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Abstract: Seriously abnormal data exist in the synchronous monitoring data of transformer DC bias,
which causes serious data feature contamination and even affects the identification of transformer DC
bias. For this reason, this paper aims to ensure the reliability and validity of synchronous monitoring
data. This paper proposes an identification of abnormal data for the synchronous monitoring of
transformer DC bias based on multiple criteria. By analyzing the abnormal data of different types, the
characteristics of abnormal data are obtained. Based on this, the abnormal data identification indexes
are introduced, including gradient, sliding kurtosis and Pearson correlation coefficient. Firstly, the
Pauta criterion is used to determine the threshold of the gradient index. Then, gradient is used to
identify the suspected abnormal data. Finally, the sliding kurtosis and Pearson correlation coefficient
are used to identify the abnormal data. Data for synchronous monitoring of transformer DC bias in a
certain power grid are used to verify the proposed method. The results show that the accuracy of the
proposed method in identifying mutated abnormal data and zero-value abnormal data is claimed
to be 100%. Compared with traditional abnormal data identification methods, the accuracy of the
proposed method is significantly improved.

Keywords: abnormal data identification; transformer DC bias; synchronous monitoring; multiple criteria

1. Introduction

With the increasing scale of the metro, a large amount of stray current invades the grid
transformer, leading to serious problems of the transformer DC bias [1–3]. The transformer
DC bias can lead to supersaturation of the transformer core, intensified magnetostriction,
increased vibration, abnormal noise and other problems [4,5]. Therefore, transformer DC
bias can be understood in time by monitoring the neutral DC, vibration and noise of the
transformer [6,7]. However, in the process of synchronous monitoring of transformer DC
bias, the synchronous monitoring system is prone to communication failure, electromag-
netic interference and other environmental effects [8–10], which can lead to abnormal data
for the synchronous monitoring of transformer DC bias. Abnormal data in synchronous
monitoring of transformer DC bias adversely affect the analysis of transformer DC bias.
Therefore, it is of great significance to identify the abnormal data for synchronous monitor-
ing of the transformer DC bias and find the abnormal data in time to solve the problem of
transformer DC bias.

At present, researchers have carried out a lot of work in the field of abnormal data
identification and have made great achievements. Qiao J et al. proposed a data-driven
outlier elimination method by analyzing the characteristics of abnormal data and then
combining the “quartile method” and density-based clustering method [11]. Villanueva D
et al. proposed a real power curve model by fitting the wind power within each wind speed
range to a normal probability distribution, and the data beyond the standard deviation
range of three times were identified as outliers [12]. Wang Y et al. assumed that wind power
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data obey normal distribution, and proposed an abnormal data identification method based
on the Pauta criterion [13]. Zheng L et al. combined weighted distance with the local outlier
factor algorithm to calculate the outlier factor of a single object, and then used the outlier
factor to identify abnormal data [14]. Yang, Z et al., basing their work on the analysis
of the weighting relationships among the data, proposed a method to identify the bad
data, with a small deviation [15]. Zhao J et al. proposed a robust generalized estimator
to identify bad data by exploiting the temporal correlation and the statistical consistency
of measurements [16]. Using only the data from the neighboring buses and a one-hop
communication system, M. S. Uddin et al. proposed an online probability density-based
technique to identify bad data detection in the power grid [17]. Zang Haixiang et al.
proposed a bad data identification method based on WGAN-GP (Wasserstein Generative
Adversarial Network with Gradient Penalty) [18]. Yan Yingjie et al. proposed an anomaly
detection method based on large data analysis such as time series analysis and unsupervised
learning, which realized anomaly detection from a new perspective of the data evolution
process and data association [19]. Dong Ze et al. proposed an outlier detection method
for thermal process by combining a signal decomposition method with a density-based
detection method [20]. Li Xinpeng et al. put forward an algorithm based on the isolation
forest data anomaly detection method of electric power dispatching flow [21]. The types
and variation characteristics of the abnormal data characteristics for the synchronous
monitoring of DC bias are greatly different from the above monitoring data. Therefore,
it is necessary to propose an identification method that focuses on abnormal data for
synchronous monitoring of transformer DC bias.

