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Abstract: A high-precision three-dimensional (3D) model is the premise and vehicle of digitalising
hydraulic engineering. Unmanned aerial vehicle (UAV) tilt photography and 3D laser scanning are
widely used for 3D model reconstruction. Affected by the complex production environment, in a
traditional 3D reconstruction based on a single surveying and mapping technology, it is difficult
to simultaneously balance the rapid acquisition of high-precision 3D information and the accurate
acquisition of multi-angle feature texture characteristics. To ensure the comprehensive utilisation
of multi-source data, a cross-source point cloud registration method integrating the trigonometric
mutation chaotic Harris hawk optimisation (TMCHHO) coarse registration algorithm and the itera-
tive closest point (ICP) fine registration algorithm is proposed. The TMCHHO algorithm generates a
piecewise linear chaotic map sequence in the population initialisation stage to improve population
diversity. Furthermore, it employs trigonometric mutation to perturb the population in the develop-
ment stage and thus avoid the problem of falling into local optima. Finally, the proposed method was
applied to the Lianghekou project. The accuracy and integrity of the fusion model compared with
those of the realistic modelling solutions of a single mapping system improved.

Keywords: point cloud registration; Harris hawk optimisation; 3D laser scanning; UAV tilt photography

1. Introduction

Rockfill dams are among the types of dams mainly used in plateau areas because the
materials for their construction are easy to access. Moreover, they can adapt to the envi-
ronment and have satisfactory seismic resistance [1]. As sensors continue to advance and
technologies (such as artificial intelligence, the Internet of Things, and cloud computing)
progressively mature [2], rockfill dam construction has also accelerated in terms of digital
and intelligent development. High-precision three-dimensional (3D) models are required
for visualising construction simulations and engineering topology carriers. These models
are the basis and prerequisite of digitalising water conservancy projects and have been
applied to activities, such as dam safety inspection [3], project progress display [4], and
augmented reality (AR) model construction [5]. The application of 3D models to water
conservancy projects aims to establish the mapping relationship between the natural space
entity of a rockfill dam and the virtual space of a computer 3D model. Furthermore, the
natural engineering entity is simulated according to the physical equation of change trend
over time. Finally, the 3D model is dynamically updated according to the actual construc-
tion state to provide dynamic decision making and scheduling control instructions for the
reasonable and efficient construction of engineering projects. Presently, various sensors
have been applied to rockfill dam mapping during construction. They generate numerous
point clouds and images containing spatial and texture information, thus providing a
database for the fusion modelling of 3D point clouds from multiple sources of rockfill dam
data. Therefore, the rapid acquisition, analysis, and processing of the massive cross-source
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data provided by sensors during dam construction are necessary. Then, establishing a
high-precision, high-integrity, and high-fidelity 3D model of the dam is key to enhancing
rationality and efficiency in the construction management and control of rockfill dams.

Unmanned aerial vehicle (UAV) tilt photography and 3D laser scanning are new
geodetic technologies developed in recent years, which have overturned traditional manual
modelling methods based on computer graphics and empirical knowledge [6]. Their
modelling efficiency and fidelity have considerably improved. Using multiple sensors, UAV
tilt photography captures images from one vertical and four tilt angles [7,8]. Textures are
automatically added using office operations to build a 3D realistic model matching human
eye vision [9]. In comparison, 3D laser scanning is a noncontact measurement technology.
It rapidly acquires massive point clouds with irregular spatial distribution on the surface
of the measurement target by emitting laser pulses and resolving the reflected signals [10].
Furthermore, with its high accuracy and no need to touch the measurement target, 3D
laser scanning has been widely used in the field of planimetric mass assessment [11],
cadastral mapping [12], volume calculation [13], landslide monitoring [14], and 3D model
reconstruction [15,16]. Previous research has relied on single surveying and mapping
technology to reconstruct a 3D real-world model. This has resulted in 3D dam models that
are inaccurate and incomplete. Consider the following examples: (1) Light and shadow
effects lead to local model voids and texture dislocations; (2) data collection is difficult
to implement in areas where UAV flying is prohibited and satellite positioning cannot be
performed; and (3) blind spots for data collection are present because the dam surface
environment is complex, roads are messy, and vehicle movement is frequent. In contrast,
integrating the environmental information provided using 3D laser scanning and UAV tilt
photography for 3D reconstruction can considerably improve the integrity, accuracy, and
fidelity of the model.

Because UAV tilt photography and 3D laser scanning are two independent data
acquisition systems, realising the deep integration of point clouds and images, integrating
their advantages, and improving the consistency between 3D models and actual scenes
are the research focus of multi-source 3D reconstruction. The traditional method is to
export the 3D model reconstructed using UAV tilt photography to a point cloud format.
Then, the same name marker points or marker surface cusps are arranged as control points
under different data acquisition systems to complete the comprehensive sensing and deep
integration of environmental information supported by point cloud compatibility. The
current study has several limitations. The construction environment of the dam face is
complex: Firstly, numerous mechanical vehicles, such as sprinklers, roller compactors, and
bulldozers are present, and the stability of the marker points cannot be ensured. Secondly,
manual participation is required owing to variations in dimension, scale, accuracy, and
viewing angle among different data acquisition systems. This is time-consuming and
labour-intensive and may introduce certain deviations [17]. Therefore, this paper aims to
accomplish the unification of spatial relative positions of multimodal point cloud coordinate
systems under different viewpoints and acquisition systems quickly and accurately from an
algorithmic perspective. The most classic is the iterative closest point (ICP) algorithm [18],
which is simple in principle and easy to operate but requires strict initial poses of the
original point cloud and is prone to local optimality.

