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Abstract: This paper demonstrates an intruder detection system using a strain-based optical fiber
Bragg grating (FBG), machine learning (ML), and adaptive thresholding to classify the intruder as no
intruder, intruder, or wind at low levels of signal-to-noise ratio. We demonstrate the intruder detection
system using a portion of a real fence manufactured and installed around one of the engineering
college’s gardens at King Saud University. The experimental results show that adaptive thresholding
can help improve the performance of machine learning classifiers, such as linear discriminant analysis
(LDA) or logistic regression algorithms in identifying an intruder’s existence at low optical signal-to-
noise ratio (OSNR) scenarios. The proposed method can achieve an average accuracy of 99.17% when
the OSNR level is <0.5 dB.

Keywords: fiber Bragg grating; optical sensing; adaptive thresholding; linear discriminant analysis;
logistic regression; machine learning

1. Introduction

In recent years, optical fibers have enabled the innovation of several technologies
in the field of sensing. This is because the optical fiber sensors have minimal transmis-
sion loss, immunity to electromagnetic interference, passive operation, high sensitivity,
and reliability in harsh conditions, making them of greater importance for sensing [1].
Optical fiber sensors can measure different physical parameters, such as temperature,
strain, or pressure [2,3]. The sensing is achieved when the properties of a propagating light
wave, such as intensity, phase, polarization, or wavelength, are modulated by the physical
parameters [4]. Different methods for optical fiber sensing have been explored in the
literature, such as reflectometry-based sensors and interferometry-based sensors. Grating-
based sensors (e.g., fiber Bragg grating (FBG)) are considered point or multi-point sensors
(quasi-distributed) [4]. Compared to the reflectometry-based sensors and interferometry-
based sensors, FBG-based sensing has several advantages: (i) it has predetermined locating
capabilities and can be assigned to either effective sensing or non-sensing fiber segments,
(ii) it responds linearly to the impact of external events, and (iii) it has a higher SNR than
other distributed sensing techniques [5]. However, event identification in optical sensing
systems remains a challenging problem in practical conditions due to environmental noise
and interfering events.

Optical sensing systems for fenced perimeter security comprise three primary com-
ponents: an optical sensing system, a feature extraction method, and a classification al-
gorithm [6]. The optical sensing system is responsible for capturing signals from the
perimeter, including the presence of potential intruders or environmental noise, such as
wind. Subsequently, the feature extraction method analyzes the captured data to extract
relevant features, such as potential intruders or stable environmental conditions. Finally,
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the classification algorithm utilizes these features to accurately identify potential threats
or intruders, distinguishing, for example, between human movement and environmental
noise. By combining these components, the security system can quickly detect and respond
to potential threats, making it favorable for various applications ranging from protecting
critical infrastructure to protecting private properties.

The interferometry-based sensing systems, such as the dual Mach–Zehnder interfer-
ometer (DMZI) and Sagnac interferometer, were utilized for event detection in fenced
perimeter security systems [7–11]. In Ref. [7], the proposed intruder pattern recognition
system utilized the DMZI structure and a pre-processing method based on an empirical
mode decomposition (EMD) to extract features and feed them to a radial basis function
(RBF) neural network as a classifier network. Here, EMD is first used as a pre-processing
step to separate event signals into intrinsic mode functions (IMFs). Then, the kurtosis
characteristic was taken out, and the RBF neural network was used to classify the data.
The experimental results showed that the proposed method achieved an average recogni-
tion rate of over 85.75% for four types of human activities detected on the fence. The EMD
decomposition results can differ depending on the used parameters. In Ref. [8], a deep
metric-learning network combined with recurrent plot (RP) coding was proposed to im-
prove the accuracy of target event recognition in an open environment with unknown
events, where the DMZI was used in the perimeter sensing system. In Ref. [9], an intru-
sion event recognition scheme based on a convolutional prototype network (CPL) was
proposed. The proposed method enabled end-to-end feature extraction and recognition by
integrating relevant variables of prototype learning into the training process of a multiscale
convolutional neural network (MSCNN) as trainable parameters. In Ref. [10], recurrent
plot (RP) and deep learning methods were used to detect abnormal events. By encoding
the sensing signals into two-dimensional images using the RP algorithm, the inception
network extracted features from these images to identify the intruder’s signal. In Ref. [11],
the proposed intruder pattern recognition algorithm utilized the Sagnac interferometer
structure and consisted of pre-processing and pattern recognition using multi-layer percep-
tron neural networks (MLP-NNs). The power spectrum of the vibration signal was used
in the pre-processing step to extract relevant features, and a selected frequency band of
0 Hz to 2000 Hz was used to construct a frequency sequence. The frequency sequence was
serialized and used as input for the MLP-NN model, classifying the pattern into three cate-
gories: normal situation, intrusion events, and interference. Furthermore, a comprehensive
review of recent backscattered sensing (phase-OTDR) developments for perimeter security
monitoring systems was presented in [6].