In view of the above situation, based on the feature of the abnormal data characteristics
for synchronous monitoring of DC bias being correlated with the data for synchronous
monitoring, the identification of abnormal data for synchronous monitoring of transformer
DC bias based on multiple criteria is proposed. The proposed method is suitable for a
synchronous and real-time transformer DC bias monitoring system. Firstly, the method
collects the normal historical data for synchronous monitoring of transformer DC bias,
including neutral DC, vibration and noise. Then, the Pauta criterion is used to calculate the
gradient threshold of the above monitoring data, and the gradient is used as a criterion
to preliminarily identify abnormal data, normal data and suspected abnormal data. Then,
the change of sliding kurtosis and the Pearson correlation coefficient of monitoring data
are used as auxiliary criteria to identify suspected abnormal data. Finally, the application
analysis shows that this method can accurately and reliably identify the abnormal data for
synchronous monitoring of transformer DC bias.

2. Analysis of Abnormal Data for Synchronous Monitoring of Transformer DC Bias

The synchronous monitoring system of the transformer DC bias can monitor neutral
DC and vibration and noise in real time and synchronously. Figure 1 shows neutral DC
monitoring data in a specific power grid.

When the metro is in operation, the neutral DC is larger and has obvious DC bias
characteristics, due to the high level of stray currents generated by the metro; similarly,
when the metro is in shutdown, the metro does not generate almost any stray currents. The
neutral DC amplitude is lower, and the transformer is not under DC bias. In addition, some
substations put in a DC blocking device to suppress the transformer DC bias caused by
stray currents, which can cause the neutral DC to fluctuate around zero, and the transformer
is not under DC bias.

In this paper, based on the synchronous monitoring system of transformer DC bias
in a specific power grid, the abnormal data segments from various sets of monitoring
information are statistically obtained. By analyzing the characteristics of and the reason for
abnormal data, it can be divided into two types: mutated abnormal data and zero-value
abnormal data.

Mutated abnormal data. Due to the strong magnetic field interference or human
influence on the synchronous monitoring system of transformer DC bias, sudden changes
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occur in the monitoring data at a certain moment or within a certain period of time, i.e.,
mutated abnormal data [22]. The mutated abnormal data is divided into three types, as
shown in Figures 2–4. Figure 2 shows the abnormal noise under the operation of the metro,
and mutated abnormal data can occur at the peak and trough of the monitoring data.
Figure 3 shows the abnormal noise during the operation of the metro, and the mutated
abnormal data occurs under the condition that the DC blocking device is put into operation.
Figure 4 shows abnormal data of the neutral DC between the metro shutdown and the
operation of the metro, and mutated abnormal data occurs during the metro shutdown.
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Based on data for the synchronous monitoring of transformer DC bias in a certain
power grid substation from 2019 to 2022, the mutated abnormal data analysis is analyzed
as follows:

• Mutated abnormal data can occur at any working condition and at any time.
• Mutated abnormal data can occur at a certain time. At this time, both sides of the

mutated abnormal data are normal data and the waveform is a spike shape. The
mutated abnormal data occur in a certain period of time. At this time, the two sides
of the mutated abnormal data are normal data, and the waveform is approximately
rectangular.

• The absolute value of the amplitude is more than 10% of the absolute value of the
normal monitoring data on both sides. The absolute value of the amplitude increases
significantly.

• The amplitude of the mutated abnormal data can be close to the amplitude of the
monitoring data during the operation of the metro.

Zero-value abnormal data. Communication sub-stations or communication access
networks are also prone to switch failures and communication fiber-optic cable discon-
nections, which make a large amount of monitoring data unable to be centralized and
forwarded, and can lead to the generation of zero-value abnormal data [23]; the value of
the monitoring data is zero, which is called zero-value abnormal data. Figure 5 shows the
zero-value abnormal data of the neutral DC under the operation of the metro.
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3. Identification Index of Abnormal Data

Based on the above analysis for abnormal data for synchronous monitoring of trans-
former DC bias, in order to effectively identify different types of abnormal data, based on
the abnormal data types and characteristics, this paper proposes three kinds of abnormal
data identification indexes.
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3.1. Synchronous Monitoring of Data Gradient

According to the characteristics of the mutated abnormal data, the gradient of the
data for synchronous monitoring is defined as an index to identify mutated abnormal data.
By calculating the change in the amount of monitoring data in unit time, the distribution
result of the gradient of monitoring data is calculated, and the calculation of the gradient is
shown in Equation (1).

