) In the case that some points are left by Wi, we check if there is a collection
Wj which is able to cover all points, and all remained partitions will be merged in a new
collection Wj with the combination of Wi. In Algorithm 6, computing the number of points

Sensors 2023, 23, 5026 11 of 14

being covered by nodes takes O(hnm), sorting partitions takes O(hlogh), and combining
partitions takes O(h2). Thus, the algorithm totally consumes O(hnm + h2).

Algorithm 6: Combine-partition (T, Q)

/* Input: collection T = {T1, T2, . . . , Th} of node partitions, collection Q = {p1, . . . ,pm} of points in P
Output: new partition collections W1, W2, . . . , Wr (r ≤ h), each covers all points in collection Q. */
1. Arrange T by quantity of covered points by Ti, denoted by T = {T1, T2, . . . , Th}.
2. r = 1; T0 = T; S0 = Q;
3. If (r ≤ h)
4. Set Wr be zero, j be one, respectively;
5. If (T0 is not null) & (S0 is not null) & (j ≤ h) & (|C(Tj) − (Q − S0)| ≤ 0)
6. j++; Wr = Wr + { Tj }; T0 = T0 − Tj; S0 = S0 − C(Tj); j++;
7. If (S0 is null collection)
8. r++; else if (r ≤ 1)
9. Return zero; else
10. Merge all collections in T0 with Wr − 1; Merge all collections in Wr with Wr − 1; r–;
11. Return W1, . . . , Wr.

4.2.3. Partition Schedule

The partition schedule can be defined as follows: given some partitions of nodes,
schedule them to achieve the largest lifetime of path coverage. It is obvious that the
largest lifetime can be achieved by executing each partition once. The algorithm is given in
Algorithm 7, which consumes time O(r).

Algorithm 7: Partition schedule (W)

/* Input: partition collections W = {W1, W2, . . . , Wr} (r ≤ h), each covers all points in
Q = {p1, . . . ,pm}.
Output: the schedule of collections in W */
1. Calculate expected lifetime for each Wi;
2. For (1 ≤ i ≤ r)
3. Command nodes in collection Wi covering points in collection P;
4. Return.

4.2.4. Intra-Schedule

Intra-scheduling aims to seek a method of making nodes in activating or sleeping
mode, thus achieving the largest coverage time. To solve this, we first construct a coverage-
weighted bipartite graph G and then seek an LRM in G. As a result, it is able to schedule
nodes with the largest residual battery level. If they are not able to cover all points, we
continue to construct the coverage-weighted bipartite graph G0 for those points left over,
which stops when all points are covered, or the remaining nodes cannot cover all points.
The pseudo-code is described in Algorithm 8. As illustrated, finding the largest weighted
matching consumes (n2m); thus, the total time consumed is O (n2m2w), where w is the
largest value.

Sensors 2023, 23, 5026 12 of 14

Algorithm 8: Intra-partition scheduling (Wi, Q)

/* Input: node collection Wi covering all points in collection Q = {p1,..,pm}.
Output: schedule of nodes */
1. While nodes in Wi cover all points in Q
2. Produce G = (V1,V2,E), where V1 denotes nodes set in Wi, and V2 denotes points set in Q;
3. Find a LRM (noted as M) in G;
4. For each vertex without matching in V2
5. Denote unmatched vertices set by V2′ in V2;
6. Induce a new sub-graph G0 from V1 and V2′ ;
7. Find a LRM in G0;
8. For element v in V2, note M(v) as the element in collection V1 matching some element of v in
collection V2, and the one in M(v) with least battery be ver0;
9. For element v in collection V2, schedule M(v) to cover point v and point M(v), thus each element
in collection Vi cost ver0 battery;
10. Delete elements in Wi out of service.
11. Return.

4.3. Simulations

We use simulations to further evaluate the effect of the number of nodes on the largest
path coverage lifetime. As there is only one existing work analyzing path coverage in
specialized situations, it is unfeasible to compare the simulation results with former works.
A given path is divided into ten discrete points, and then a group of sensors is deployed
around these points. The points covered by each sensor are also continuous. Due to space
limitations, we only consider the impacts of the following parameters, quantity of nodes,
initial battery level, and sensing radius. For parameter setting, the path is separated into
ten points, while the energy of each node is set to a random number in the interval [5,10].
We assume that each node can cover one to three discrete points. The results are averaged
over 10 simulated topologies.