As quasi-distrusted sensors, FBGs have attracted much interest in the applications
of strain and temperature measurements for highway structures, buildings, railways,
and gesture recognition [12–17]. The FBG-based sensing systems work by measuring the
displacement of the Bragg peak in the spectrum and then deriving the change in the phys-
ical quantity. Conventional optical FBG sensing systems incorporated wavelength peak
detection algorithms for that purpose [18,19]. However, these methods needed a high SNR
and side lobe suppression on the demodulated spectrum. A growing interest has been in
integrating machine learning (ML) techniques into optical FBG sensing systems. For ex-
ample, some researchers investigated using neural networks for peak tracking [20–23].
Additionally, other researchers recently investigated using machine learning algorithms
with the optical FBG sensors for leakage detection, subway track vibration sensing, liquid
level estimation, and temperature sensing [24–27].

One important application for optical FBG sensors is to detect any intruder in fenced
perimeter security applications [28,29]. Previous works demonstrated installing optical FBG
sensors on a fence around the premises, where the sensing system (i.e., optical interrogator)
notifies when the intruder causes the autocorrelation to exceed a threshold [30], or after
the sensing system compares the reflected signal with different intruder patterns [31].
Moreover, in [32], an FBG-based sensing system was installed on a fence, and the feature
data were extracted by the principal component analysis (PCA), which were then used to
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identify the event with a K-nearest neighbor classifier. However, an investigation of the
benefits of using machine learning algorithms in classifying the intruder in noisy-based
sensing scenarios is missing, where machine learning could be beneficial to enhance the
identification of intruders in noisy signals [33,34].

In this paper, we propose simple algorithms for intruder detection and event classifi-
cation at low optical signal-to-noise ratio (OSNR) scenarios. In particular, we (i) experimen-
tally install an FBG sensor on a fence outside the College of Engineering building at King
Saud University and connect the fence to the intruder detection system through 50 km of
fiber, (ii) attenuate the interrogator signal until the OSNR level is lower than 0.5 dB, where
detecting the peak becomes challenging, (iii) use linear discriminant analysis (LDA) and
logistic regression algorithms in the ML models to identify the class of an intruder as no
intruder, intruder, or wind, and (iv) investigate the performance of the intruder detection
system when the ML models incorporate or do not incorporate adaptive thresholding
for peak detection as a pre-processing stage. As an example of the adaptive thresholding
algorithms, we use the short-term average/long-term average (STA/LTA) algorithm [35].
The experimental results show that the machine learning performance can be improved
when the STA/LTA adaptive thresholding is incorporated, and the accuracy could reach
up to 99.17%.

The paper is organized as follows. Section 2 presents the concept and background
of the used FBG, the machine learning algorithms (including LDA and logistic regression
classifiers), and the STA/LTA peak detection algorithm. Section 3 presents the experi-
mental setup and data acquisition. Section 4 presents the data separation and verification.
In Section 5, we discuss the results. Finally, we provide concluding remarks in Section 6.