Kj =
wj − wj−1

t
(1)

where, Kj is gradient at time j. t is the time between time j and time j − 1. wj is the
monitoring data at time j. wj−1 is the monitoring data at time j − 1.

3.2. Synchronous Monitoring of Data Sliding Kurtosis

In view of the mutation data at a certain time in the mutated abnormal data, the sliding
kurtosis is defined to identify such abnormal data [24,25]. In order to make the kurtosis
more accurately reflect the changes in a group of data, this paper adopts the method of
multi-group sliding calculation. Set the sliding set as Pi = {xi−1,xi,xi+1}, i = 2, 3 . . . n, Pi is
the sliding set at position i. After the sliding grouping is completed, the kurtosis of the
sliding set is calculated one by one. The calculation formula of the sliding kurtosis is shown
in Equation (2).

Q =
E(x − µ)4

σ4 (2)

where Q is the sliding kurtosis, and x is the neutral DC, noise and vibration. µ is the mean
value of x, and σ is the mean square error of x.

3.3. Synchronous Monitoring of Data Correlation

A large amount of research has shown that there is a high correlation between neutral
DC, vibration and noise under the condition of DC bias [26,27]. For evaluating the Pearson
correlation coefficient, the criteria are shown in Table 1 [28].

Table 1. The degree of association of the Pearson correlation coefficient.

Degree of Correlation Range of P

Very weakly correlated or irrelevant 0.0 ≤ P < 0.2
Weak correlation 0.2 ≤ P < 0.4

Moderate degree of correlation 0.4 ≤ P < 0.6
Strong correlation 0.6 ≤ P < 0.8
Highly correlated 0.8 ≤ P ≤ 1.0

Therefore, in view of the situation of mutated abnormal data in a certain period of time,
the correlation of data for synchronous monitoring is defined as an index, and the Pearson
correlation coefficient between the monitoring data is calculated to determine whether there
is abnormality in the monitoring data. The calculation formula of the Pearson correlation
coefficient is shown in Equation (3).

P =
∑n

i=1 (xi − xp)(yi − yp)√
∑n

i=1 (xi − xp)
2
√

∑n
i=1 (yi − yp)

2
(3)

where P is the Pearson correlation coefficient between monitoring data x and monitoring
data y; i takes the value from {1, 2, 3, . . . , n}; xi, yi are neutral DC, noise and vibration; xp is
the average value of xi. yp is the average value of yi; the larger the absolute value of P, the
higher the correlation between x and y, and the smaller the absolute value of P, the lower
the correlation between x and y.
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4. Abnormal Data Identification Method Based on Multiple Criteria Fusion
4.1. Selection Method for the Abnormal Data Identification Criterion Threshold

We collected a large number of synchronous monitoring data of transformer DC bias,
and calculated the gradient and sliding kurtosis of the monitoring data. It was found that
the change rate of the neutral DC was approximately normal distribution. The sliding
kurtosis of the monitoring data generally followed an exponential distribution. Data for
the synchronous monitoring of transformer DC bias in a substation was selected for a day;
the gradient was calculated using (1) and the sliding kurtosis was calculated using (2), and
the distribution of the gradient and sliding kurtosis is shown in Figure 6.
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The figure shows that the distribution of the sliding kurtosis of the data for syn-
chronous monitoring is concentrated, so the distribution boundary of the sliding kurtosis
is taken as the sliding kurtosis threshold. Pauta criterion can eliminate coarse error data
in the sample data subject to normal distribution or approximately normal distribution.
This method is simple, and widely used in the field of abnormal data identification [29,30].
Therefore, in this paper, the Pauta criterion is used to select the gradient threshold data
for synchronous monitoring of DC bias. The specific calculation method is shown in
Equation (4).

