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Abstract: Underwater imaging has been present for many decades due to its relevance in vision and
navigation systems. In recent years, advances in robotics have led to the availability of autonomous
or unmanned underwater vehicles (AUVs, UUVs). Despite the rapid development of new studies and
promising algorithms in this field, there is currently a lack of research toward standardized, general-
approach proposals. This issue has been stated in the literature as a limiting factor to be addressed in
the future. The key starting point of this work is to identify a synergistic effect between professional
photography and scientific fields by analyzing image acquisition issues. Subsequently, we discuss
underwater image enhancement and quality assessment, image mosaicking and algorithmic concerns
as the last processing step. In this line, statistics about 120 AUV articles fro recent decades have
been analyzed, with a special focus on state-of-the-art papers from recent years. Therefore, the aim
of this paper is to identify critical issues in autonomous underwater vehicles encompassing the
entire process, starting from optical issues in image sensing and ending with some issues related to
algorithmic processing. In addition, a global underwater workflow is proposed, extracting future
requirements, outcome effects and new perspectives in this context.

Keywords: underwater image; sensing for autonomous underwater vehicles; optical imaging
technologies; image acquisition; image processing methods

1. Introduction

Underwater environment sensing has been a challenging field since its inception.
The evolution of autonomous underwater vehicles (AUVs) has improved the feasibility and
flexibility of submarine exploration, allowing for the introduction of numerous on-board
sensors, enhanced hardware capabilities, and advanced processing tools to improve the
entire sensing process. Nevertheless, underwater robot tasks usually require state-of-
the-art technology and scientific knowledge due to the tough environmental conditions
under which UAV sensing takes place. In general, underwater images suffer from light
absorption and scattering effects, which have been extensively reviewed in the literature.
Water light absorption is wavelength- and depth-dependent. The red-light component is
severely attenuated within the first meters, leading to a rapid incremental dominance of
green and blue wavelengths on images. At very high depths, green light is also absorbed
and only the blue component is present [1].

Modern AUVs are usually equipped with numerous sensors, depending on the tar-
get mission and requirements. The most adopted are two-dimensional sonar imaging,
photographic cameras or GPS, alongside field-specific transducers such as pH or oxygen
meters [2,3]. Not only have sensor devices been upgraded, but in recent years, UUVs have
also benefited from both the recent advancements in machine learning tools and enhanced
hardware-processing capabilities. The first aspect catalyzed a processing revolution, as in
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many other disciplines. With respect to the second aspect, typical, low-cost, open-source
CPU-processing boards are extensively used in the literature [4,5] and, due to recent ad-
vances in nanoelectronics and artificial intelligence (AI), low-powered GPU boards (mostly
employed for artificial neural network solutions) are also starting to be installed in AUVs.
Special features such as robot navigation and localization, and constraints such as bat-
tery autonomy, sensor space availability and on-board processing power, also need to be
considered (see Section 1).

AUVs have a vast variety of applications. These vehicles have been used in the
following industries: oil and gas industry, improving the cost and efficiency of offshore
projects; underwater acoustics, providing modern sensors to capture and simulate natural
environments; chemical industry, working in tough environments; hydroelectric industry,
assisting in hydrostructure inspections; water management industry for portable water
inspection; offshore and shipping industry; science and research industry; sport sector;
television and film production industry; underwater engineering connection solutions;
infrastructure inspection; maritime salvage sector; environmental monitoring; plastic
production and military industry [6,7].

After analyzing the influence of the special characteristics of the underwater environ-
ment, we proceed with the first critical image processing step: underwater image optics
and acquisition. This could potentially influence the subsequent processing stages in
terms of image quality, computational cost, performance, or algorithm accuracy. These
next stages range from preprocessing methods (e.g., white balance, color reconstruction,
spatial blurring) to the most advanced algorithm processing (including recent deep ANN
image algorithms). Throughout the paper, these stages are studied from the perspective
of their performance and impact factors on image processing, as well as the critical issue
identification of AUVs.

The remaining sections are devoted to the criteria used to select and classify the most
relevant scientific papers on the subject (Section 1), as well as the identification of relevant
critical issues in both underwater imaging (Section 2) and their subsequent algorithmic
processing (Section 3). Finally, the conclusions are summarized in Section 5.

1.1. Paper Selection Criteria

This work followed a thorough literature analysis of underwater imaging and their
corresponding algorithm strategies, with a special focus on state-of-the-art techniques
from recently published articles. The methodological approach given by the PRISMA
2020 guidelines [8] was tailored and shortened to identify critical issues in this field.
Specifically, the PRISMA methods that this section focused on are those of eligibility,
information sources, deletion process, the data-collection process, data items, synthesis
methods, and certainty assessments. Other aspects of PRISMA, such as search strategy,
study risk and reporting of bias assessment, effect measures, and other, similar ones, were
discarded due to the limited availability of related papers and the special nature of the
proposed objective. The main topics according to the PRISMA results are described below.

In addition, and as a preliminary step, several reviews were explored to acquire a
general perspective on diverse underwater vision topics, such as image preprocessing and
current algorithmic approaches. The aforementioned strategy allows for this work to further
analyze specific underwater vision topics within the imaging workflow to comprehensively
detect critical issues and future perspectives in this field.

Among the limited availability of literature reviewsin this area, topics such as un-
derwater optical imaging [9], underwater image processing [10,11], real-time underwater
image enhancement [12] and restoration methods [1], as well as deep learning techniques
for underwater image classification [13], were relevant topics.

Moreover, current underwater sensing challenges were also considered. For example,
some interesting topics include underwater active optical 3D scanners [14], visual–inertial
simultaneous localization and mapping [15], the integration of acoustic sensing with the
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onboard inertial navigation system [16], target detection and recognition in underwater
turbid areas [17], and fish geometry measurements from hatchery images [18].

Despite the fact that underwater sensing reviews are currently scarce, some of them
are centered on obtaining a general overview of the topic, usually focused on the catego-
rization of optical images [9,10]. Thus, future and critical issues are not usually detected;
the most favorable cases of those that were studied briefly mention some general issues in
the conclusion that are to be left for future work [19]. On the contrary, the aim of this work
is to provide a comprehensive, step-by-step, critical issue analysis and future prospects
regarding the entire underwater vision process, considering the present technological and
algorithmic state-of-the-art in which we are involved. Furthermore, a novel underwater vi-
sion framework is provided based on the inclusion of relevant stages that were raised by the
analysis of critical issues, resulting in a generalization of current underwater vision frame-
works. This methodology allows for some specific underwater topics and applications,
such as camera optics and underwater mosaicking, to be integrated into this workflow.

Due to the limited availability of articles on underwater imaging, the inclusion criteria
applied in this work ensure the flexibility needed to accomplish a general analysis of the
underwater vision field over a broad range of topics. The main scientific search engines
utilized in this work are Google Scholar, ACM, IEEE, FamaUS [20] and MezquitaUCO [21].

To successfully provide critical issues and future perspectives in this field, our in-
clusion criteria focus on the most recently published articles (ranging from 2016 to 2022,
both included), which were the main contributors to the total number of included papers
(89 articles, 74.2%). The remaining sum of articles was sampled over a [1990–2015] timespan
(31 articles, 25.8%). The total research list comprises 120 articles; however, not all these
articles are included in the reference list. Due to the scarcity of published papers in this
field, the former sample of historical papers is relevant and could be considered suitable
for a general analysis of the underwater vision development.