2. Concept and Background
2.1. Concept

The concept of our paper is presented in Figure 1. An intruder is assumed to climb a
fence wired with an FBG sensor. The FBG receives the light from the optical interrogator
and reflects the light at a specific wavelength. The optical interrogator receives the reflected
light and processes it. For example, for the “no intruder” conditions, the FBG will reflect the
light at its specified Bragg wavelengths. However, when other conditions around the FBG
occur (such as the intruder or wind), the Bragg wavelength shifts in the recorded optical
spectrum in the optical interrogator. Here, we investigate two scenarios. In the first scenario,
we train the machine learning models (i.e., the LDA algorithm or logistic regression) in the
interrogator to identify the class of the intruder directly using the light signal reflected from
the optical FBG. In the second scenario, we add the STA/LTA algorithm as a pre-processing
stage for peak detection before the intruder detection ML models in the interrogator.
In both scenarios, we train the ML models to classify the intruder as either: (i) no intruder,
(ii) intruder, or (iii) wind. Ultimately, we compare the machine learning performance in the
two scenarios and show the advantages of using the STA/LTA algorithm for peak detection
as a pre-processing step for the machine learning model.

2.2. The Fiber Bragg Grating Sensor

The FBG is a type of optical fiber sensor that is written on a short segment of a fiber.
In the FBG sensor, the refractive index of the fiber’s core is periodically modified at a
specific pitch [12]. When an FBG is exposed to a broadband light source, the FBG will
reflect only the wavelengths of light that correspond to the Bragg wavelength (λB). All
other wavelengths of light will pass through the FBG without being reflected. Any change
in the physical environment surrounding the fiber will make the FBG characteristics, such
as the refractive index (ne) or grating pitch (Λ), change, which affects the Bragg reflection
wavelength allowing to sense the physical effects around the FBG. λB can be expressed as
in Equation (1):

λB = 2neΛ (1)
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When the FBG is used to sense its surrounding, any change in strain or temperature
causes a shift in the Bragg wavelength as in Equation (2):

∆λB
λB

= keε + ∆KT (2)

where Ke and KT are the strain and temperature coefficients of the FBG sensor, while ε is
the engineering normal strain.

Figure 1. The concept of fence intruder detection using a strain FBG-based sensor, adaptive thresh-
olding, and machine learning.

2.3. Machine Learning Algorithms

In our work, we aim to build an ML model that can identify the outdoor event among
the three classes using the reflected waveform from the FBG sensor and label the output to
one of the classes shown in Table 1. Figure 2 shows the standard ML model design processes.
The processes start with splitting the input data into training and testing data. The training
data are used to develop the ML model. The developed ML model is then tested using the
testing data [36–38]. Finally, the model’s robustness is assessed from its predicted output
data. We will investigate two machine learning algorithms for classification, which are
the linear discriminant analysis (LDA) algorithm and the logistic regression algorithm.
The linear discriminant analysis (LDA) and logistic regression are supervised learning
algorithms that have recently been used in different fields, such as the classification of
oil slicks and look-alike slicks [39], breast cancer diagnosis [40], classification of dyadic
conversation scenarios [41], power quality disturbances [42], and seizure detection [43]. We
opt to explore these three algorithms for intruder detection because of their simplicity and
low computational cost.

Table 1. Labels of events to be classified.

Class Label

No intruder 0
Intruder 1
Wind 2
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Figure 2. The processes for the ML model development.

2.3.1. Linear Discriminant Analysis

The first algorithm we will investigate in the ML model to classify the input signal
to one of our three classes is the linear discriminant analysis algorithm [44]. The LDA
algorithm divides the data from different classes into groups, with all samples of the
same group sharing the same mean with different variances. It does so by maximizing
Fisher’s criterion [45]. The Fisher criterion is used to project the whole data from a higher-
dimensional space to a lower-dimensional space so that a separating line can be drawn
between the data classes. Therefore, maximizing Fisher’s criterion maximizes the distance
between the centered means of different data groups and minimizes the scattering within
the same group. To classify data samples of two different classes, the LDA model is trained
to maximize Fisher’s criterion, which is defined by [46]

F(α) =
αTµ1 − αTµ2

αTCα
(3)

where µ1, and µ2 are the means of data of the two classes, C is the common covariance matrix
of the dataset, and α is a vector of linear coefficients that is required to maximize the Fisher’s
factor such that α = [α1, α1, . . . , αn]. After training the LDA-based ML classifier using a
dataset of two classes K1 and K2, we can map a new testing sample x to class K1 by [47]

αT
(

x−
(

µ1 + µ2

2

))
> log

p(K1)

p(K2)
(4)

where p(K1) is the probability of class K1, and p(K2) is the probability of class K2.