M =
1
n

n

∑
i=1

ai + 3

√√√√ n

∑
i=1

(
ap − a

)2

n − 1
(4)

where M is the threshold for the gradient; i takes values from {1, 2, 3, . . . , n}; ai is the
gradient; ap is the average of ai.

4.2. Abnormal Data Identification Process

The process of the abnormal data identification method includes data collection,
using the gradient to identify abnormal data, normal data and suspected abnormal data.
Determine the scope of suspected abnormal data and identify suspected abnormal data.
Figure 7 shows the flow chart of the abnormal data identification method. Taking suspected
abnormal data in noise as an example, the specific steps of the method in this paper are
described as follows:

Step1: Collect data for the synchronous monitoring of transformer DC bias, including
neutral DC Xj, noise Yj and vibration Zj.

Step2: Use the gradient to identify abnormal data, normal data and suspected abnor-
mal data. Calculate the gradient Kj1, Kj2 and Kj3 of neutral DC, noise and vibration. If the
gradient is equal to zero, it is judged as zero-value abnormal data. If the gradient is within
the threshold range of the gradient and is not zero, it is judged as normal data; otherwise,
enter Step3.

Step3: Determine the scope of the suspected abnormal data. If the gradient is not
within the threshold range of the gradient, the data is judged as suspected abnormal data.
Continue to collect neutral DC, vibration and noise, calculate the gradient, until the gradient
between noise Ym and noise Y(j−1) is within the threshold range of the gradient; then the
noise between Yj and Y(m−1) is suspected abnormal data.

Step4: Identify the suspected abnormal data. The suspected abnormal data is a sudden
change at a certain moment, and if m − 1 = j, the sliding kurtosis of the suspected abnormal
data with respect to the left and right points is calculated. If the sliding kurtosis is greater
than the sliding kurtosis threshold, the data is judged as abnormal data, and, vice versa,
the data is judged as normal data. The suspected abnormal data is a sudden change in a
certain time period; if m − 1 > j, the Pearson correlation coefficient between the suspected
abnormal data and the vibration and neutral DC is calculated; if the Pearson correlation
coefficient is less than 0.2, it is judged as abnormal data, and, vice versa, it is judged as
normal data.



Sensors 2023, 23, 4959 8 of 16

Sensors 2023, 23, x FOR PEER REVIEW 8 of 18 
 

 

Determine the scope of suspected abnormal data and identify suspected abnormal data. 
Figure 7 shows the flow chart of the abnormal data identification method. Taking sus-
pected abnormal data in noise as an example, the specific steps of the method in this paper 
are described as follows: 

Step1: Collect data for the synchronous monitoring of transformer DC bias, including 
neutral DC Xj, noise Yj and vibration Zj. 

Step2: Use the gradient to identify abnormal data, normal data and suspected abnor-
mal data. Calculate the gradient Kj1, Kj2 and Kj3 of neutral DC, noise and vibration. If the 
gradient is equal to zero, it is judged as zero-value abnormal data. If the gradient is within 
the threshold range of the gradient and is not zero, it is judged as normal data; otherwise, 
enter Step3. 

Step3: Determine the scope of the suspected abnormal data. If the gradient is not 
within the threshold range of the gradient, the data is judged as suspected abnormal data. 
Continue to collect neutral DC, vibration and noise, calculate the gradient, until the gra-
dient between noise Ym and noise Y(j−1) is within the threshold range of the gradient; then 
the noise between Yj and Y(m−1) is suspected abnormal data. 

Step4: Identify the suspected abnormal data. The suspected abnormal data is a sud-
den change at a certain moment, and if m – 1 = j, the sliding kurtosis of the suspected 
abnormal data with respect to the left and right points is calculated. If the sliding kurtosis 
is greater than the sliding kurtosis threshold, the data is judged as abnormal data, and, 
vice versa, the data is judged as normal data. The suspected abnormal data is a sudden 
change in a certain time period; if m – 1 > j, the Pearson correlation coefficient between the 
suspected abnormal data and the vibration and neutral DC is calculated; if the Pearson 
correlation coefficient is less than 0.2, it is judged as abnormal data, and, vice versa, it is 
judged as normal data. 

 
Figure 7. Abnormal data identification flow chart. 