The lifetime function curve changing with the size of nodes is illustrated in Figure 8.
From Figure 8, we know that with a small number of nodes, the path coverage lifetime is
zero. This is because of the lack of enough nodes to cover all points. With the number of
nodes increasing, the coverage lifetime increases gradually as more nodes are engaged to
cover points.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 15

nodes increasing, the coverage lifetime increases gradually as more nodes are engaged to
cover points.

Figure 8. Lifetime changes with size of nodes.

The effect of the least initial battery level on the largest lifetime is given in Figure 9.
Here, 200 nodes are located randomly around 10 discrete points in the path, and each
node is equipped with the same battery initially. From Figure 9, we observe that the cov-
erage lifetime also increases with the increase in the initial battery level of nodes, which
enables nodes to monitor for a longer time.

Figure 9. Lifetime changes with initial battery level.

The changing condition of coverage lifetime with sensing radius is also investigated
in Figure 10. The path is separated into 10 points, around which are located 200 nodes
randomly, and each node is equipped with the same energy valued randomly in the in-
terval [5,10]. From Figure 10, we see that the coverage lifetime is positively related to the
sensing radius, i.e., the larger the sensing radius, the bigger the coverage lifetime. How-
ever, after the sensing radius increases to a certain threshold, the coverage lifetime does
not increase any longer. This is because, in the situation where the sensing radius is equal
to the threshold, the nodes can cover the entire region completely.

Figure 8. Lifetime changes with size of nodes.

The effect of the least initial battery level on the largest lifetime is given in Figure 9.
Here, 200 nodes are located randomly around 10 discrete points in the path, and each node
is equipped with the same battery initially. From Figure 9, we observe that the coverage
lifetime also increases with the increase in the initial battery level of nodes, which enables
nodes to monitor for a longer time.

Sensors 2023, 23, 5026 13 of 14

Sensors 2023, 23, x FOR PEER REVIEW 13 of 15

nodes increasing, the coverage lifetime increases gradually as more nodes are engaged to
cover points.

Figure 8. Lifetime changes with size of nodes.

The effect of the least initial battery level on the largest lifetime is given in Figure 9.
Here, 200 nodes are located randomly around 10 discrete points in the path, and each
node is equipped with the same battery initially. From Figure 9, we observe that the cov-
erage lifetime also increases with the increase in the initial battery level of nodes, which
enables nodes to monitor for a longer time.

Figure 9. Lifetime changes with initial battery level.

The changing condition of coverage lifetime with sensing radius is also investigated
in Figure 10. The path is separated into 10 points, around which are located 200 nodes
randomly, and each node is equipped with the same energy valued randomly in the in-
terval [5,10]. From Figure 10, we see that the coverage lifetime is positively related to the
sensing radius, i.e., the larger the sensing radius, the bigger the coverage lifetime. How-
ever, after the sensing radius increases to a certain threshold, the coverage lifetime does
not increase any longer. This is because, in the situation where the sensing radius is equal
to the threshold, the nodes can cover the entire region completely.

Figure 9. Lifetime changes with initial battery level.

The changing condition of coverage lifetime with sensing radius is also investigated
in Figure 10. The path is separated into 10 points, around which are located 200 nodes
randomly, and each node is equipped with the same energy valued randomly in the
interval [5,10]. From Figure 10, we see that the coverage lifetime is positively related to the
sensing radius, i.e., the larger the sensing radius, the bigger the coverage lifetime. However,
after the sensing radius increases to a certain threshold, the coverage lifetime does not
increase any longer. This is because, in the situation where the sensing radius is equal to
the threshold, the nodes can cover the entire region completely.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 15

Figure 10. Lifetime changes with sensing radius.

5. Conclusions
In this paper, we have presented algorithms for two path coverage problems that had

not been considered before: path coverage with the fewest movements of nodes, and node
scheduling for maximizing path coverage lifetime. We first separated each problem into
several sub-problems and then solved them one by one, and the original problem was
finally solved through the combination of all sub-problems. For the first problem, the NP-
hardness of the problem was proved, and the fewest movements were achieved through
finding redundant nodes and paths; while for the second one, the largest bipartite match-
ing was utilized to schedule partitions of nodes for monitoring. Moreover, curve disjunc-
tion was used on both algorithms to divide the path into points, which enables the pro-
posed algorithm to be expanded to common sensor networks. We also analyzed the time
complexities of the proposed schemes, and further evaluated the performance through
experiments. However, the performance of the proposed algorithms was only evaluated
under the experimental circumstance; we yet need to carry out some further work in ac-
tual sensor network-related scenarios to validate their effectiveness, e.g., multimedia sen-
sor networks, health care sensor networks, traffic monitoring networks, etc. Moreover,
how the optimality of each sub-step in the proposed algorithms can be proved also needs
some further investigation. As for future work, we plan to seek results for the above-men-
tioned limitations of the work.