2.3.2. Logistic Regression

The second algorithm we will investigate in the ML model to classify the input signal
to one of our three classes is logistic regression. Logistic regression is used in binary
classification problems to distinguish between data of two different classes. However, it
shares the mathematical formula of linear regression, which is given by [48]

z =
n

∑
i=1

wixi + b (5)

where xi is the data sample, wi is the weight coefficient acquired through the training
process, n is the length of the feature vector, and b is the intercept. Logistic regression
builds upon linear regression by using the output of Equation (5) as an input to the standard
logistic (sigmoid) function as follows [49]:

p(z) =
1

1 + e−z (6)

where p(z) is the classification probability such that the given data sample z is classified to
class ‘zero’ if p(z) is close to zero; otherwise, it is classified to class ‘one’. Figure 3 shows
the standard shape of the sigmoid function.
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Figure 3. The standard sigmoid function.

2.4. The Short-Term Average/Long-Term Average (STA/LTA) Algorithm

The STA/LTA algorithm is an adaptive thresholding algorithm that can detect a peak
in noisy environments. For example, the STA/LTA algorithm has been used for peak and
anomaly detection applications, such as detecting seismic signals in geophysics [35,50]. It
does so by calculating the ratio of the average energy in a short-term leading window to
that in a long-term trailing window of a signal. In our work, we aim to use the STA/LTA
algorithm as a pre-processing function before applying the ML processes (i.e., linear dis-
criminant analysis (LDA) or logistic regression algorithms) such that the output data of the
STA/LTA algorithm become the input to the ML algorithm.

Figure 4 demonstrates identifying a peak in a noisy environment using the STA/LTA
algorithm. Here, an event is present if the STA/LTA ratio (η) is higher than a predefined
threshold (α), where η can be calculated in the following way: [50]:

Figure 4. The STA/LTA calculation for finding the peak of a signal in a noisy environment. The peak
is detected when the ratio of the average energy in a short-term leading window to the average
energy in a long-term trailing window of a signal exceeds a certain threshold.
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η =


0 i f ∑n

i=n−S+1|xi |2

∑n−S
i=n−L−S+1|xi |2

< α

1 i f ∑n
i=n−S+1|xi |2

∑n−S
i=n−L−S+1|xi |2

≥ α
(7)

where xi is the ith sample of the digitized signal, S is the length of the STA window, and L
is the length of the LTA window. In this study, we set the size of the short window to
one sample and the size of the long window to 100 samples. The parameter α is a coefficient
computed using background noise to obtain a certain false alarm probability (Pf a) that
maximizes the probability of detection (Pd). Figure 5 outlines the flow chart of the proposed
integration between the STA/LTA algorithm and ML algorithms.

Figure 5. The flow chart of integrating the STA/LTA algorithm and the ML models.