To resolve the abovementioned limitations, this paper proposes the use of a cross-
source point cloud–trigonometric mutation chaotic Harris hawk optimisation (TMCHHO)
fusion model for the 3D reconstruction of rockfill dams during construction. The key to this
lies in (i) devising a means for collecting environmental information on the dam surface
in a complex production environment as well as overcoming the phenomenon of data
blindness and (ii) unifying the spatial coordinate system of multiple data sources in a fast
and robust manner.

To achieve the first goal, an air–ground integrated environmental information sensing
strategy based on multiple mapping systems is proposed. Furthermore, algorithms such as
voxel filters and internal shape descriptors are used to realise the real-time acquisition and
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preprocessing of multi-source data. To achieve the second goal, an accurate fusion strategy
based on multimodal data for rockfill dams during the construction period is proposed. In
this method, the improved Harris hawk optimisation (TMCHHO) is integrated with the
preliminary determination of the relative position of the point cloud in 3D space, and the
ICP algorithm is incorporated to align the spatial positions accurately. Among them, the
TMCHHO algorithm uses a piecewise linear chaotic map (PWLCM) sequence to generate a
more randomly distributed initial population, and trigonometric mutation is applied to
enhance the local chemotaxis ability [19,20]. Finally, considering the Lianghekou rockfill
dam as an example, the reconstruction scheme of the 3D model of the dam surface is
optimised. The distribution of Euclidean distance between aligned point clouds is used as
an evaluation index to verify the fusion effect. Compared with the single surveying and
mapping method, the effectiveness of the fusion model is verified.

2. Related Research

In the early 21st century, with the successful application of high-precision sensors,
such as tilt photography cameras and LiDAR, to engineering construction, some scholars
have conducted research on the fusion of cross-source data to achieve more realistic 3D
model reconstruction. Escarcena et al. [21] devised a high-precision method for modelling
ancient sites based on both photogrammetry and terrestrial laser scanning techniques.
Kedzierski et al. [22] used different laser scanning systems to provide a database for high-
precision urban model building. Nahon et al. [23] designed a collaborative measurement
model of 3D laser scanning and UAV aerial surveys for terrain mapping dune corridors.

Some studies proposed cross-source point cloud registration algorithms that provide
new ideas for the comprehensive sensing and accurate analysis of a construction site en-
vironment. According to the basic principle, cross-source point cloud registration can be
broadly classified into two types: learning-based and optimisation-based methods. The
learning-based registration method uses a neural network framework composed of multi-
layer interconnected nodes to solve the point cloud spatial transformation matrix [24].
Aoki et al. [25] used PointNet as an imaging function to provide a new idea for point cloud
registration. Lu et al. [26] generated key points based on learned matching probabilities of
candidate sets. Yew et al. [27] replaced the space-based distance metric in the feature extrac-
tion stage of neural networks with hybrid feature-based distances to solve the problem of
insufficient stability in the learning-based method. However, in learning-based registration
algorithms, the design of transformation parameters is difficult to interpret, and often
extensive experimentation is required to find the right architecture and hyperparameters.
Moreover, the distribution of real-scene data cannot be too different from the training
data [28,29]. An optimisation-based registration algorithm describes the process of point
cloud registration as an optimisation problem. It mainly includes the variant algorithm
of ICP, graph-based optimisation, and other methods. Yao et al. [30] queried the closest
point based on the similarity matching of point cloud curve features. Serafin et al. [31] used
normal vector and curvature to remove the points corresponding to errors after feature
point matching and the angular difference in the normal vector of the corresponding points
was also used as an additional error control term to enable fast computation.

However, previous research has not resolved the inadequacies of the traditional ICP
algorithm, which has strict requirements on the initial position. Some scholars divide point
cloud registration into two stages. The coarse registration stage roughly matches the spatial
position of the point cloud, and the fine registration stage completes the precise alignment.
Rusu et al. [32] proposed fast point feature histograms based on geometric relations to be
used as descriptors of local features. Aiger et al. [33] proposed four-point congruent sets to
solve low-overlap or noisy point cloud registration. Chua et al. [34] used point signatures to
describe the local features of point clouds and applied them to automatic face recognition.
In recent years, swarm intelligence optimisation algorithms simulating the laws of nature
have been widely used in engineering. Some scholars have also attempted to achieve
faster and more accurate point cloud registration using genetic [35] and particle swarm [36]
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algorithms. Experiments demonstrate that the HHO algorithm proposed by Heidari [37]
performs better than other algorithms of the same classification. However, because it
generates an initial population based on the random numbers of normal distribution, and
the correlation among individuals in the population is ignored in a single iteration, the
algorithm has a slow solution speed. Accordingly, this paper proposes a multi-strategy
method for improved Harris hawk point cloud registration with strong robustness and
high optimisation accuracy.

3. Research Framework

The research framework of the cross-source point cloud–TMCHHO fusion model
for the high-precision, high-fidelity, and high-integrity 3D reconstruction of rockfill dams
during construction is shown in Figure 1. It includes three components: data, method, and
application layers.
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Figure 1. Research framework diagram.