As for the exclusion criteria, only English-language publications were considered,
and military applications, bathymetric unmanned surface vehicles and satellite images
were discarded.

Figure 1 classifies the 120 research articles according to their publication year, com-
pared to the sum of annual citations. A small subset of these articles was not cited in
this work, as they are repetitive topics or do not represent any advancement in the defini-
tive list of detected critical issues. Several specific critical issues have been recurrently
cited in recent years due to their relevance. For instance, a 2014 publication successfully
tackles a novel topic, retinex theory [22], gathering special attention and leading to great
repercussions in this field. Moreover, in 2015 and 2018, very successful articles emerged
covering topics such as image-quality evaluation, underwater image restoration, color cor-
rection, image dehazing and contrast enhancement, which were shown to have remarkable
scientific repercussions.

Furthermore, an evident example occurred between 2016 and 2018, when UUV-related
neural networks were solidly applied, resulting in a high reference count being found
during the last five-year period. It is worth mentioning that a 2014 image-quality as-
sessment paper [23] was excluded from Figure 1 to preserve graph scale, as it exceeds
40,000 references.

Consequently, some critical topics were demonstrated to be relevant factors for under-
water AUV vision, influencing both current and future developments in this field. Hence,
our work will focus on critical topics with a remarkable reference count, while also includ-
ing novel issues that have begun to attract attention in state-of-the-art underwater imaging.
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Figure 1. Yearly citations per publication date (paper [23] has been excluded to preserve graph scale).

1.2. Classification Criteria

Due to its general nature, the stated critical issue approach can be sensitive to a broad
range of specific applications. In Figure 2, the most common stages of the underwater
imaging workflow are generalized and expressed as a flowchart. The proposed critical
issue framework integrates the following stages:

1. Underwater environment;
2. Camera optics;
3. Preprocessing;
4. Image mosaicking techniques;
5. Algorithmic processing.

Although the last stage is extensive, it can be divided into two main categories:
segmentation and points/regions of interest.

The most common underwater workflow followed in the literature comprises subma-
rine environment modeling, image preprocessing and the main algorithmic stages [24–26].
This work further integrates relevant stages, such as camera optics and image mosaicking,
to provide a generalized underwater framework while detecting critical issues throughout
the process. It is worth noting that image mosaicking is an optional processing stage, which
enables orthomosaic production applications to be integrated in this framework, as the
following algorithmic processing is generalized and could be applied to further information
extraction. Moreover, algorithmic processing has also been categorized in this paper regard-
ing three robotics algorithm stages: segmentation/clustering, points/regions of interest
and descriptors. These specific phases lead to the final aim of the underwater workflow,
which could be classified as an identification, classification or geometric measuring task.

Although this flow is similar to that of aerial imaging, all stages are deeply influenced
by the special features and difficulties that underwater imaging presents, as discussed
below. It is worth noting that there is not a solid, robust solution in this field to date; instead,
a combination of different approaches are often needed to provide satisfactory results in
specific underwater applications and scenarios. However, the proposed workflow can be
adapted to a wide range of applications due to its general nature.
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Figure 2. Underwater Imaging Workflow. Red, blue and orange boxes comprise, resp.: examples of
algorithms used in the preprocessing stage, main algorithmic processing from low– to high–level
programming, and some relevant final tasks.

This algorithmic categorization is representative of the latest trends in underwater
vision research, as the number of published articles substantially increased from 2016 to
2022 (see Figure 3).

Figure 3. Underwater imaging papers per yearly–interval.

The publications on underwater vision by country are represented in Figure 4. Among
the countries with a greater number of underwater imaging publications, we find China,
the USA, Spain, Australia, and South Korea. It can be observed that countries with a greater
population, sea access and both marine- and fluvial-related industries (such as fish farms
or a military) are favored in this chart and tend to investigate this issue more extensively.
Furthermore, these statistics reflect the latest rapid evolution in underwater imaging (see
Figure 3).
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Figure 4. Underwater vision publications by country.

The practice of underwater-image restoration methods can be categorized into two
main classes: hardware-based and software-based. Hardware image enhancement includes
polarization, range-gated imaging, fluorescence imaging and stereo imaging [10]. Software-
based models are oriented toward wavelength compensation and color reconstruction.
As a final step, image quality metrics are used to assess the final image outcome [10]. An
alternative categorization includes hardware-based laser and multi-imaging techniques,
while highlighting the relevance of de-hazing, de-flickering, de-scattering and de-noising
models as software-based algorithms [12].

Figure 5 provides an overview of the computing framework used by the analyzed
underwater articles. A first division casts out two main categories: onboard and offline
processing. Although these two categories are applied in very different scenarios (for
example, avoiding obstacles cannot be implemented offline), offline processing is currently
the preferred approach for AUVs (78.6%). Owing to the underwater vision challenges,
a higher computational cost could be expected from comprehensive image-preprocessing
stages and deep neural network detection algorithms. Offline processing usually enables
greater algorithm flexibility and processing power in many applications.

A second classification level discerns between CPU and GPU platforms, with the for-
mer being the most extended due to its flexibility. Alternatively, GPU processing is an
emerging field, currently promoted by deep convolutional neural networks (CNN), which
enables parallel image processing.

Moreover, onboard processing is a recent strategy, made possible by distributed com-
puting platforms, an approach adopted by the 21.4% of the included articles. For instance,
low-size and cost CPU and GPU boards are commercially available for installation in
both UAVs and UUVs. Despite its limitations, onboard processing is capable of providing
feasible solutions in some scenarios, such as image enhancement or basic neural networks
with a low number of layers for detection tasks [27,28]. In this case, both CPU and GPU
onboard processing platforms are equally represented due to their low sample size, novelty,
and low current rate of adoption of this approach.
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Figure 5. Underwater computing framework strategy.

Figure 6 shows some typical commercial CPU and GPU platforms utilized in under-
water offline processing, sorted in chronological order, thus highlighting the computational
evolution of underwater vision. High-performance CPUs are the most representative
category; however, mobile phones and portable computing seem to be a feasible solution
in specific scenarios. Even more recent platforms are being used for GPU processing,
evidencing their early incursion in offline processing alongside the incremental adoption of
deep CNN image algorithms in recent years.

Figure 6. Offline processing in underwater imaging: CPU and GPU platform ratios sorted in
chronological order. The first commercial processor is marked with a red arrow.

Regarding onboard processing, some CPU examples include Arduino Mega and
NVIDIA Denver 2. Alternatively, GPU platforms such as the NVIDIA GTX 1080Ti and
Geforce Pascal series have also been installed on AUVs. Moreover, FPGA-based platforms
(Xilinx ZYNQ 7000) are beginning to appear in AUVs for real-time neural network process-
ing, but they are not very a widespread solution at present [28,29]. In some recent cases,
both CPU and GPU units can be available in a single board for AI computing, with this
being the case of the Jetson TX2 module.

2. Critical Issues in AUV Underwater Imaging

Following the order given by the previous underwater imaging workflow, we present
a guide that integrates the most relevant physical and technical factors detected in the
literature, in addition to several influential technical concepts that potentially affect or
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limit the performance of AUV underwater imaging exploration. This work introduces a
novel approach by integrating camera optics and underwater image mosaicking in the
same workflow, among other topics, thus helping to unify several underwater fields while
drawing attention to both classical and state-of-the-art critical issues. Due to its general
nature and broad range of applications, the stated critical issue approach can be sensitive
to each specific underwater imaging application. A summary of the current underwater
critical issues is presented in Figure 7, which are to be described in the rest of this Section.