3. Experimental Setup and Data Acquisition
3.1. Experiment Setup

To build a training and testing dataset that helps in building the machine learning
model, an outdoor fence was installed for this purpose. Figure 6a shows the installed fence
at King Saud University, which is made of metal. The designed fence has dimensions of
8.8 m (length) × 1.7 m (height). The fence properties are presented in Table 2. The FBG
sensor was attached to the fence as shown in Figure 6b using Scotch Magic Tape so that
the FBG sensor can sense any vibration in the fence due to wind or climbing. To have a
remote sensing system, the interrogator (PXIe-4844) was kept inside the lab connected to
the FBG sensor through a 50 km of single-mode fiber (SMF-28) as shown in the experiment
setup in Figure 6c. The FBG is also written on SMF-28 fiber. The interrogator is a module
that transmits the light from a sweeping laser source and detects the reflections. The
reflected light for the three scenarios at a distance of 50 km is presented in Figure 7a,
where the wavelength shift could be observed with >15 dB of OSNR. In order to emulate
the lower OSNR scenarios, we add an optical attenuator and adjust the OSNR level to
lower than 0.5 dB as shown in Figure 7b. Here, it becomes obvious that conventional
peak detection algorithm may not work well, leading to false alarms or missed events,
and machine learning tools may help identify the intruder class by analyzing the features
of the interrogator signal. Tables 3 and 4 show the characteristics of the optical interrogator
and the FBG sensor (OS3100) [51], respectively.

Table 2. Fence metal properties.

Parameter Value

Elongation % 22
Tensile Strength MPa 370
Yield Strength (0.2%) MPa 300
Shear Strength MPa 230
Hardness Brinell 100
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Figure 6. (a) The installed fence at King Saud University to conduct the experiment. (b) Attaching
the FBG sensor to the fence. (c) The experiment setup.

Table 3. Features of the PXIe-4844 optical interrogator.

Parameters Specification

Output power (continuous wave) 0.06 mW and 0.25 mW
Wavelength sweeping range 1510 to 1590 nm
Wavelength accuracy 1 pm
Dynamic range 40 dB
Hardware resolution 16 bit
Scan rate 10 Hz

Table 4. The strain-based optical FBG sensor specifications.

Parameters Specification

Gage length 22 mm
Peak wavelength 1524.3 nm
Strain sensitivity ∼1.4 pm/µε
Peak reflectivity >70%
FWHM 0.25 nm
Operating temperature range −40 to 120 ◦C
Strain limit ±2500 µε

3.2. Data Acquisition

We acquired the data as follows. The PXIe-4844 transmits a sweeping CW laser light
in the 1510–1590 nm range. The FBG is designed with a Bragg wavelength at 1524.3 nm,
reflecting the light at the Bragg wavelength back to the transmitter. When the signal reaches
the PXIe-4844 module, it starts recording the signal at a rate of 10 Hz. The data are then
transferred to the embedded controller NI-PXIe-8135.

We emulate the intruder class using a person climbing the fence and emulate the wind
class using an air blower. Examples of the collected waveform for each class are shown in
Figure 7b. Every record consists of 2501 data points for representing the optical spectrum
over the range 1520–1530 nm. We construct our dataset out of 134 records as 50 records
of the no-intruder class, 34 records of the intruder class, and 50 records of the wind class.
The intruder records are collected when a person standing next to the fence starts pulling
it. The intruder remains in the same position for a few seconds, which is the time we use
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to collect the persistent readings. In terms of the wind, we use an air blower with the
specifications presented in Table 5 that is targeted to the FBG sensor on the fences to cause
enough stress to imprint a signature on the interrogator optical spectrum waveform. All
the records are taken over a short duration to ensure consistency.

Table 5. The air blower specifications.

Parameters Specification

Power 600 W
No load speed Max of 16,000/min
Air volume 3.5 m3/min

Figure 7. Examples of waveforms for each class: (a) the recorded waveform for the FBG sensor placed
on the fence through 50 km of fiber from the interrogator showing higher than 15 dB of OSNR, (b) the
recorded data after adding the attenuator on the same setup to lower the OSNR below 0.5 dB.

4. Data Separation Verification

In this section, we accumulate all the recorded data for numerical analysis and to
verify the applicability of our collected data for machine learning classification using the
LDA and logistic regression algorithms by investigating (i) whether the data follow normal
distribution using the quantile–quantile plots (Q-Q plots), and (ii) the separability of the
data using the t-distribution stochastic neighbor embedding (t-SNE) algorithm.

The Q-Q plot compares two probability distributions by plotting their quantiles against
each other [52]. The distributions are identical if the scatter points lie on a straight line
in the plot; otherwise, they are not identical. In this work, we draw the Q-Q plot for the
recorded data of the different events against the normal distribution.