Data layer: This part is based on multiple mapping systems to sense the environmental
information of the dam during the construction period and produce multi-view tilt images
from UAV tilt photography into a dense point cloud model. Other processes, such as noise
filtering, point cloud simplification, and feature point extraction, are performed for dense
and disordered point clouds to construct data layers as inputs.

Method layer: To achieve high-precision, high-realism, and high-integrity 3D recon-
struction of rockfill dams, the cross-source point cloud–TMCHHO fusion model mainly
consists of two parts. The first part determines the objective function and optimisation
parameters according to the principle of point cloud space transformation in different coor-
dinate systems. The second part combines the improved HHO algorithm with the PWLCM
system and trigonometric mutation perturbation strategy to optimise algorithm performance.
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Application layer: In this part, the strategy proposed in this paper is applied to a
core-wall rockfill dam project, and the fusion accuracy is evaluated using the multimodal
point cloud Euclidean distance distribution in the measurement area.

4. TMCHHO Fusion Model Based on Multimodal Point Cloud for Rockfill Dam
4.1. Cross-Source Point Cloud Registration Model

The cross-source point cloud registration model is described as a mathematical op-
timisation problem. Given two 3D point clouds with different coordinate systems, the
optimal rigid transformation matrix is solved such that the relative spatial positions of
the two clouds are aligned after the transformation. Let the mathematical expressions of
the reference and target point clouds be as follows: Ps =

{
pis ∈ R3, is = 1, 2, . . . , ms

}
and

Qt =
{

qjt ∈ R3, jt = 1, 2, . . . , nt
}

, where ms and nt are the number of data points that make
up the point clouds, respectively. The conversion process can be described by the 3 × 3
rotation matrix (R) and 3D translation vector (T). They can be expressed by Equation (1),
where Vx, Vy, and Vz are the translation lengths along the direction of the spatial coordinate
axis, and θx, θy, and θz are the rotation angles around the spatial coordinate axis in the
clockwise direction. The problem of multimodal point cloud spatial coordinate matching
is abstracted as minimising the value of the F(R, T) function in Equation (1). The root
mean square (RMS) value of corresponding points is used to characterise the accuracy of
multimodal point cloud spatial matching.

R =

 cos θy cos θz cos θy sin θz − sin θy
sin θx sin θy cos θz − cos θx sin θz sin θx sin θy sin θz + cos θx cos θz sin θx cos θy
cos θx sin θy cos θz + sin θx sin θz cos θx sin θy sin θz − sin θx cos θz cos θx cos θy


T =

Vx
Vy
Vz


F(R, T) = min‖(RPs + T)−Qt)‖2

RMS(Ps, Qt) =
√

1
NS

∑
i,j∈NS

∥∥(Ps,i + T)−Qt,j
∥∥2

(1)

where NS is the number of data points contained in the intersection region of the multimodal
point cloud.

4.2. Point Cloud Data Processing

Both 3D laser scanning and UAV tilt photography mapping generate massive quan-
tities of data, which must be downsampled, and feature points should be extracted to
eliminate the impact of overly numerous points on subsequent storage, transfer, and com-
putation. The collected cross-source data may contain outliers affecting the subsequent
feature point extraction and registration stages, and noise points must be filtered out.
Hence, cross-source point cloud data preprocessing involves noise filtering, downsampling,
and feature point extraction. For noise filtering, the typical radius filtering method is
employed. In what follows, downsampling and feature point extraction are discussed,
which are special processes for deriving cross-source point cloud characteristics.

Point cloud downsampling involves extracting the least number of data possible from
areas with small curvatures and the greatest number of data possible from areas with large
curvatures [38]. To simplify a point cloud swiftly without destroying its internal geometric
features, a voxel filter is used. First, a 3D voxel grid coordinate system is created. Then, all
the points inside each grid are replaced by the centroids inside each grid.

Feature points contain rich geometric feature information and can be used as an
abstract representation of the original data shape. The point clouds of overlapping areas
from different mapping systems and perspectives are relatively consistent. In this study,
the intrinsic shape signature (ISS) [39] detection method is utilised to find feature points.
The algorithm is easy to implement and yields stable results. Assume there exists a point
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cloud P containing nt data points, and the point coordinates are denoted by pm. The specific
implementation steps are as follows:

(1) Define a local coordinate system for each point pm in the point cloud, P, and set the
search radius, diss, for the neighbourhood query.

(2) Query all points in the region of P centred on pm with radius diss. Calculate their
weight values, vmn:

vmn =
1

‖pm − pn‖
, |pm − pn| < diss (2)

(3) Calculate the covariance matrix corresponding to each point pm:

cov(pm) =

∑
|pm−pn |<diss

vmn(pm − pn)(pm − pn)
T

∑
|pm−pn |<diss

vmn
(3)

(4) Calculate the eigenvalues,
{

λ1
m, λ2

m, λ3
m
}

, of each covariance matrix, and rank them
from largest to smallest.