More specifically, additional scattering effects result from light diffusion, leading to
blurring effects in visible-spectra imaging, which, in turn, produce flickering on shiny days
and vignetting when using an artificial light source [10].

Figure 7. Summary of critical issues in underwater environments.

As a result, the main underwater light components are direct, forward-scattering and
back-scattering, with the latter having a greater impact on image quality. This effect is
usually aggravated in practice with the use of artificial light sources, which tend not only
to amplify background light reflection, but also highlight small suspended particles within
the camera-object region [1].

Scattering components influence underwater photographic imaging in terms of re-
duced contrast and sharpness, whereas nonuniform spectral absorption leads to a restricted
dynamic range and, hence, to a loss in color information [30]. The combination of the above-
mentioned effects causes the image quality to be downgraded from its initial capture.

2.1. Underwater Environment Characteristics
2.1.1. Backscatter Flash Light

Solar radiation faces a change in medium from air to water, thus varying the refraction
index according to specific physical and chemical water properties. Light absorption
and scattering are the two main underwater issues [31]. Figure 8 illustrates how the
presence of suspended underwater particles generates scattering light components. There
are two light sources that can introduce scattering problems: solar and artificial. Solar
scattering effects are caused by the interaction of light beams with underwater particles,
accounting for the general diffuse component related to both forward- and back-scattering
effects. Forward-scattering is generally observed when direct light beams reflected by
the object interact with particles within the camera’s field of view, thus contributing to
image-veiling. However, forward-scattering affects underwater vision to a lesser extent,
as most of the diffused light beams are reflected in the opposite direction of the camera.
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Conversely, back-scattering is mainly generated by artificial flash light sources at short
distances, and an over-accentuation of particles within the camera-object region is usually
observed. Furthermore, Figure 8 sketches a typical raw image outcome, highlighting
both back-scattering (intense light reflections) and wavelength absorption (color bias and
information loss) effects on the acquired images. Consequently, back-scattering has been a
well-known critical issue with a great impact on image quality. In this section, we discuss
possible solutions to both of these effects.

Figure 8. Underwater light components and their influence on AUV imaging. The solid yellow arrow
represents the original light font prior to splitting in direct, forward and backscattering, while the
latter two are diffuse components represented with dotted arrows. The cumulative effect of scattering
and wavelength absorption on underwater images is shown in the right.

The distance between the camera and the flash is a critical issue that has a great impact
on both image back-scattering and quality outcomes. Due to its simplicity and flexibility in
terrestrial photography, imaging setups tend to place the flash light near the camera body.
Despite being a straightforward solution, this approach markedly constrains image quality
from the very beginning. Firstly, the frontal flash displacement with respect to the object
further emphasizes back-scattering effects due to the direct illumination of particles within
the camera-object region. This is a serious concern, as underwater flash light mostly faces
darker backgrounds in deeper water scenarios. Second, proximity to the flash camera is
detrimental to contrast transmittance [32], as the main artificial light source adds a frontal,
harsh illumination to the scene, restricting the camera’s ability to discern smoother details,
and thus reducing the dynamic range. A third relevant aspect accounts for the very low
range of lengths in which conventional displacements are capable of providing sufficient
illumination. An improved approach is side-lightning [33]. An in-depth study of this
setup analyzes the contrast transmittance as a function of the distance of the light source
from the camera at different water depths, allowing for a comparison with the traditional
displacement strategy, providing further evidence on this subject [32]. In this work, even
small increments in the horizontal flash distance position from the camera lead to a greatly
enhanced image contrast quality and an improvement in attenuation length range, notably
lowering the impact that back-scattering has on the captured image. As a result, horizontal
flash-to-camera distances between 3 and 5 m may be the most suitable. Based on the data
encountered in [32], we can conclude that this interval could provide a good response for
a wide range of water depths of up to 50 m, while further depths would require greater
horizontal distances.

Due to the limited dimensions of the UUV, even achieving the proposed side-lightning
distance could be challenging. At higher water depths, a proper horizontal distance may not
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even be feasible. When considering the foremost importance that early quality-preserving
stages have, especially in the underwater field, alternative solutions have been practiced in
the underwater photography field. Flash light diffusers favor homogeneous illumination
and a wider light angle, and also soften shades and edges in the scene [34]. By these means,
increased light energy could be available at the periphery of the scene. However, this
technique comes with a loss in the length range compared to direct flash light, being only
suitable for near-field applications. In shallow waters, underwater photographers tend to
work only on the edge of the light beam to reduce back-scattering. In this case scenario,
positioning the flash to prevent light diffusion is critical, as a narrower error margin is
available. Finally, an additional photographic approach relies on the use of partial flash
power settings in search for a compromise between light intensity and low back-scattering
that could enhance image quality.

2.1.2. Water Spectral Categorization

The underwater imaging case scenario depends on critical multifactorial issues in the
first acquisition stages. As a result, the forthcoming image preprocessing strategy is greatly
influenced by the scene. Indeed, water spectral behaviors are manifestly non-uniform, as a
broad range of underwater scenarios and water characteristics are possible. Interestingly,
the meteorological conditions in the same geographical area may also be influential. In this
regard, Jerlov water types are a commonly used means of underwater classification in the
literature, which considers radiation absorption and scattering properties to categorize
the spectral behavior of water [35]. In this paper, five Jerlov water models are considered
for both open ocean and coastal water types. Ocean water types show greater differences
in diffuse absorption coefficients as well as a more dominant blue component, whereas
in coastal environments, the green channel is predominant. An interesting and solid
approach, sometimes followed in underwater image preprocessing, consists of establishing
a preliminary Jerlov water-type clustering of underwater imaging datasets prior to the
application of image-enhancement algorithms [36].

2.2. Camera Optics

Camera optics are of special relevance to capturing the best-quality images possible.
Although several papers have studied some optical effects, such as lens distortion and
chromatic aberration, the underwater literature covering this topic is currently scarce and
centered on specific issues. In this section, we follow an original approach by applying
professional photography and physics knowledge to the underwater scientific image field,
first incorporating the former, and then additional critical related issues, to the underwater
imaging framework.