  

Figure 7. Abnormal data identification flow chart.

5. Application Analysis

Taking the abnormal data set for the synchronous monitoring of transformer DC bias
in a specific power grid as the object of analysis, the proposed abnormal data identification
method was used to identify the different types of abnormal data.

5.1. Determination of Threshold of Abnormal Data Identification Index

Based on a large number of normal data for the synchronous monitoring of transformer
DC bias, calculating the gradient threshold and sliding kurtosis threshold for different
sampling-time data samples, statistics found that the threshold tends to be stable when the
sampling time is greater than 3 days, as shown in Figures 8–10. Therefore, three days of
data for the synchronous monitoring of transformer DC bias are collected in this paper,
and the gradient thresholds of neutral DC, vibration and noise are calculated by (4), as
shown in Table 2. Step (2) is used to calculate the sliding kurtosis of the all-day data for
synchronous monitoring, and the selected threshold of sliding kurtosis is shown in Table 2.
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5.2. Identification of Mutated Abnormal Data

In this section, the measured mutated abnormal data of a network substation are
used for analysis. The noise in a substation from 09:00 to 09:30 on 17 November 2022
is selected. In this period, due to the operation of the high-power frequency conversion
equipment, electromagnetic interference is caused to the sensor, and a large amount of
mutated abnormal data are generated, as shown in Figure 11.
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The suspected abnormal data in the above data were identified based on the gradient
criteria in Step 2 and Step 3, and the results were obtained as shown in Figure 12. It is
statistically found that the misjudgment rate of the abnormal data identified by Step 2 and
Step 3 alone is 9.09%, and the miss rate is 0%. This shows that the suspected abnormal data
contains all the abnormal data, but some normal data are misjudged.
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In Step 4, the sliding kurtosis index is used to identify the mutation point at a certain
time in the above suspected abnormal data, and the Pearson correlation coefficient is used
to identify the mutation point at a certain time in the above suspected abnormal data, and
the identification results are shown in Figure 13. According to statistics, the identification
accuracy of abnormal data reaches 100%, and all abnormal data can be accurately identified
without missing judgments.
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5.3. Result Analysis of Zero-Value Abnormal Data

In this section, the measured zero-value abnormal data of a network substation is used
for analysis. Select the neutral DC in a substation in the time period of 13:30~14:30 on 17
November 2022, and when testing data for synchronous monitoring of transformer DC
bias in a certain power grid, the neutral DC between 14:00~14:10 is zero, due to the failure
of the data transmission line of the current sensor, as shown in Figure 14.

The zero-value abnormal data in the above data can be directly identified by using the
gradient criterion in Step 2 of the proposed method, and the obtained results are shown in
Figure 15. It is found that the recognition accuracy of zero-value abnormal data is 100%.



Sensors 2023, 23, 4959 11 of 16Sensors 2023, 23, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 14. Zero-value abnormal data in Neutral DC. 

 
Figure 15. Zero-value abnormal data identification results. 

5.4. Performance Comparison 
In order to verify the superiority of the proposed method, we collected a large num-

ber of transformer DC bias synchronous monitoring data. However, there was a lack of 
different types of abrupt abnormal data that occurred over a period of time. Therefore, 
according to the characteristics of abnormal data, we added some simulated abnormal 
data on the basis of normal data obtained in real time. The “quartile method” and “Pauta 
criterion identification method” were compared with the proposed method. The identifi-
cation results of different methods are shown in Table 3. 

Table 3. Comparison of identification results. 

Identification Method Misjudgment Rate/% Missed Judgment Rate/% 

Neutral DC 
Proposed method 0.0 0.0 
Quartile method 0.0 6.4 

Pauta criterion identification method 2.3 6.4 

Vibration 
Proposed method 0.0 0.0 
Quartile method 0.0 3.5 

Pauta criterion identification method 0.7 3.5 

Noise 
Proposed method 0.0 0.0 
Quartile method 0.0 59.4 

Pauta criterion identification method 4.2 45.8 

1. Analysis of identification results of zero-value abnormal data. Three methods are 
used to identify the test data, and the identification results are shown in Figures 16–

Figure 14. Zero-value abnormal data in Neutral DC.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 14. Zero-value abnormal data in Neutral DC. 