(5) Set the threshold values ε1 and ε2. The points satisfying the two following inequalities
are considered feature points and kept:

λ2
m

λ1
m
< ε1

λ3
m

λ2
m
< ε2

(4)

4.3. Traditional HHO Algorithm

The HHO algorithm is a gradient-free algorithm proposed in 2019 [37]. It solves the
optimisation problem by simulating biological behaviours such as tracking, encircling,
repelling, and attacking in the process of collaborative prey hunting by Harris hawk groups
in nature, where each member of the Harris hawk population represents a candidate solu-
tion. The HHO algorithm consists of three phases: exploration, transition, and exploitation.
When |Ecv| ≥ 1, the Harris hawk algorithm performs a global exploration. In this stage,
Harris hawks are randomly perched in a location, searching and tracking their prey through
keen vision. The hawks select one of the two strategies with equal probabilities to deter-
mine the perching locations. When |Ecv| < 1, the algorithm entered the exploitation phase,
several Harris hawks swept up at the same time to form an encirclement and waited for
the time of surprise attack. The HHO algorithm selects a suitable location update strategy
based on two parameters: prey escape energy, Ecv, and successful escape probability, c.
Figure 2 is a simple example of the process through which a Harris hawk chases its prey.
The whole search process of the algorithm is as follows:

Ecv = 2Eiv(1− ts
Tmax

) Eiv ∈ [−1, 1]

O(ts + 1) =
{
(Oprey(ts)−Oavg(ts))− e3(Lmin + e4(Lmax − Lmin)) q < 0.5

Or(ts)− e1|Or(ts)− 2e2O(ts)| q ≥ 0.5
|Ecv| > 1{

∆O(ts) = Oprey(ts)−O(ts)
O(ts + 1) = ∆O(ts)− Ecv

∣∣JrOprey(ts)−O(ts)
∣∣ c ≥ 0.5, |Ecv| ≥ 0.5

O(ts + 1) = Oprey(ts)− Ecv|∆O(ts)| c ≥ 0.5, |Ecv| ≤ 0.5
P = Oprey(ts)− Ecv

∣∣JrOprey(ts)−O(ts)
∣∣

Qh = Ph + Sr × LF(Dr)

O(ts + 1) =
{

Ph, f (Ph) < f (O(ts))
Qh, f (Qh) < f (O(ts))

c < 0.5, |Ecv| ≥ 0.5


Ph = Oprey(ts)− Ecv

∣∣JrOprey(ts)−Oavg(ts)
∣∣

Qh = Ph + Sr × LF(Dr)

O(ts + 1) =
{

Ph, f (Ph) < f (O(ts))
Qh, f (Qh) < f (O(ts))

c < 0.5, |Ecv| < 0.5

(5)
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In the above equation, Tmax represents the maximum number of times that the popu-
lation can updated; Eiv denotes the initial escape energy corresponding to the algorithm
when the prey perceives the crisis and starts to escape, which is a randomly distributed
value on the range [−1, 1]; Ecv is the escape energy value after the tsth iteration; Oavg(ts) is
the average value obtained after counting the positions of all population members; O(ts)
is the position vector of the Harris hawk; Oprey(ts) denotes the position of the prey at
the ts th iteration; Lmin and Lmax are the lower and upper boundaries that constrain the
space of values taken by the candidate solutions; Or(ts) represents the current location of a
random Harris hawk individual; q is the control parameter of the global search policy; q,
e1, e2, e3, and e4 are all random values distributed in the range of [0, 1]; ∆O(ts) represents
the positional distance between the Harris hawk and its prey in the tsth iteration; Sr is a
two-dimensional vector composed of random numbers distributed on [0, 1]; f (·) denotes
the adaptation value calculation for the current decision variable. Jr is a random value
distributed in the range of [0, 2]. LF(·) indicates that the parameters are updated using Lévy
flight for long- and short-distance searches.

4.4. TMCHHO

An excellent swarm intelligence optimisation algorithm must maintain diversity when
the population is initialised [40]. Thus, a global search is used to rapidly converge near
the optimal solution after the optimisation task starts to execute, and the strong local
convergence ability is maintained to fully explore the candidate solution space in its latter
stage. The position vector at initialisation of the Harris hawk population is composed of
normally distributed random numbers, thus increasing the time and computational costs
of the global search. Furthermore, when the algorithm enters the development stage, the
position update is prone to stagnation owing to the lack of learning among individuals of
the population in a single iteration. This affects the accuracy of the algorithm for finding the
best solution. To resolve these problems, the two following improvements are introduced:

(1) Mapping the PWLCM sequence to optimise the distribution of the initial population:
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A reasonable initial solution for the population can increase the search space and accel-
erate the convergence of the population. Chaos [41], as a nonlinear phenomenon in nature,
has been widely used in swarm intelligence optimisation algorithms because of its ergodicity,
randomness, and sensitivity to initial conditions. Presently, logistic chaotic maps are widely
used in metaheuristic algorithms. Previous studies emphasise that PWLCM systems have
unique advantages compared with logistic maps [42,43]. Figure 3a–d show the histograms
and point distribution diagrams of the logistic map and PWLCM system, respectively.
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(c) histogram of the PWLCM sequence; (d) distribution point diagram of the PWLCM sequence.

Figure 3 indicates that the probability of the logistic sequence in [0, 0.1] and [0.9, 1]
is higher than that in other intervals. The PWLCM sequence exhibits better randomness
and ergodicity. In this study, the PWLCM system is mapped into the value space of
the optimisation variables, thus replacing the pseudo-random numbers in initialising the
population of Harris hawks and reducing the influence of insufficient population diversity
on the global exploration capacity. The expression for the PWLCM system mentioned
above is as follows:

rk+1 =


rk
tcr

rk ∈ [0, tcr)
rk−tcr
0.5−tcr

rk ∈ (tcr, 0.5]
1−tcr−rk
0.5−tcr

rk ∈ (0.5, 1− tcr]
1−rk

tcr
rk ∈ (1− tcr, 1]

(6)

In the above formula, the value range of the control parameter tcr is (0, 0.5), which
is set to 0.4 in this paper; k = 1, 2, . . . , n; and rk and rk+1 are the chaotic numbers in the
chaotic sequence.