On the other hand, the t-SNE is a visualization and exploration algorithm that projects
data samples from a higher-dimensional space to a vector of two points, each plotted in
a plane, to facilitate the visualization of data samples in a 2D space [53,54]. The t-SNE
algorithm provides a simple visualization sense compared to other visualization methods,
such as box-plot or histograms, which require some statistical background to analyze the
plots. This algorithm computes similarity measures between pairs of instances in the high-
and low-dimensional spaces. The obtained measures are then optimized using a cost
function. The t-SNE algorithm has been used in many applications, such as biomedical
fields, genomics, and computer security [55]. The t-SNE algorithm plot displays the data as
clusters in 2D. Each cluster represents one of the different classes in the problem. The classes
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can be classified easily if the clusters are separable, i.e., not overlapped. If overlapped, it is
difficult to classify them with high accuracy.

Figure 8a shows the statistical distribution of the data records. The x-axis (data axis)
represents the values of data after normalization, while the y-axis (density axis) presents
the proportion of these values. In Figure 8b, we show the Q-Q plots of the three classes.
The figure clearly shows that the majority of the data (++ plot) of the three classes follow
the theoretical quantiles (− plot), which means that the majority of the data follow a normal
distribution; however, the higher values of the data (to the right) deviate slightly from the
linear plot showing skewness in the data. This skewness is confirmed by the long right tail
of the distributions of Figure 8a. Additionally, from Figure 8a,b, it is obvious that there is a
linear shift between the distributions of the three data classes. Since the Q-Q plot curves
are separable, the classifiers can work well with high classification accuracy.

Further, we apply the t-SNE algorithm to the data. Figure 8c shows the t-SNE plot,
indicating that the data of the three classes are linearly separable. These results indicate
that the three classes can be accurately classified correctly. Therefore, the results from the
data verification using Q-Q and t-SNE plots indicate that linear classification algorithms,
such as the LDA or logistic regression, can classify the different classes in this problem
under consideration with high accuracy.

(a)

(b)

Figure 8. Cont.
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(c)

Figure 8. (a) The distribution of the collected dataset. (b) The Q-Q plots of the three classes. (c) The
t-SNE plot of the collected data.

5. Results and Discussions

As mentioned above, we investigate two scenarios and compare their performances.
In the first scenario, we train the machine learning models (i.e., the LDA algorithm or
logistic regression) in the interrogator to identify the class of the intruder directly using the
light signal reflected from the optical FBG. In the second scenario, we add the STA/LTA
algorithm as a pre-processing stage for peak detection before the intruder detection ML
model in the interrogator. The obtained results for these scenarios are as follows.

5.1. First Scenario: Directly Using the ML Models

In the first scenario, we train the LDA and the logistic regression ML models using raw
data from the experimentally collected dataset. We scale the entire dataset to be within the
range of [0, 1] before training the LDA and the logistic regression models. We use 70% of
the dataset records for training, while the other 30% is used for testing. The results are
averaged over 100 independent runs, where for each run, the training and testing samples
are reselected randomly, and thus we train a new ML model using different training data
samples to ensure that the trained model is not biased to any subset of the dataset. Figure 9a
displays the achieved average accuracy using the LDA model, while Figure 9b illustrates
the achieved average accuracy using the logistic regression model for each run. In the LDA
ML model, almost all the runs have a classification accuracy of more than 95%. On the other
side, the accuracy for the logistic regression model is above 96% for all runs. Therefore,
the logistic regression model has better classification performance than the LDA ML model.
On average, the LDA classification model achieves 98% classification accuracy, while the
logistic regression classifier model achieves 98.19%, slightly better than the LDA model.