 
Figure 15. Zero-value abnormal data identification results. 

5.4. Performance Comparison 
In order to verify the superiority of the proposed method, we collected a large num-

ber of transformer DC bias synchronous monitoring data. However, there was a lack of 
different types of abrupt abnormal data that occurred over a period of time. Therefore, 
according to the characteristics of abnormal data, we added some simulated abnormal 
data on the basis of normal data obtained in real time. The “quartile method” and “Pauta 
criterion identification method” were compared with the proposed method. The identifi-
cation results of different methods are shown in Table 3. 

Table 3. Comparison of identification results. 

Identification Method Misjudgment Rate/% Missed Judgment Rate/% 

Neutral DC 
Proposed method 0.0 0.0 
Quartile method 0.0 6.4 

Pauta criterion identification method 2.3 6.4 

Vibration 
Proposed method 0.0 0.0 
Quartile method 0.0 3.5 

Pauta criterion identification method 0.7 3.5 

Noise 
Proposed method 0.0 0.0 
Quartile method 0.0 59.4 

Pauta criterion identification method 4.2 45.8 

1. Analysis of identification results of zero-value abnormal data. Three methods are 
used to identify the test data, and the identification results are shown in Figures 16–

Figure 15. Zero-value abnormal data identification results.

5.4. Performance Comparison

In order to verify the superiority of the proposed method, we collected a large number
of transformer DC bias synchronous monitoring data. However, there was a lack of different
types of abrupt abnormal data that occurred over a period of time. Therefore, according
to the characteristics of abnormal data, we added some simulated abnormal data on the
basis of normal data obtained in real time. The “quartile method” and “Pauta criterion
identification method” were compared with the proposed method. The identification
results of different methods are shown in Table 3.

Table 3. Comparison of identification results.

Identification Method Misjudgment Rate/% Missed Judgment Rate/%

Neutral DC
Proposed method 0.0 0.0
Quartile method 0.0 6.4

Pauta criterion identification method 2.3 6.4

Vibration
Proposed method 0.0 0.0
Quartile method 0.0 3.5

Pauta criterion identification method 0.7 3.5

Noise
Proposed method 0.0 0.0
Quartile method 0.0 59.4

Pauta criterion identification method 4.2 45.8

1. Analysis of identification results of zero-value abnormal data. Three methods are
used to identify the test data, and the identification results are shown in Figures 16–18.
It can be seen from Figure 16 that the identification accuracy of the method proposed
in this paper is 100% for the zero-value abnormal data contained in the neutral DC,
while the identification accuracy of the other two methods is 0%. It can be seen from
Figure 17 that the identification accuracy of the three methods for the zero-value
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abnormal data contained in the noise is 100%. It can be seen from Figure 18 that the
identification accuracy of the proposed method and “Pauta criterion identification
method” for the zero-value abnormal data contained in the vibration is 100%, while
the identification accuracy of the “quartile method” is 0%. According to the above
results, the neutral DC and vibration contain a large amount of data close to 0. The
amplitude distribution of zero-value abnormal data is close to that of normal data,
while the normal data of noise is very different from that of the zero-value abnormal
data. This will lead to the “quartile method” and the “Pauta criterion identification
method” judging the zero-value abnormal data in the neutral DC and vibration
as normal data, and the zero-value abnormal data in the noise as abnormal data.
However, the proposed method can accurately identify the zero-value abnormal data
in neutral DC, vibration and noise.

2. Analysis of identification results of mutated abnormal data. Similarly, three meth-
ods are used to identify the test data, and the identification results are shown in
Figures 19–21. According to the statistical analysis above, the identification results are
shown in Table 3. It can be seen from Table 3 that the method proposed in this paper
can effectively identify the mutated abnormal data, and the misjudgment rate and
missed judgment rate of neutral DC, vibration and noise are significantly lower than
that of the “quartile method” and “Pauta criterion identification method”. It can be
seen that the method proposed in this paper can accurately identify different types of
abnormal data, which is more practical and applicable. According to the above results,
the amplitude between some mutated abnormal data and normal data is narrow, which
will lead to the omission of some mutated abnormal data by the “quartile method” and
the “Pauta criterion identification method”. The synchronous monitoring data of the
transformer DC bias approximately obeys normal distribution, so using only the “Pauta
criterion identification method” for identification will lead to misjudgment.
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5.5. Applicability Analysis of Identification Method
5.5.1. Influence of Different Network Monitoring Data on Identification Results