(2) Introduction of trigonometric mutation to improve location update strategies:
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Trigonometric mutation [44] refers to randomly extracting three mutually different
solutions, i.e., Zt1,n, Zt2,n, and Zt3,n, as vertices in the population. Moreover, the vector
differences, i.e., (Zt1,n − Zt2,n), (Zt2,n − Zt3,n), and (Zt3,n − Zt1,n), are used as the side
lengths of the hypergeometric triangular search space. Three fitness values f (Zt1,n), f (Zt2,n),
and f (Zt3,n) are used to perturb the stagnant population. In the development stage of the
Harris hawk algorithm, a trigonometric mutation is introduced to control the population
to always mutate toward the individual with the optimal objective function value and
adaptively adjust the forward progress of each Harris hawk to improve the learning ability
among the individuals of the population in each iteration. The equation for trigonometric
mutations is derived as follows:

K = f (Zt1,n) + f (Zt2,n) + f (Zt3,n)
k1 = f (Zt1,n)/K
k2 = f (Zt2,n)/K
k3 = f (Zt3,n)/K

td1 = (k2 − k1)× (Zt1,n − Zt2,n)
td2 = (k3 − k2)× (Zt2,n − Zt3,n)
td3 = (k1 − k3)× (Zt3,n − Zt1,n)

vmn = (Zt1,n + Zt2,n + Zt3,n)/3 + orm,n × (td1 + td2 + td3)

(7)

In the above, f (Ztm,n) represents the objective function value of the current individual;
K is the sum of the objective function values of the three extracted solutions; k1, k2, and k3
are the ratios of the corresponding function values; td1, td2, and td3 represent the forward
progress along the directions of three individuals, respectively; and orm,n is the Gaussian
distribution scaling factor, that is, orm,n~N(0, β). In this paper, β is set to 0.1.

The centre point of the hypergeometric triangle search space is used as the base
vector position, and the individual mutation direction and step size are controlled by the
weighted vector. When km − kn < 0, the base vector moves towards individual Zm. When
km − kn > 0, the base vector moves towards individual Zn, ensuring that the candidate
solution updates its position in the direction of the better individual at each iteration. As
shown in Figure 4, when k3 < k2 < k1, the individual moves in direction Zt3,n, which has
the smallest objective function value. Furthermore, the Gaussian distribution factor, orm,n,
regulates the degree of trigonometric mutation perturbation. Figure 5 shows the flowchart
of the TMCHHO algorithm.
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4.5. ICP Algorithm

After rough registration, the point cloud coordinate system is roughly aligned, but
it still cannot meet the needs of engineering. It is necessary to use the ICP algorithm to
further improve the registration accuracy. The specific implementation steps are as follows:

(1) Find the corresponding point (Qi) of each point (Pi) in the source point cloud (PS) in
the target point cloud (Qt).

(2) Calculate Ddis and solve the spatial transformation parameters using the singular
value decomposition method.

Ddis =
1
N

N

∑
i=1
‖Qi − (RPi + T)‖2 (8)

(3) The spatial transformation parameters obtained in the previous step are applied to PS,
and the new point cloud obtained is named Pn.

(4) Use Pn and Qt to calculate the target value (Ddis) in Equation (8). If Ddis is less than
a certain threshold, stop the iteration; otherwise, the algorithm proceeds to the next
iteration and repeats steps (1)–(3).

5. Simulation Experiments and Engineering Application

This section contains three parts; firstly, the robustness and accuracy of the TMCHHO
algorithm are verified based on optimisation experiments using benchmark functions. In
addition, the feasibility of the TMCHHO algorithm to solve the point cloud coordinate
system unification problem is verified based on registration experiments using a standard
point cloud dataset. Finally, the TMCHHO point cloud alignment algorithm is applied to
the massive multimodal point clouds generated during the construction of the Lianghekou
project, demonstrating the improved accuracy and completeness of the fusion model
compared with the existing single reverse modelling approach.
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5.1. Benchmark Function Optimisation Experiments

In order to verify the superiority of the TMCHHO algorithm, seven representative
benchmark functions were selected to carry out optimisation experiments, as shown in
Table 1, where f min denotes the optimal value at which the benchmark function can con-
verge theoretically, and range is the constraint on the candidate solution. The functions
[f 1(x) − f 4(x)] are single-peaked benchmark functions with only one local extreme value,
which are suitable for testing the global exploration ability. The functions [f 5(x) − f 7(x)] are
complex multi-peaked benchmark functions with multiple local extreme values, which are
suitable for testing the ability to jump out of premature convergence.

Table 1. Benchmark functions.