2.2.1. Lens Distortion

Photographic cameras introduce some light effects during image acquisition. When
solar light beams interact with the camera lens, refraction occurs due to a change in medium.
Camera lenses are manufactured with standardized diameters to accommodate a variety
of scenes and requirements, ranging from 15 mm to 200 mm and beyond. Lens distortion
is negligible between 50 and 100 mm, whereas the most extreme lens diameters suffer
the greatest distortion. Due to UUVs’ weight, size and economic constraints, most of the
popular underwater imaging setups are based on wide-angle camera lenses, a category
typically including lenses under a 35 mm diameter. Considering the additional zoom
effect that the submarine environment causes in standard camera lenses, smaller lenses
are preferred to provide a reasonably wide field of view. In this sense, the fisheye lens is
a wide-angle, bottom-end subcategory that is commonly utilized in underwater imaging.
Consequently, underwater images captured with ultra-wide angle lens tend to have a
strong Barrel distortion. Because of their converging shape, this effect is greatly accentuated
towards the edges of the image. Images taken in dark underwater scenarios tend to suffer
from a vignetting effect, which alleviates distortion in the most noticeable areas provided
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that the camera is installed in the focal center of the spherical enclosure [37]. Despite
this fact, some applications requiring enhanced geometrical precision for distance and
area measurements would benefit from the application of underwater optical calibration
strategies. Among these optical issues, lens distortion has been shown to be relevant due
to the higher rate of calibration errors [38]. Some authors implemented approaches in
an attempt to overcome this issue in aerial imaging. For example, an embedded camera
lens distortion correction method for mobile applications, based on a two-stage process,
was proposed in [39] to correct both geometric and photometric distortion in low-cost
digital cameras. These authors achieved good results with a low computational cost
through parallel computing for embedded systems, although the experimental results are
heterogeneous depending on the camera model, and additional image preprocessing stages
are needed to alleviate these differences. A proposed Barrel distortion correction running
on a digital signal processor (DSP) and based on a lookup table method enables users to
adjust the correction and compression factors to obtain a corrected image with low edge
information loss [40]. An additional correction method for a strong fisheye and wide-angle
lens based on 3D space circle fitting has been published [41], yielding robust results with a
simple, fast algorithm as a first approximation to more complex methods. Furthermore,
lens distortion correction has also been extended to multi-image registration [42].

2.2.2. Chromatic Aberration

Chromatic aberration is a well-known lens effect in professional photography. It
is caused by color-wavelength beam deviations as light propagates through the camera
lens medium, producing different refraction angles as a function of the input wavelength.
The issue is that beam deviations are different from those calculated for a camera lens
operating in air because the water refraction index is different from that of air (more
exactly, the difference in the refraction index between water and glass is very different
from that of air and glass). Chromatic aberration causes some color artifacts in images,
becoming most visually noticeable in the objects’ borders and edges. This can be noticed
when a homogeneous color background is present. Despite its relevance in professional
photography, research on this topic in the underwater imaging field is highly scarce and
was absent until recent years. Hence, chromatic aberration is a clear issue in underwater
imagery, as a change in the medium can introduce significant chromatic aberrations that
affect both achievable precision and accuracy. Several authors have developed chromatic
aberration correction algorithms for terrestrial images based on image segmentation [43]
and false color filtering for embedded systems, without pre-calibration requirements,
designed to correct images at a local scale [44].

A recently published article has exhaustively investigated the influence of chromatic
aberration on underwater imagery processing, showing relevant results through an in-
depth and well-conducted comparison experiment between four low-cost cameras cali-
brated in air and underwater [45]. The results show that significant lateral and longitudinal
chromatic aberrations can be observed in underwater datasets, while the same in-air cali-
brated cameras did not show this effect. Both distortion profiles differed by three orders of
magnitude, while the root mean square (RMS) calibration values were 3–6 times higher
than those in air.

Moreover, some important drawbacks related to chromatic aberration are a diffused,
diluted effect on objects’ borders, leading to an edge sharpness loss, as well as local false-
color representation. Presumably, this effect may have an impact on some image algorithms,
leading to a suboptimal performance.

2.2.3. Sensor Size

Due to AUVs’ weight, space, technical limitations and economic constraints, the vast
majority of cameras date in underwater projects to date hae been low-cost, ultra-compact
and lightweight, and equipped with small sensors. These pre-installed setups provide
some underwater configurations and show a reasonably good performance for everyday
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situations. However, the underwater environment is challenging and diverse; as a result,
these setups are just a first-step approximation to meet specific submarine applications
or mission requirements. In this sense, a wider selection of modern cameras has been
standardized in the photography field to provide better sensor characteristics for the
intended application.

The critical issues discussed in this section have analyzed the relevant optical effects
caused by the camera lens. The next step is the photoelectric conversion of the camera
sensor. This is a key factor for every photographic camera, allowing for high-quality
images to be acquired and delivered. From a material perspective, current commercial
cameras implement either CMOS-based sensors or CCD technology, with the former
being the most extended. Despite minor differences in terms of light sensitivity and
noise, current state-of-the-art sensors achieve roughly the same technical characteristics.

Instead, an important critical issue is the sensor size. Digital sensors establish Full-
Frame as the main size reference, which has been the traditional 36 × 24 mm film size
in small-format analog cameras. Due to the complexity and cost of the digital sensor,
smaller sizes have been standardized. Some popular commercial sizes, in descending order,
are APS-C (25.1 × 16.7 mm), micro 4/3 (17.3 × 13.0 mm), 1′′ (12.8 × 9.6 mm) or ½.55′′

(6.17 × 4.55 mm) [46], with the latter two being most commonly utilized in aerial drones
and mobile phones, respectively.

Sensor size has not been considered to date in underwater imaging. Nevertheless, its
importance is remarkable, especially when dealing with challenging environments such
as underwater exploration. In fact, the accuracy of most channel-wise light attenuation
models in this field depends on the camera sensitivity and color calibration parameters [47],
with the former being an intrinsic camera sensor characteristic. In particular, image quality
is related to both camera sensor size and pixel size. As larger sensors tend to incorporate
larger pixel sizes, only the sensor dimension is usually considered as a quality feature.
Larger pixel cells are more efficient at gathering light, enabling a greater dynamic range,
sensitivity, image sharpness, vivid and natural-looking colors and noise performance.
Although modern cameras are able to work correctly under good lightning conditions,
the previously mentioned factors have become incrementally more relevant as lightning
conditions become unfavorable and challenging, such as in underwater scenarios. Further-
more, the camera sensor is not only responsible for better image quality captures but also
allows for extended technical flexibility. As an example, a wider depth of field and an ample
field-of-view range are available, with the latter being a key requirement in underwater
imaging to allow for a general, panoramic scene view to fit in the image.

Although the previously mentioned setup is straightforward to install and use, a com-
promise between quality and technical flexibility should be achieved from the start of an
underwater project.

In sum, it could be highly beneficial to consider the special difficulties faced in un-
derwater environments whenn searching for a camera setup offering a better compromise
between cost, size, weight and quality.

2.2.4. Image Acquisition Formats

Some underwater publications briefly mention general aspects of this issue. Some pro-
posals consist of choosing between lossy and lossless compression according to the specific
scenario, user needs and transmission quality conditions [48]. Lossless data acquisition is
a simpler and faster solution that reduces data transfer overheads for applications with a
high number of small-size images, [49]. In the same line, lossless data compression can be
efficient for high-resolution, real-time microscopic images such as zooplankton species [50].

The output image file format is a less evaluated topic. Therefore, we extensively
analyze the critical issues we believe are worth considering in underwater imaging. This
option can be selected in the camera settings as a final acquisition step. Essentially, there
are two main image formats that influence further processing stages: lossy (JPEG) and
lossless (RAW). JPEG is a well-known lossy compressed image file format that has been
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a standard since the introduction of digital cameras due to its easy hardware algorithm
implementation, low computational cost, lower file size and wide compatibility, providing
a high-quality image output for photographic images. Today’s modern cameras are capable
of working with very high pixel resolutions, usually well above high-definition standards.
For high-resolution images, JPEG compression has a much lower impact on picture quality
compared to those lower-resolution standards. However, the actual drawback of lossy
image sources is that most of the additional sensor information is discarded during the
compression process, leaving very little room for image post-processing operations such
as exposure correction [51], image enhancement, color restoration or contrast adjustment.
Therefore, the potential results of preprocessing strategies are somewhat limited, as these
formats were designed to lead to a final product. On a professional level, when a lossy
image workflow is selected, image preprocessing tasks are managed directly on-camera
to obtain a close enough final image, reducing the need for further limited off-camera
preprocessing operations as possible. It is worth noting that the off-camera preprocessing
stages that are applied introduce small, cumulative image quality losses due to lossy image
file re-saving.