To verify the applicability of the proposed method to the synchronous monitoring
data of transformer DC bias in different slices of the network, we select the synchronous
monitoring abnormal data of transformer DC bias of power grid A for simulation, which is
different from the above-mentioned power grid. The identification results are shown in
Figures 22–24. From the figures, it can be seen that the proposed method in this paper can
accurately identify the abnormal data of this power grid. For the synchronous monitoring
abnormal data of transformer DC bias of different grids there are commonly mutated abnormal
data and zero-value abnormal data, and their data characteristics are the same as the abnormal
data characteristics used in this paper. Therefore, the method proposed in this paper is
applicable to the synchronous monitoring data of transformer DC bias of any power grid.
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5.5.2. Influence of Increased Abnormalities on Identification Results

Consider the applicability of the proposed method when the abnormalities considered
are increased. The method proposed in this paper is real-time judgment, that is, the
synchronous monitoring data of the transformer DC bias at each moment are judged in
turn. Therefore, when the number of abnormal data increases, the method proposed in this
paper is still applicable. At the same time, since the method proposed in this paper is based
on the characteristics of zero-value abnormal data and mutated abnormal data, monitoring
data containing other types of abnormal data does not conform to the characteristics of
zero-value abnormal data and mutated abnormal data. Therefore, when the other types
of abnormal data in the monitoring data increase, the method proposed in this paper is
still applicable.

6. Conclusions

The proposed method is suitable for a synchronous and real-time transformer DC bias
monitoring system. In this paper, based on the actual abnormal data characteristics, an
abnormal data identification method and abnormal data identification process are proposed.
The application results of the method provide the following conclusions:

1. Based on the measured data results in a certain power grid, the verification shows
that the accuracy of the proposed method in identifying mutated abnormal data and
zero-value abnormal data is claimed to be 100%.

2. Compared with the traditional “quartile method” and “Pauta criterion identification
method”, the accuracy of the proposed method is claimed to be significantly higher
than that of the above methods, which indicates that the proposed method makes up
for the shortcomings of the traditional algorithm, and it is claimed that the proposed
method has high practicability and adaptability.
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17. Uddin, M.S.; Kuh, A.; Weng, Y.; Ilić, M. Online Bad Data Detection Using Kernel Density Estimation. In Proceedings of the 2015
IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5.

18. Zang, H.; Guo, J.; Huang, M.; Wei, Z.; Sun, G.; Zhao, J. Bad data identification of power system based on WGAN-GP. Electr. Power
Autom. Equip. 2022, 42, 50–56+110. [CrossRef]

19. Yan, Y.; Sheng, G.; Chen, Y.; Jiang, X.; Guo, Z.; Du, X. An Method for Anomaly Detection of State Information of Power Equipment
Based on Big Data Analysis. Proc. CSEE 2015, 35, 52–59. [CrossRef]

20. Dong, Z.; Jia, H. Outlier detection method for thermal process data based on EWT-LOF. Chin. J. Sci. Instrum. 2020, 41, 126–134.
[CrossRef]

21. Li, X.; Gao, X.; Yan, B.; Chen, C.; Chen, B.; Li, J.; Xu, J. An Approach of Data Anomaly Detection in Power Dispatching Streaming
Data Based on Isolation Forest Algorithm. Power Syst. Technol. 2019, 43, 1447–1456. [CrossRef]

22. Yang, M.-Y. Research on Fault Diagnosis Method of Mine Gas Sensor Based on Multi-Sensor Data Fusion. Master’s Thesis, China
University of Mining and Technology, Beijing, China, 2019.