Author Contributions: Conceptualization, Z.L.; methodology, Z.L.; software, Z.L.; validation, Z.L.;
formal analysis, Z.L.; resources, Z.L.; data curation, Z.L.; writing—original draft preparation, Z.L.;
writing—review and editing, W.Z.; visualization, Z.L.; supervision, W.Z.; project administration,
Z.L.; funding acquisition, Z.L. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 61502057.

Data Availability Statement: The experimental data was collected by the authors, and is not pub-
licly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tang, S.; Mao, X.; Li, X.Y. Optimal k-support coverage paths in wireless sensor networks. In Proceedings of the IEEE Interna-

tional Conference on Pervasive Computing & Communications, Washington, DC, USA, 9 March 2009.
2. Bose, P.; Morin, B.; Stojmenovic, I. Routing with guaranteed delivery in ad hoc wireless networks. ACM J. Wirel. Netw. 1999, 7,

609–616.
3. Tan, R.; Xing, G.; Wang, J. Exploiting reactive mobility for collaborative target detection in wireless sensor networks. IEEE Trans.

Mob. Comput. 2010, 9, 317–332.

Figure 10. Lifetime changes with sensing radius.

5. Conclusions

In this paper, we have presented algorithms for two path coverage problems that
had not been considered before: path coverage with the fewest movements of nodes, and
node scheduling for maximizing path coverage lifetime. We first separated each problem
into several sub-problems and then solved them one by one, and the original problem
was finally solved through the combination of all sub-problems. For the first problem,
the NP-hardness of the problem was proved, and the fewest movements were achieved
through finding redundant nodes and paths; while for the second one, the largest bipartite
matching was utilized to schedule partitions of nodes for monitoring. Moreover, curve
disjunction was used on both algorithms to divide the path into points, which enables the
proposed algorithm to be expanded to common sensor networks. We also analyzed the
time complexities of the proposed schemes, and further evaluated the performance through
experiments. However, the performance of the proposed algorithms was only evaluated
under the experimental circumstance; we yet need to carry out some further work in actual
sensor network-related scenarios to validate their effectiveness, e.g., multimedia sensor

Sensors 2023, 23, 5026 14 of 14

networks, health care sensor networks, traffic monitoring networks, etc. Moreover, how
the optimality of each sub-step in the proposed algorithms can be proved also needs some
further investigation. As for future work, we plan to seek results for the above-mentioned
limitations of the work.

Author Contributions: Conceptualization, Z.L.; methodology, Z.L.; software, Z.L.; validation, Z.L.;
formal analysis, Z.L.; resources, Z.L.; data curation, Z.L.; writing—original draft preparation, Z.L.;
writing—review and editing, W.Z.; visualization, Z.L.; supervision, W.Z.; project administration, Z.L.;
funding acquisition, Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 61502057.

Data Availability Statement: The experimental data was collected by the authors, and is not publicly
available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tang, S.; Mao, X.; Li, X.Y. Optimal k-support coverage paths in wireless sensor networks. In Proceedings of the IEEE International

Conference on Pervasive Computing & Communications, Washington, DC, USA, 9 March 2009.
2. Bose, P.; Morin, B.; Stojmenovic, I. Routing with guaranteed delivery in ad hoc wireless networks. ACM J. Wirel. Netw. 1999, 7,

609–616. [CrossRef]
3. Tan, R.; Xing, G.; Wang, J. Exploiting reactive mobility for collaborative target detection in wireless sensor networks. IEEE Trans.

Mob. Comput. 2010, 9, 317–332. [CrossRef]
4. Somasundara, A.; Ramamoorthy, A.; Srivastava, M. Mobile element scheduling with dynamic deadlines. IEEE Trans. Mob.

Comput. 2007, 6, 395–410. [CrossRef]
5. Liao, Z.; Wang, J.; Zhang, S. Minimizing movement for target coverage and network connectivity in mobile sensor networks.