The preferred professional photography workflow relies on lossless image file formats,
commonly called RAW files. These formats capture the complete sensor information,
preserving all scene information for professional postprocessing purposes prior to a final
export to JPEG or other lossy formats. In this case, a proper image-preprocessing stage
can be developed, taking full advantage of the camera’s sensor abilities. For instance,
recurrent image operations such as histogram sliding, contrast enhancement, or color
restoration could be optimally utilized. Considering the tough underwater environment
characteristics and the necessity for a comprehensive image preprocessing stage to restore
scene information, this approach provides higher quality and flexibility, and increased
tolerance to upstream, unplanned acquisition mistakes in underwater imaging.

Finally, a prominent underwater imaging alternative is based on video capture.
Most modern cameras are capable of providing both image and video-recording fea-
tures. In underwater projects, both approaches have been utilized. Some advantages
of video sources are automatic image stream throughput, visual-inertial navigation sys-
tem adequacy, and the availability of frame rate options. On the contrary, video sources
demand additional computing stages such as video-to-image frame conversion and in-
creased computational cost through video codec computations. In fact, both the image- and
video-encoding processes are an issue in deep-sea exploration [52] due to the limitations of
underwater communication. Despite the fact that only lossy video codecs are available in
commercial cameras, there are video formats with a greater quality output. By default, very
high bitrate and high-resolution video streams are enabled for tasks such as underwater
imaging, providing a fairly adequate, flexible solution.

Consequently, a post-processing quality compromise should be considered. The most
unfavorable of the studied cases is on-board processing, as seen in Figure 5, which was se-
lected by 21% of the related articles. Even though the on-board computational cost currently
limits very high-resolution video streams, some high-quality and low-compression video
formats may be suitable in cases where enough data storage and a sufficient processing
time are available for the intended application.

2.3. Preprocessing
2.3.1. White Balance

An extensively applied software-based image preprocessing technique in photography
is white balance. The aim of this method is to obtain an unbiased color representation
of captured images, independently of specific, unusual lightning scene conditions. More
precisely, a common procedure is: the mean global RGB color value is first calculated,
and then the correction factor for each independent color channel is computed by normaliz-
ing the mean RGB value to each of the three independent red, green and blue contributions,
respectively. This procedure compensates for dominant color imbalances due to non-ideal
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light sources with respect to the visible spectrum of sunlight. Color temperature is the
measurement unit of white balance, allowing for a general, reproducible light-source catego-
rization. Image color information is considered a key attribute in many image-recognition
algorithms. Therefore, a truthful and reliable color representation is a critical issue and an
active research area in underwater imaging.

White balance is also a necessary and widely applied technique in terrestrial pho-
tography. Due to the adverse underwater imaging conditions, notable benefits could be
expected from this approach. Considering the blue and green color biases and the ad-
ditional red channel degradation, limited contrast and blurring are issues of a different
nature, and they are usually restored in further preprocessing stages. In this regard, some
authors have proposed diverse underwater image enhancement algorithms: a color balance
via two-image fusion to promote edge and color contrast is transferred to the recovered
image, being reasonably independent of camera settings [53], as well as an alternative
approach based on unsharp masking and contrast-limited histogram equalization [54]
are some relevant examples. Furthermore, a recent paper has proposed an underwater
image-enhancement algorithm based on a different color balance approach via the minimal
color loss principle and local adaptive contrast enhancement [55], achieving advantageous
results in terms of fast processing, image segmentation, keypoint and saliency detection,
although its performance when dealing with low-light underwater images was lacking.

2.3.2. Spatial Blurring

White balance techniques, as well as some of the derived color balance alternatives, are
recurrent approaches in the underwater literature, as they are able to restore underwater
images to some extent. However, firstly, poor underwater visibility is a multifactorial issue,
and secondly, spatial blurring is an additional remarkable critical issue. As stated previously,
backscattering is the main contributor to image contrast degradation, generating a spatially
varying veiling light effect that increases at further distances, and typically reaches a
maximum cumulative effect in the image background (Figure 9). An additional factor
contributing to spatial blurring is the artificial light power decay, which progressively
constricts the dynamic range at further distances. A polarization-based approach has
been developed for underwater image enhancement [37], considering both white balance
and the spatial veiling light effect under natural light sources, which practically doubles
the underwater visibility range. Despite the few studies regarding underwater video
enhancement, we include, as an example, a submarine video dehazing algorithm [56] based
on dark channel prior and time-domain information fusion.

2.3.3. Color Reconstruction

Wavelength attenuation in the visible spectrum is a notorious underwater effect that
limits vision quality and potential, causing a strong color information imbalance, which
is most detrimental to the red channel. The combined effect of backscattering and light
attenuation results in a downgrade in image contrast and loss of chrominance. Essentially,
color is a basic attribute for many image algorithms and artificial intelligence approaches.
Therefore, color reconstruction is an active research area as well as a critical underwa-
ter issue. Several image color restoration algorithms have been developed in order to
recover scene information to the greatest possible extent possible. Owing to the complex-
ity of underwater image restoration and enhancement procedures, some sophisticated
approaches, such as model-based enhancement and deep learning, have been developed
in the literature. Bioinspired human color perception algorithms have been applied in
underwater imaging to enhance local image contrast, with the multiscale retinex being one
of the most extended [57], and known as the first work or the retinex theory-based contrast
enhancement method. It offers a good trade-off between performance and dynamic range
compression, as several authors have asserted [22] . This method has two versions: color
balance restoration for each single RGB channel or luminance channel correction, with
the former being the most suitable for underwater vision. Additionally, a more efficient and
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versatile retinex approach, suitable for underwater video enhancement [5], was studied
for five types of degraded submarine images based on green, blue, darkness and turbidity
attributes, obtaining satisfactory results in the first two categories. Furthermore, an auto-
matic red channel image restoration algorithm [58] has been able to deliver good-quality
images and a natural color correction outcome even under artificial light.

Figure 9. Original video frame captured by our underwater drone in a swimming pool test.
The spatial blurring effect and lightning conditions make it difficult to discern the yellow chair
in the background.

Moreover, turbid areas are among the most challenging underwater vision scenarios.
An integrated two-step approach based on color restoration and image enhancement for
turbid images offers a consistent performance in a variety of shallow-water scenarios [59].
An alternative hybrid restoration approach [60] initially discerns between foreground and
background restoration, and then utilizes traditional threshold and masking photogram-
metry techniques for the former and a generative adversarial network for the latter.

In recent years, deep convolutional neural networks have been a trend in underwater
vision enhancement and super-resolution conversion, with promising results.

Deep CNN methods have been enhanced for underwater haze removal and color
correction using a pixel-disrupting strategy. They also allow for improved feature extrac-
tion, achieving a very good performance [61]. An alternative CNN approach generates
transmission and ambient light estimation maps to learn underwater effects, preserving
image details accurately by cross-layer connection and multi-scale estimation [62]. Recently,
a CNN-based underwater image enhancement has explored RGB and HSV color spaces to
recover luminance and saturation information [63], providing good image detail.