Expressions Dimensions f min Range

f1(x) = ∑n
i=1 x2

i 10/50 0 [−100, 100]
f2(x) = ∑n

i=1|xi|+ ∏n
i=1|xi| 10/50 0 [−10, 10]

f3(x) = ∑n
i=1 (∑

i
j−1 xj)

2 10/50 0 [−100, 100]

f4(x) = maxi{|xi|, 1 ≤ i ≤ n} 10/50 0 [−100, 100]
f5(x) = ∑n

i=1
[
x2

i − 10 cos(2πxi) + 10
]

10/50 0 [−5.12, 5.12]

f6(x) = −20e−0.2
√

1
n ∑n

i=1 x2
i − e

1
n ∑n

i=1 cos(2πxi) + 20 + e 10/50 0 [−32, 32]
f7(x) = 1

4000 ∑n
i=1 x2

i −∏n
i=1 cos( xi√

i
) + 1 10/50 0 [−600, 600]

To ensure the scientific nature of the experiments, 10 control groups were set up.
Therefore, we chose the widely concerned whale optimisation algorithm (WOA), particle
swarm optimisation (PSO), butterfly optimisation algorithm (BOA), the traditional HHO
algorithm, and the dingo optimisation algorithm proposed in 2021 [45] to conduct experi-
ments when the decision variable dimensions were 10 and 50, respectively. Additionally,
the performance of the algorithms was analysed based on the pairs of experimental results
for each test group. The control parameters of each algorithm are shown in Table 2, and the
statistical results of the optimisation experiments of each group are shown in Table 3.

Table 2. Parameters settings.

Algorithms Parameters Values

TMCHHO Control parameter in Levy flight 1.5

BOA
Stimulus intensity 0.01
Power exponent 0.1

PSO
Social constant 1
Local constant 0.8

WOA Spiral shape constant 1
HHO Control parameter in Levy flight 1.5

DOA
Probability of hunting or scavenger 0.5

Probability of group or persecution attack 0.7

Regardless of whether the dimension was 10 or 50, the TMCHHO algorithm could
approach the global solution on the seven benchmark test functions. Among them, the
results of convergence on the f 1(x), f 2(x), f 3(x), f 4(x), and f 6(x) functions were close to
the theoretical optimal value, and in the complex multi-peaked functions f 5(x) and f 7(x),
the experimental results of the TMCHHO algorithm could reach the theoretical optimal
value. Although the traditional HHO algorithm performed comparably to the TMCHHO
algorithm on f 3(x), f 5(x), and f 7(x), the performance of the TMCHHO algorithm on the
other four functions was the best among the six algorithms, indicating that the use of
trigonometric mutation and the PWLCM system led to a significant improvement in the
ability of the HHO algorithm to seek the optimal solution and robustness.
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Table 3. The statistical data of testing results (Note: The best results are highlighted in bold).

Functions Algorithms Experimental Results (Dimensions Are 10/50)

Ave Best Worst Std

f 1(x)

BOA 1.09 × 10−5/1.88 × 10−5 6.70 × 10−06/1.42 × 10−5 1.44 × 10−5/2.48 × 10−5 1.86 × 10−6/2.51 × 10−6

WOA 1.65 × 10−12/8.64 × 10−11 6.19 × 10−16/1.14 × 10−14 2.62 × 10−11/1.41 × 10−9 5.35 × 10−12/2.67 × 10−10

PSO 3.09 × 10−2/1.41 × 104 1.48 × 10−12/1.86 × 1003 9.27 × 10−1/4.73 × 104 1.69 × 10−1/9.70 × 103

DOA 2.10 × 10−8/6.75 × 10−9 3.27 × 10−84/1.90 × 10−97 6.22 × 10−7/1.33 × 10−7 1.13 × 10−7/2.55 × 10−8

HHO 2.34 × 10−22/4.18 × 10−22 6.90 × 10−32/6.90 × 10−33 5.74 × 10−21/1.14 × 10−20 1.06 × 10−21/2.09 × 10−21

TMCHHO 3.46 × 10−29/8.89 × 10−26 8.36 × 10−37/6.92 × 10−37 5.27 × 10−28/1.87 × 10−24 1.04 × 10−28/3.59 × 10−25

f 2(x)

BOA 4.01 × 10−4/7.81 × 1072 5.49 × 10−6/1.36 × 1069 9.43 × 10−4/8.70 × 1073 2.84 × 10−4/2.02 × 1073

WOA 1.83 × 10−8/3.63 × 10−7 1.54 × 10−10/4.84 × 10−10 1.34 × 10−7/7.95 × 10−6 3.30 × 10−8/1.45 × 10−6

PSO 6.98 × 101/1.75 × 1046 1.13 × 10−5/1.75 × 103 2.85 × 102/5.25 × 1047 8.64 × 10/9.58 × 1046

DOA 1.22 × 10−5/4.45 × 10−5 1.82 × 10−42/3.13 × 10−44 2.41 × 10−4/1.31 × 10−3 4.84 × 10−5/2.40 × 10−4

HHO 3.90 × 10−12/8.34 × 10−12 8.54 × 10−16/7.84 × 10−16 7.54 × 10−11/1.04 × 10−10 1.43 × 10−11/1.91 × 10−11

TMCHHO 2.31 × 10−14/4.98 × 10−13 2.05 × 10−19/4.74 × 10−17 3.24 × 10−13/5.67 × 10−12 6.53 × 10−14/1.23 × 10−12

f 3(x)