IEEE Trans. Parallel Distrib. Syst. 2015, 26, 1971–1983. [CrossRef]
6. Hefeeda, M.; Bagheri, M. Randomized k-Coverage algorithms for dense sensor networks. In Proceedings of the International

Conference on Computer Communications, Anchorage, AK, USA, 6 May 2007.
7. Zhang, Y.; Huang, H.; Sun, P. Improving path-coverage for moving targets in wireless multimedia sensor networks. J. Commun.

2014, 9, 843–850. [CrossRef]
8. Attea, B.A.; Hameed, S.M. A genetic algorithm for minimum set covering problem in reliable and efficient wireless sensor

networks. Iraqi J. Sci. 2015, 55, 224–240.
9. Han, R.S.; Wei, Y.; Li, Z. Achieving Crossed Strong Barrier Coverage in Wireless Sensor Network. Sensors 2018, 18, 534. [CrossRef]

[PubMed]
10. Dhawan, A. Maximum lifetime scheduling in wireless sensor networks. In Wireless Sensor Networks, Technology and Protocols;

Intech: London, UK, 2012.
11. Mini, S.; Udgata, S.K.; Sabat, S.L. Sensor deployment and scheduling for target coverage problem in wireless sensor networks.

IEEE Nodes J. 2014, 14, 636–644. [CrossRef]
12. Abrams, Z.E.; Ashish, G.; Serge, P. Set k-cover algorithms for energy efficient monitoring in wireless sensor networks. In Proceed-

ings of the International Symposium on Information Processing in Sensor Networks, Berkeley, CA, USA, 27 April 2004.
13. Cardei, M.; Du, D.Z. Improving wireless sensor network lifetime through power aware organization. Wirel. Netw. 2005, 11,

333–340. [CrossRef]
14. Lu, Z.; Li, W.W.; Pan, M. Maximizing lifetime scheduling for target coverage and data collection in wireless sensor networks.

IEEE Trans. Veh. Technol. 2015, 64, 714–727. [CrossRef]
15. Gu, Y.; Pan, M.; Li, W. Maximizing the lifetime of delay-sensitive sensor networks via joint routing and sleep scheduling.

In Proceedings of the IEEE International Conference on Computing, Networking and Communications, Honolulu, HI, USA,
15 January 2014.

16. Weng, C.I.; Chang, C.Y.; Hsiao, C.Y. On-supporting energy balanced k-barrier coverage in wireless sensor networks. IEEE Access
2018, 99, 274–278. [CrossRef]

17. Yoon, Y.; Kim, Y.H. Maximizing the coverage of sensor deployments using a memetic algorithm and fast coverage estimation.
IEEE Trans. Cybern. 2021, 99, 6531–6542. [CrossRef] [PubMed]

18. Ma, D.; Duan, Q. A hybrid-strategy-improved butterfly optimization algorithm applied to the node coverage problem of wireless
sensor networks. Math. Biosci. Eng. 2022, 19, 3928–3952. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1023/A:1012319418150
https://doi.org/10.1109/TMC.2009.125
https://doi.org/10.1109/TMC.2007.57
https://doi.org/10.1109/TPDS.2014.2333011
https://doi.org/10.12720/jcm.9.11.843-850
https://doi.org/10.3390/s18020534
https://www.ncbi.nlm.nih.gov/pubmed/29439401
https://doi.org/10.1109/JSEN.2013.2286332
https://doi.org/10.1007/s11276-005-6615-6
https://doi.org/10.1109/TVT.2014.2322356
https://doi.org/10.1109/ACCESS.2018.2792678
https://doi.org/10.1109/TCYB.2021.3075986
https://www.ncbi.nlm.nih.gov/pubmed/34033574
https://doi.org/10.3934/mbe.2022181
https://www.ncbi.nlm.nih.gov/pubmed/35341281

	Introduction
	Related Work
	Least Movement of Sensors on Path Coverage
	Problem Description
	The Least Movement Algorithm
	Path Disjunction
	Initial Movement
	Last Movement
	Simulations

	Largest Path Coverage Lifetime
	Problem Analysis
	Marks
	Preliminaries
	Problem Description

	Largest Path Coverage Lifetime Algorithm
	Nodes Partitioning
	Combine Partitions
	Partition Schedule
	Intra-Schedule

	Simulations

	Conclusions
	References