2.3.4. Image Quality Assessment Criteria

Underwater image-quality metrics are currently an active research field as they provide
important references for image-quality evaluation, algorithm comparison and feedback for
further improvement. Thus, defining assessment criteria is a critical issue that may have an
impact on future underwater vision development. The most relevant image-quality metrics
usually applied in underwater vision are (a) the structural similarity image netric (SSIM),
which considers the human visual ability for structural information detection as a relevant
quality factor [23]; (b) underwater-based image-quality metric (UIQM), which includes
contrast, sharpness and colorfulness as weighted linear parameters in descending order of
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importance [64], (c) an underwater color image-quality evaluation metric (UCIQUE) based
on a linear combination of chroma deviation, luminance contrast and average saturation in
commission internationale de l’éclairage L*a*b (CIELAB) color space, which are ordered in
descending degree of importance [65].

Despite the fact that actual image metrics consider relevant characteristics such as
colorfulness, luminance, sharpness and contrast, future underwater image-quality metrics
may need to include additional factors such as low-level detail preservation or image fidelity.
Moreover, some current assumptions in underwater metrics may be inaccurate. As an
example, UIQM has the disadvantage of not promoting natural-looking images, especially
under turbid scenarios on highly degraded images [59]. To ensure a high-quality image
and fidelity outcome after preprocessing, the more suitable filters are based on moderate
changes in contrast, sharpness and color, because they prevent excessive saturation, detail
and overall information loss with respect to the original image capture. Consequently,
future image-quality metrics should consider a better balance between images that natural-
looking and highly detailed at the pixel level and their counterparts to produce sharp,
vividly contrasted images.

To address this issue, some initial proposals are being published in terrestrial imaging,
such as the patch-based contrast quality index (PCQI), which differs from previous models
in its ability to build a local contrast quality map and predict local quality variations over
space [66]. Future metrics considering this issue could be more successful in assessing
contrast detail preservation. We consider approaches in this direction to be a good comple-
ment to actual underwater metrics, as they have been included in some articles on image
enhancement [53,67]. Regarding algorithm implementation, achieving underwater vision
enhancement while preserving fine, low-level details in the scene is a major challenge.
A multi-camera super-resolution approach to enhancing underwater video streams [68]
is a good example regarding detail preservation. Recently, CNN-based algorithms have
offered very good results in this regard [62]. In this sense, the CNN approach has been
recently applied to map in-air conditions to artificially degraded underwater images with
a focus on local detail retention [69]. We conclude that the definition of PCQI and other
quality indexes should be considered, so that future researchers could benefit from a more
exhaustive image quality assessment.

2.4. Image Overlap and Mosaicking Techniques

Underwater mosaicking is an ongoing research field aiming to inspect the floor surface
of lakes, reservoirs and marine environments by obtaining a final map composed of over-
lapped image tile units. In the case of seafloor mosaicking, further device challenges are
met in terms of battery capacity, artificial light power and range. Another set of issues arises
from the difficult exploration of uneven seafloor surfaces at considerable depths. Tradition-
ally, underwater image mosaicking has mainly been applied to vision-based navigation,
although large mosaic building has been a relevant application since the beginning [70].

At present, underwater image-blending procedures commonly assume low forward
and side overlaps, delivering 2D mosaics. It is generally assumed that the interframe motion
is mainly translational. However, it is well-known that a prealignment process is needed
to ensure a high-quality mosaic outcome when rotations are greater than 10–15% [70].
Although 3D reconstruction benefits from composite image translations on uneven surfaces,
the application of this technique for very low overlap scans is not always feasible. Low
overlap images are a common practice in underwater mosaicking, mainly due to power
constraints [70], although they allow for greater distance coverage as well as data storage
reductions [71]. Specifically, the underwater overlap ratios that stated in the literature vary
between 15–25% [72] and 35% [71].

Despite being a little developed field, several authors have implemented blending
algorithms. For instance, fast underwater image mosaicking proposes an efficient, modi-
fied agglomerative hierarchical clustering method to build submaps based on similarity
information from feature descriptors, increasing efficiency while reducing image-matching



Sensors 2023, 23, 4986 17 of 27

attempts [73]. Furthermore, an efficient feature-based image mosaicking (FIM) method
has utilized multiple underwater robots for the topology estimation process, delivering
an accurate map [74]. Finally, a recent underwater image blending algorithm based on
globally optimal local homographies has been applied to seafloor mosaicking [75]. It was
shown that the adoption of a local warp model improved the alignment and minimized
local distortions compared to global approaches. The authors also proposed a three-step
seafloor mosaicking pipeline consisting of (a) image keypoint extraction and matching,
(b) camera orientation estimation, and (c) the fusion of both previous stages, providing a
natural-looking mosaic [75].

3. Algorithmic Processing

The forthcoming stages of the workflow presented in Section 1.2 comprise the algo-
rithmic processing. As this stage is very wide, we begin with a classification centered on
underwater image algorithms in the next subsection. Having established the taxonomy,
the rest of the subsections focus on the performance impact factors and the most relevant
challenging tasks that were accordingly identified in this field.

3.1. Algorithm Classification

A wide variety of processing and identification techniques have been developed as a
response to numerous underwater vision applications. Underwater vision typically applies
the same general algorithmic abstraction as that of aerial imaging, thus enabling the latter
to be adapted by introducing some required changes to this field. Two main types of
algorithms can be distinguished: classical image processing (pixel-based manipulation,
photogrammetry, or digital elevation modeling, for example) and machine learning algo-
rithms. Even though this variety challenges the determination of an exact classification,
the majority of these techniques can be categorized into five main modalities:

(a) Classical imaging techniques;
(b) Machine learning: artificial neural networks and unsupervised classification;
(c) Machine learning: regression;
(d) Support vector machines (SVM);
(e) Object-based image analysis (OBIA).

Classical imaging encompasses a broad variety of techniques regarding image fil-
tering, pixel-based manipulation, color-space representation, photogrammetry, model-
based image enhancement, morphology, topological parameters, etc. These algorithms
rely on nonlearning methods and are generally well-known and robust, especially for
traditional algorithms.

A relevant, classical imaging subcategory is photogrammetry. These techniques are
regarded as a first step to generate orthomosaics or digital elevation models (DEM). It
encompasses precise scene reconstruction from several superimposed images captured
by one or several sensors, establishing the geometric properties of these two-dimensional
images to obtain a 2D or even 3D mosaic provided that images captured from different
points of view were available.

ANNs are among the most utilized machine learning methods at present. Within this
category, CNNs were demonstrated to be effective for object detection and classification in
large datasets. Conversely, these algorithms tend to have higher computational cost and
demanding training datasets (see Section 3.3). In this sense, post-processing or external
informatics infrastructures (cloud computing) may additionally be needed. Furthermore,
unsupervised classification encompasses machine learning fields such as clustering (KNN,
hierarchical or probabilistic clustering), data compression (PCA, singular value decomposi-
tion or SVD) or generative models. It is worth noting that neural networks can be designed
to work with both supervised and unsupervised datasets.

Regression models are not only a highly regarded statistic inference method but also a
supervised machine learning algorithm. They find an existing relationship among variables
by adjusting the coefficients of a target parametric function. These algorithms were exten-
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sively applied in several underwater imaging applications, such as image enhancement
and preprocessing, image mosaicking construction, and subject geometric measuring al-
gorithms. Moreover, some popular algorithms include multiple linear regression and
nonlinear regression, as well as advanced multispectral analysis techniques with a low
sample number (sparse regression methods), which aim to extract the basic components
from every physical camera pixel.