23. Diao, Y.; Sheng, W.; Liu, K.; He, K.; Meng, X. Research on Online Cleaning and Repair Methods of Large-Scale Distribution
Network Load Data. Power Syst. Technol. 2015, 39, 3134–3140. [CrossRef]

24. Shifat, T.A.; Hur, J.W. An Effective Stator Fault Diagnosis Framework of BLDC Motor Based on Vibration and Current Signals.
IEEE Access 2020, 8, 106968–106981. [CrossRef]

25. Zhong, J.; Wang, D.; Guo, J.; Cabrera, D.; Li, C. Theoretical Investigations on Kurtosis and Entropy and Their Improvements for
System Health Monitoring. IEEE Trans. Instrum. Meas. 2021, 70, 3503710. [CrossRef]

26. Liu, J.; Zeng, H.; Niu, W.; Chen, P.; Xu, K.; Zeng, P.; Zhao, L.; Lin, S. State Identification of Transformer Under DC Bias Based on
Wavelet Singular Entropy. IEEE Access 2021, 9, 58944–58952. [CrossRef]

27. Bowei, L.; Hai, M.; Lixing, Z. On-Line Monitoring of Transformer Vibration and Noise Based on DC Magnetic Bias. In Proceedings
of the 2013 Fourth International Conference on Intelligent Systems Design and Engineering Applications, Hunan, China, 6–7
November 2013; pp. 412–416.

28. Xiao, Y.; Zhao, Y.; Tu, Z.; Qian, B.; Chang, R. Topology checking method for low voltage distribution network based on improved
Pearson correlation coefficient. Power Syst. Prot. Control 2019, 47, 37–43. [CrossRef]

29. Wan, F.; Guo, G.; Zhang, C.; Guo, Q.; Liu, J. Outlier Detection for Monitoring Data Using Stacked Autoencoder. IEEE Access 2019,
7, 173827–173837. [CrossRef]

30. Xu, Y.; Li, J.; Zhang, M.; Yu, T.; Yan, B.; Zhou, X.; Yu, F.; Zhang, J.; Qiao, L.; Wang, T.; et al. Pipeline Leak Detection Using Raman
Distributed Fiber Sensor With Dynamic Threshold Identification Method. IEEE Sens. J. 2020, 20, 7870–7877. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.13336/j.1003-6520.hve.2014.09.017
https://doi.org/10.1109/ACCESS.2020.2982674
https://doi.org/10.1109/TSTE.2017.2717021
https://doi.org/10.1109/TSTE.2016.2515264
https://doi.org/10.1002/we.1661
https://doi.org/10.1109/TSTE.2014.2355837
https://doi.org/10.35833/MPCE.2019.000457
https://doi.org/10.1109/TII.2016.2626782
https://doi.org/10.16081/j.epae.202205052
https://doi.org/10.13334/j.0258-8013.pcsee.2015.01.007
https://doi.org/10.19650/j.cnki.cjsi.J1905445
https://doi.org/10.13335/j.1000-3673.pst.2018.0765
https://doi.org/10.13335/j.1000-3673.pst.2015.11.018
https://doi.org/10.1109/ACCESS.2020.3000856
https://doi.org/10.1109/TIM.2020.3031125
https://doi.org/10.1109/ACCESS.2021.3072913
https://doi.org/10.19783/j.cnki.pspc.180912
https://doi.org/10.1109/ACCESS.2019.2956494
https://doi.org/10.1109/JSEN.2020.2980366

	Introduction 
	Analysis of Abnormal Data for Synchronous Monitoring of Transformer DC Bias 
	Identification Index of Abnormal Data 
	Synchronous Monitoring of Data Gradient 
	Synchronous Monitoring of Data Sliding Kurtosis 
	Synchronous Monitoring of Data Correlation 

	Abnormal Data Identification Method Based on Multiple Criteria Fusion 
	Selection Method for the Abnormal Data Identification Criterion Threshold 
	Abnormal Data Identification Process 

	Application Analysis 
	Determination of Threshold of Abnormal Data Identification Index 
	Identification of Mutated Abnormal Data 
	Result Analysis of Zero-Value Abnormal Data 
	Performance Comparison 
	Applicability Analysis of Identification Method 
	Influence of Different Network Monitoring Data on Identification Results 
	Influence of Increased Abnormalities on Identification Results 


	Conclusions 
	References