5.2. Second Scenario: Using the STA/LTA Algorithm as a Pre-Processing Function before the
ML Models

In the second scenario, we add the STA/LTA algorithm to the LDA and logistic
regression ML models as a pre-processing stage. In the STA/LTA algorithm, we set the
long window to 100 samples and the short window to one sample. The value of α is set to
be 1.028 to maintain the probability of a false alarm equal to 0.0224. The data before and
after the STA/LTA algorithm are shown in Figure 10 for an arbitrary interrogator recorded
signal. We notice that the STA/LTA algorithm can accurately extract the noisy signal peak.
After peak detection using the STA/LTA algorithm, the reflected signal is cropped around
the detected peak to form a window of size of 400 data points. Similar to the first scenario,
we use 70% of the pre-processing dataset records for training the models, while the other
30% is used for testing. The results are averaged over 100 independent runs, where for
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each run, we train a new ML model using different and randomly selected data samples
to ensure that the trained model is not biased to any subset of the dataset. The resulting
accuracy of the LDA model is shown in Figure 11a, while Figure 11b depicts the resulting
accuracy of the logistic regression model. The STA/LTA algorithm enhances the results and
boosts the steadiness of the ML classification model, where most of the classification results
now have values greater than 97% with an average accuracy over the 100 independent runs
of 99.17% and 99% for the LDA and logistic regression classifiers, respectively. We note that
because we use a new ML model for every run, we observe some variations in the results.

(a) (b)
Figure 9. The achieved accuracy results when using raw data as input to (a) the LDA ML model
and (b) the logistic regression ML model.

(a) (b)
Figure 10. (a) An example of the optical interrogator recorded waveform. (b) The corresponding
STA/LTA output.

(a) (b)
Figure 11. The achieved accuracy results when using the STA/LTA algorithm as a pre-processing
function before (a) the LDA ML model, or (b) the logistic regression ML model.

Finally, in Figure 12, we compare the achieved results of LDA and logistic regression
classifiers with and without the STA/LTA algorithm. Additionally, in Figure 13, we present
the confusion matrix of accumulated results of 100 independent runs of STA/LTA-LDA
classifier. It is clearly shown that the “No intruder” class has the most misclassified samples,
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as those samples are perplexed with samples of the “Wind” class; some samples of the
“intruder” class are confused with samples of the “No intruder” class, while all samples of
the “Wind” class are correctly classified over 100 independent runs. Our results indicate
that the three classes can be accurately classified correctly at low OSNR even for the small
dataset of 134 records.

Figure 12. Comparison of the achieved results of the LDA and logistic regression classifiers
with/without the STA/LTA algorithm.

Figure 13. Confusion matrix of accumulated 100 independent runs of STA/LTA-LDA classifier.

6. Conclusions

In this work, an intrusion detection system using optical FBG sensors is proposed.
The system exploits ML techniques to improve detection accuracy in fenced perimeter
security applications under low OSNR conditions. To investigate the performance of the
proposed system, we experimentally demonstrated installing the system on an outdoor
fence. The experiments were conducted on the outdoor fence, considering three conditions:
no intrusion, intrusion, and wind. The LDA and logistic regression algorithms were used as
ML algorithms for developing classification models. The average classification accuracies
were 98% and 98.19% using the LDA and the logistic regression models, respectively.
The STA/LTA algorithm was exploited as a pre-processing step to improve the classification
accuracy of the proposed models. This algorithm served as adaptive thresholding for peak
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detection. The average achieved accuracy using the STA/LTA algorithm was improved
to 99.17% and 99% using the LDA and logistic regression models, respectively. For future
work, we will consider increasing the number of events to include human activities, such
as walking, jumping, shaking, and climbing. Additionally, the number of FBG sensors can
be increased to cover a longer perimeter. Another interesting plan would be enhancing
the proposed models to simultaneously classify more than multiple events or measure
the displacement of the fence. Moreover, to cover a longer perimeter or enhance the
proposed model’s ability to classify more events simultaneously each with a different
Bragg wavelength at different fence positions, one should modify the machine learning
algorithm parameters to accommodate the new input features in the classification process.
Furthermore, to sense dynamic events, one may use fast-scanning interrogation methods,
such as using coherent receivers. We note that in real scenarios, one should use ML to
distinguish between temperature and strain. One method to do so could be incorporating
a network of FBGs on the same fence, where some sensors could be thermal FBGs [56] in
order for the ML to be able to distinguish the different surrounding effects.
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