SVMs are regarded as a nonparametric, statistical learning method and were recently
used in various image processing applications. The aim of this algorithm is binary classifi-
cation through the definition of an optimal hyperplane, enabling a maximum gap margin
between two groups. Regarding nonlinear classification, SVM uses several kernel types,
which convert nonlinear boundaries to hyperplanes of higher dimensions until the optimal
hyperplane is found. In underwater imaging, hyperspectral data provide hundreds of data
channels with high feature variability, as well as complex characteristics and nonlinear
relations among the spectral bands that could be exploited.

Object-based image analysis (OBIA) is a common learning method that discerns
present objects in underwater images. Conversely to pixel-based methods, OBIA elemental
analysis units are not pixels, but adjacent pixel groups (objects) with homogeneous spectral
values, and hence are considered as a topological entity. This technique can analyze
and classify images, exploiting not only individual pixel information, but also geometric,
spectral, textural, and, by extension, topological information.

As an example, Figure 10 shows the resulting classification of 85 articles related to
underwater image algorithms, regardless of the processing stage in which these methods
were utilized. Results show that both classical algorithms and artificial neural networks
(ANN) and unsupervised classification categories are the two most popular approaches in
recent years, representing 69% of the studied articles, while object-based image analysis
(OBIA) methods are becoming increasingly relevant due to their potential in superpixel
and topological information extraction, forming 22% the total number articles. As a matter
of fact, some OBIA concepts are being applied in recent object-based deep neural networks,
leading to the promotion of the neural network category. Finally, regression and SVM form
the smallest group, with 9% of the total papers. Despite the regression not being represented
as the main algorithmic strategy in many articles, it is found in multiple underwater image
stages, such as camera optics, preprocessing, and image mosaicking.

Classical algorithms are the most represented category, closely followed by the ANN
and NSC groups, as they were demonstrated to perform well in various underwater scenar-
ios, yielding promising results. Furthermore, both categories are usually utilized within the
same workflow due to their general applicability, with classical algorithms usually being
preferred for optical distortion correction, as well as some image restoration algorithms,
prior to the training stage of deep neural networks. As an example of a shared application,
both groups are currently being applied to underwater image-enhancement tasks.

Further discussion of these categories, their performance impact factors, and the
most relevant high-level tasks that comprise the state-of-art can be found in the following
subsections. In summary, and after having analyzed the algorithm categories, we contrasted
both the advantages and drawbacks of each technique, leading to the next summary of
which methods represent the state-of-art in the field of underwater algorithmic processing:
deep neural networks and regression have mostly been used in image preprocessing and
mosaicking [76], respectively, whereas SVM and OBIA have served as final identification
and classification algorithms. SVM is currently utilized in conjunction with neural networks
rather than alone, as the latter tends to obtain a better performance [77–80], and the
combined approach can lead to enhanced algorithms [81,82]. Moreover, regression methods
have yielded satisfactory results in geometric measurement tasks, such as fish weight and
size measurements in underwater hatchery images [18].
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Figure 10. Yearly evolution of underwater image processing algorithms.

3.2. Performance Impact Factors

At present, lossy image formats are among the most abundant image sources, as they
allow for important bandwidth reductions and versatility requirements for general-purpose
applications. JPEG compression works under the assumption that high-frequency informa-
tion does not contribute much to the general psycho-visual scene. Although compressed
images have been extensively applied as input data to algorithms, very few assessments of
their potential impact on algorithmic performance have been published. This is even more
notable for underwater imaging.

Classic studies regarding lossy image compression effects on classification tasks sup-
port evidence that high-quality classifications could generally be obtained for JPEG com-
pression ratios approaching 10:1 or higher, especially for spatial pattern detection appli-
cations [83]. Regarding generic deep learning and neural networks, several studies have
assessed the impact of image quality on deep neural networks. Some authors have ana-
lyzed this issue under various distortions [84]. In descending order of importance, blur
was found to be the most relevant, transversely affecting all four CNNs evaluated in this
paper, even at moderate levels; noise is especially relevant for CNNs, with a low number
of convolutional layers; JPEG affects neural network performance for compression ratios
higher than 10:1 and 30:1 (for JPEG and JPEG 2000, respectively). Finally, contrast affected
all four of the studied CNNs, although to a lesser extent compared to previous distortions.

In addition, training on the compressed dataset could raise the training accuracy, but it
would not increase the pixel-matching in the original classification. This is a well-known
consequence of the elimination of much of the pixel-to-pixel detail that high compression
ratios produce [83]. Alternatively, a recent study evaluated the impact of JPEG compression
on some common deep learning tasks, such as classification, detection and semantic
segmentation [85], finding a steep, significant performance loss from high (10%) to moderate
(50%) compression settings.

The influence of segmentation algorithms has been analyzed in many imaging fields.
Overall, many studies conclude, for terrestrial images, that an assessment of color or-
thophotos over lossless and JPEG 2000 compressed images can be established in a few
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thematic categories, such as dense vegetation, herbaceous, bare lands, road and asphalt,
or buildings. The results [86] show that the loss of accuracy at the first compression level
was more significant in highly fragmented areas. Consequently, one can extend these
classical results to underwater imaging, so that topological segmentation tasks could have
a higher sensitivity to lossy compression, as these algorithms tend to work best with
pixel-to-pixel detail. This may require either the application of stricter, lower compression
thresholds to mitigate quality loss compared to other algorithms or, ideally, a lossless image
compression workflow.

Specifically, Ref. [87] analyzed the influence of range, image resolution and compres-
sion on underwater stereo video through both high-definition and broadcast resolution
video cameras, stating that HD binocular video is capable of measuring objects more
accurately over greater ranges, which also facilitates fish taxonomic identification. For pho-
togrammetric applications, moderate compression levels have little influence on the accu-
racy and precision of measurement tasks, whereas degradation follows a linear progression
with compression [88]. This paper also recommends recording video streams in progressive
mode, thus avoiding possible interlaced motion artifacts due to the water medium.

Other factors that affect the correct object shape, target recognition, and influence of
color on detection performance are detailed in the following lines. A recently published
signal transmission error model based on Fourier descriptors, HSV color space and gray-
level segmentation [24] conducted preliminary research regarding the influence of object
shape and color under various laboratory scenarios (air, shallow water, 40 cm and 80 cm
underwater, with and without flow interference and non-uniform lighting effects). This
algorithm revealed that green and blue rounded shapes are harder to detect, especially
at high depths under non-uniform light. In contrast, shapes with defined edges were
accurately detected in nearly all scenarios while providing enhanced robustness to color
influence. Moreover, rounded targets were shown to demand higher requirements on
interest point algorithms to obtain a smoother segmentation, thus avoiding confusion with
polygonal shapes.

3.3. Datasets on Underwater Imaging

Even though numerous underwater image restoration methods have been published,
underwater image datasets are still limited. Therefore, dataset augmentation methods have
become a recurrent strategy to ensure the establishment of the greater image databases
that are usually required to train deep neural network algorithms. For instance, a 3D-
modeling dataset augmentation method was proposed for AUV real-time operations [89],
increasing the significance of rare underwater objects for detection algorithms. Furthermore,
some simulated underwater physical effects were included in a synthetic dataset to build
an underwater image-enhancement algorithm for infrastructure inspection [90]. A new
quantitative underwater dataset was provided to the field, which includes far-field objects
at different distances between cameras and objects of several meters of magnitude [91].