BOA 1.18 × 10−5/1.73 × 10−5 7.60 × 10−6/1.29 × 10−5 1.63 × 10−5/2.19 × 10−5 2.14 × 10−6/2.59 × 10−6

WOA 4.33 × 103/3.18 × 105 5.23 × 102/1.51 × 105 9.68 × 103/5.16 × 105 2.64 × 103/1.00 × 105

PSO 5.72 × 102/1.09 × 105 2.27/6.79 × 1004 5.14 × 103/1.58 × 105 1.24 × 103/2.41 × 104

DOA 6.75 × 10−10/2.32 × 10−08 3.77 × 10−143/2.08 × 10−87 1.98 × 10−8/6.93 × 10−7 3.61 × 10−9/1.27 × 10−7

HHO 9.33 × 10−20/5.91 × 10−13 7.69 × 10−29/4.03 × 10−25 1.06 × 10−18/1.77 × 10−11 2.64 × 10−19/3.24 × 10−12

TMCHHO 1.36 × 10−19/1.47 × 10−13 1.06 × 10−31/7.46 × 10−28 1.88 × 10−18/3.93 × 10−12 4.11 × 10−19/7.16 × 10−13

f 4(x)

BOA 8.88 × 10−4/1.27 × 10−3 5.47 × 10−4/9.67 × 10−4 1.18 × 10−3/1.45 × 10−3 1.48 × 10−4/1.15 × 10−4

WOA 1.72 × 10/7.41 × 10 5.76 × 10−1/1.84 × 10−1 6.50 × 10/9.54 × 10 1.55 × 10/2.20 × 10
PSO 4.36/9.21 × 1001 5.33 × 10−1/8.59 × 10 1.46 × 10/9.62 × 10 3.64/2.76
DOA 7.68 × 10−7/3.15 × 10−8 4.11 × 10−51/4.21 × 10−39 1.94 × 10−5/5.32 × 10−7 3.58 × 10−6/1.12 × 10−7

HHO 3.73 × 10−13/1.86 × 10−12 7.21 × 10−17/9.73 × 10−17 3.87 × 10−12/2.07 × 10−11 8.62 × 10−13/4.46 × 10−12

TMCHHO 1.82 × 10−14/6.19 × 10−14 3.28 × 10−18/1.90 × 10−18 2.40 × 10−13/7.70 × 10−13 5.32 × 10−14/1.63 × 10−13

f 5(x)

BOA 3.22 × 10/3.46 × 10−1 8.39 × 10−4/2.10 × 10−5 6.10 × 10/4.64 2.21 × 10/1.05
WOA 8.04/3.03 × 10−9 2.84 × 10−14/0 6.84 × 10/4.22 × 10−8 1.78 × 10/9.51 × 10−9

PSO 2.18 × 10/4.32 × 102 5.02/2.78 × 102 6.26 × 10/6.13 × 102 1.39 × 10/8.12 × 10
DOA 6.98 × 10−4/3.74 × 10−9 0/0 2.08 × 10−2/1.09 × 10−7 3.80 × 10−3/1.99 × 10−8

HHO 0/0 0/0 0/0 0/0
TMCHHO 0/0 0/0 0/0 0/0
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Table 3. Cont.

Functions Algorithms Experimental Results (Dimensions Are 10/50)

Ave Best Worst Std

f 6(x)

BOA 9.00 × 10−4/9.49 × 10−4 6.85 × 10−4/7.96 × 10−4 1.20 × 10−3/1.18 × 10−3 1.08 × 10−4/8.73 × 10−5

WOA 3.08 × 10−7/5.86 × 10−7 1.11 × 10−9/8.63 × 10−9 1.61 × 10−6/7.90 × 10−6 4.19 × 10−7/1.43 × 10−6

PSO 6.54 × 10−1/2.00 × 10 3.61 × 10−6/1.86 × 10 2.58/2.07 × 10 8.52 × 10−1/5.78 × 10−1

DOA 7.19 × 10−7/1.19 × 10−8 8.88 × 10−16/8.88 × 10−16 2.05 × 10−5/2.53 × 10−7 3.74 × 10−6/4.67 × 10−8

HHO 8.23 × 10−13/1.91 × 10−12 4.44 × 10−15/4.44 × 10−15 1.57 × 10−11/3.63 × 10−11 2.90 × 10−12/6.88 × 10−12

TMCHHO 1.82 × 10−14/1.24 × 10−14 8.88 × 10−16/8.88 × 10−16 2.71 × 10−13/1.04 × 10−13 5.61 × 10−14/2.57 × 10−14

f 7(x)

BOA 1.27 × 10−4/5.49 × 10−5 3.76 × 10−5/4.04 × 10−5 5.30 × 10−4/6.71 × 10−5 1.10 × 10−4/6.60 × 10−6

WOA 2.21 × 10−1/1.20 × 10−1 1.11 × 10−16/6.88 × 10−15 1.04/1.01 2.95 × 10−1/3.12 × 10−1

PSO 2.31 × 10−1/1.47 × 102 2.49 × 10−2/2.70 × 10 8.00 × 10−1/3.81 × 102 1.70 × 10−1/9.41 × 10
DOA 4.41 × 10−10/5.79 × 10−8 0/0 7.58 × 10−9/1.73 × 10−6 1.49 × 10−9/3.16 × 10−7

HHO 0/0 0/0 0/0 0/0
TMCHHO 0/0 0/0 0/0 0/0
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Figure 6 illustrates the variation curves of the fitness values of the six algorithms
on the single-peaked test functions f 1(x) and f 2(x), and the multi-peaked test functions
f 5(x) and f 6(x), when the dimensionality of the decision variables was 10. As can be seen
from the graphs, the improved Harris hawk algorithm converged faster and had a higher
optimisation-seeking accuracy than other population intelligence optimisation algorithms.
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5.2. Standard Point Cloud Dataset Registration Experiments