However, actual underwater image databases also suffer from qualitative issues,
as most of them only provide near-field targets that must be recognized. While fore-
ground targets can be acquired and detected with greater success and simpler enhancement
techniques, such as contrast stretching, future image datasets should provide enhanced
quantitative and qualitative data by adding the spatial distance variable [19] so that issue-
related character and far-field detection could be better addressed.

4. Relevant Challenging Tasks

Underwater vision applications provide advantageous results as well as wider pos-
sibilities in near-field sensing with respect to sonar imaging. However, some important
challenges are currently being confronted in underwater imaging so that it can be used
near its application limits, as illustrated in Figure 11. In this sense, a key factor is far-field
object detection. Binocular vision is a hardware-based approach that provides increased
depth perception, enhanced visibility, light sensitivity and better 3D reconstruction capabil-
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ities. In our days, underwater far-field imaging is an emerging field. Nevertheless, some
initial proposals can be found, such as a stereo-matching algorithm for 3D information
recovery [92]. This technique, based on a three-step pyramid resolution approach with
anisotropic diffusion, provides better accuracy than the classical block- and semiglobal-
matching methods. The choice of similarity measures such as the ZNCC score, alongside
census-tranform-based matching and the smoothness transition analysis at the pixel level,
provide robustness to light variations, thus approximating the underwater vision require-
ments. Another method based on superpixel segmentation and polynomial regression [26]
has reduced the stereo mismatch for 3D target reconstruction under swimming pool test
conditions. In fact, the proposed measurement method can be adequate for camera-object
distances of up to 2 m, where the mean error slightly exceeds 5%.

As stated above, future work could focus on more advanced camera calibration
strategies such as the pinax model [93] or a generalization of the pinhole model. In this
regard, an advanced camera calibration model for underwater 3D scanners has combined
the accuracy potential of ray-based modeling with the common principles of pinhole
models to provide enhanced precision for geometric measurement tasks [94]. To ensure a
simple and flexible calibration process, novel input variables consider air-calibration data
and distortion function, glass-refraction index, glass thickness, and the distance between
the camera and glass. Simulation results have demonstrated that pinhole modeling can
be used for larger object distances without remarkable accuracy losses. However, certain
conditions should be satisfied before using the pinhole model at shorter distances.

Figure 11. A set of images captured by our underwater drone considering the spatial variables
under three different calibration tests: (a) QR code patterns, (b) a color calibration card common in
image processing, and (c) text symbols. This provides an example of pattern and color recognition as
current challenging tasks. The distances between underwater robot and target from left to right are
approximately 1 m, 3 m, 5 m and 7 m, respectively.

The Pearson correlation coefficient between the negative logarithm of the estimated
transmission map and the true distance has been used to assess spatial visibility. Conse-
quently, far-field evaluation evidences greater differences among existing image-enhancement
methods, which generally have low far-field visibility or color bias. These critical issues
were previously identified in Sections 2.3.2 and 2.3.4, respectively.

Feature-extractors are a step in navigation algorithms. In underwater imaging, this
task becomes increasingly difficult due to the non-uniform lightning and low visibility [95].
For instance, a real-time stereovision framework [96] has been proposed for AUV naviga-
tion. Distance measures to foreground objects are gathered from background substraction
techniques. Furthermore, some initial proposals regarding scene-change detection and
environment monitoring, oriented toward navigation [97], are being developed.

Moreover, the influence of color on detection performance may not be neglected. As an
example, an image metric evaluates the color-correction accuracy through the average an-
gular reproduction error between grayscale patches and pure gray color in RGB space [91]



Sensors 2023, 23, 4986 22 of 27

while mitigating the influence of brightness on color representation. This method may
help to identify well-balanced image restoration methods that tend to better preserve
background information for future detection tasks.

5. Conclusions

To contribute to the necessary development of the underwater imaging field, focusing
on existing challenges, this work provides a comprehensive, step-by-step critical issue
analysis of the entire underwater vision process, considering both the present technolog-
ical/algorithmic state-of-the-art and the future prospects. This approach evaluated the
environmental, optical, image enhancement and algorithmic processing stages to obtain
further insights into the first critical image acquisition steps, which could potentially in-
fluence further processing stages, while detecting synergies along the imaging workflow.
Furthermore, a generalization of the underwater vision framework is provided based on
the inclusion of relevant stages raised by the critical issue analysis.

To mitigate underwater back-scattering effects, side-lighting provides better subject
definition and textures and, hence, can reduce computational costs in image preprocessing.
Furthermore, environmental factors such as water depth, turbidity and flow speed have a
great impact on underwater imaging, raising physical and technical challenges that should
be considered and evaluated in underwater projects.

The camera optics stage has shown to be a relevant issue; however, this underestimated
in the underwater field. Despite the research on terrestrial imaging, no method yields robust
results for submarine images. It may seem that a variation in these aerial techniques could
work properly on underwater images, but the scientific community should make an effort
to overcome this issue. To date, there few camera lens optics have been purposely built
for native underwater operation, nor do actual camera lenses consider the optical design
parameters for underwater applications. Future work could focus on more advanced
camera calibration strategies, such as the pinax model or the further generalization of
pinhole models considering some advanced camera optic properties.

Moreover, chromatic aberration has been shown to be a general, transversal critical
issue affecting underwater imaging; thus, it could be good practice to evaluate and compen-
sate for such effects in oncoming underwater projects. At the technical level, the selection
of higher camera sensor standards may provide advantageous results in terms of image
quality, dynamic range, noise performance and light sensitivity considering the challenges
and diversity of underwater scenarios.

With respect to underwater image quality assessment, real submarine image datasets
are scarce. This is a reason for the popularity of data augmentation strategies in this
field, which, in turn, reduce the ability to determine the consistency and adequacy of
these metrics. Pixel-level detail preservation and image natural color fidelity should be
considered alongside current quality assumptions, so that future researchers could benefit
from a more complete and accurate image quality assessment.

One aspect of the algorithmic processing challenges that is worth investigating is
how to improve the detection performance of green and blue rounded shapes through
more efficient computing strategies. Moreover, several publications have shown that lossy
image sources such as JPEG affect segmentation algorithms to a greater extent, whereas
classification and neural network algorithms seem to be more robust to lossy compression.

With respect to high-level tasks, the more challenging ones involve far-field imaging,
3D reconstruction and underwater video enhancement. Photographic cameras provide ad-
vantageous results in near-field underwater imaging, while sonar applications are preferred
for long distances. However, camera imaging is facing challenges regarding uses near its
far-field application limits; the aim is to improve its usable range and potential. Binocular
vision is a promising approach that provides increased depth perception, visibility and
light sensitivity for measurement and 3D reconstruction algorithms. Furthermore, far-field
visibility metrics demonstrate some of the shortcomings of current image enhancement
methods, which generally tend to have a low spatial visibility or color bias, with both
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affecting detection performance. Finally, underwater video enhancement is an area that
researchers need to further elaborate in the future.

In sum, underwater sensing is a challenging field, influenced by a wide variety
of optical and physical effects, sensor constraints, hardware limitations, and a lack of
consistency in environmental characteristics. Some strategies that are applied in the first
stages can notably reduce the downstream computational costs while potentially providing
a better quality outcome. The present critical issue analysis highlights the importance of
considering these issues as possible limiting factors, allowing for future researchers in this
field to specifically detect and select the most concerning effects.
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