To verify the feasibility of the TMCHHO algorithm in the field of point cloud regis-
tration, experiments were conducted using the data obtained from the Armadillo, Bunny,
Dragon, and Happy datasets, and they were compared with the data from other algo-
rithms. Figure 7 shows the standard point cloud set used in this paper. Following the
single-variable principle of comparative experiments, the same population size, iteration
times, and initial value range were set for each swarm intelligence optimisation algorithm.
In the experiments presented in this section, the number of iterations, population size, and
initial value range were set as 500, 30, and [−50, 50], respectively. All algorithms were
programmed in MATLAB R2016b, and an Intel Core i7-9750H 32 G computer was used.
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Point cloud data P and Q from different perspectives were set as the operation objects,
and the spatial position alignment of the two point clouds was set as the optimisation
goal. Accordingly, various swarm intelligence optimisation algorithms were employed to
conduct 20 experiments on multi-point cloud sets.

The point clouds were first processed using different methods, such as voxel filtering
and ISS feature point extraction. The reasonable values of r, ε1, and ε2 (voxel filtering
and feature point extraction parameters) could reduce computational effort as well as
preserve its inherent geometric feature information. Based on experience, and after several
experiments, the values of r, ε1, and ε2 were set to 0.001, 0.65, and 0.6, respectively.

In this section, we use the RMS values mentioned in Section 4.1 to characterise the
alignment accuracy of the two point clouds. In order to observe the results of the point
cloud registration experiments more intuitively, Figure 8 plots the variation curves of RMS
values during the iterations of the six algorithms.

As shown in Figure 8, the iterative curves of each optimisation algorithm had a
downward trend as the number of population update times increased. In contrast, the
TMCHHO algorithm had a relatively large RMS value in the first iteration because of the
more dispersed initial population; however, the reduction rate was rapid in the early stage.
After more than 100 iterations, all the algorithms exhibited a stable trend; however, the
convergence value of the TMCHHO algorithm was smaller after 500 iterations, proving the
superiority of the algorithm.

To analyse the performance of the TMCHHO algorithm further, Table 4 outlines the
experimental results of each algorithm on different datasets. It can be seen from the table
that the performance of the TMCHHO algorithm on the two data indicators of the average
and worst values was the best among the six algorithms, and its stability performance
was second only to the traditional HHO algorithm and better than the WOA, BOA, DOA,
and PSO algorithms. Compared with the traditional HHO algorithm, the registration
accuracy on the Armadillo, Bunny, Dragon, and Happy datasets improved by 52.11%,
72.91%, 48.51%, and 77.69%, respectively. Figure 9 shows a boxplot that intuitively reflects
the distribution and average level of each algorithm. The TMCHHO algorithm achieved
satisfactory results for the coordinate matching problem on the above four standard point
cloud datasets. Other comparative analysis algorithms were prone to falling into local
loops or having inadequate stability, resulting in unsatisfactory final convergence results.
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The above statistical data demonstrate the feasibility and superiority of the TMCHHO
application in the field of point cloud registration.
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Table 4. Statistics of RMS values of 20 experimental results (Note: The best results are highlighted
in bold).

Algorithms Indexes Armadillo Bunny Dragon Happy

TMCHHO

Ave 1.85 × 10−2 1.46 × 10−2 2.60 × 10−2 1.17 × 10−2

Best 1.37 × 10−3 9.97 × 10−4 4.68 × 10−3 1.51 × 10−3

Worst 4.89 × 10−2 3.98 × 10−2 6.16 × 10−2 3.53 × 10−2

Std 1.24 × 10−2 1.13 × 10−2 1.58 × 10−2 8.30 × 10−3

HHO

Ave 3.87 × 10−2 5.39 × 10−2 5.05 × 10−2 5.23 × 10−2

Best 3.06 × 10−2 2.21 × 10−2 1.79 × 10−2 2.18 × 10−2

Worst 5.13 × 10−2 6.82 × 10−2 6.47 × 10−2 8.15 × 10−2

Std 4.51 × 10−3 1.05 × 10−2 1.08 × 10−2 1.70 × 10−2

DOA

Ave 3.83 × 10−2 4.55 × 10−2 4.52 × 10−2 3.88 × 10−2

Best 7.44 × 10−3 2.52 × 10−4 1.18 × 10−5 1.32 × 10−5

Worst 6.17 × 10−2 9.69 × 10−2 8.76 × 10−2 7.15 × 10−2

Std 1.58 × 10−2 2.28 × 10−2 2.90 × 10−2 2.24 × 10−2

PSO

Ave 3.48 × 10−2 5.33 × 10−2 5.36 × 10−2 6.01 × 10−2

Best 1.54 × 10−7 2.44 × 10−2 5.64 × 10−15 1.55 × 10−2

Worst 5.99 × 10−2 8.82 × 10−2 8.83 × 10−2 1.07 × 10−1

Std 1.41 × 10−2 2.05 × 10−2 2.08 × 10−2 1.78 × 10−2

WOA

Ave 4.43 × 10−2 5.75 × 10−2 4.98 × 10−2 4.90 × 10−2

Best 3.02 × 10−2 2.17 × 10−2 3.44 × 10−3 3.86 × 10−3

Worst 6.12 × 10−2 9.21 × 10−2 8.48 × 10−2 9.87 × 10−2

Std 9.02 × 10−3 2.04 × 10−2 2.81 × 10−2 2.85 × 10−2

BOA

Ave 6.09 × 10−2 7.56 × 10−2 1.02 × 10−1 9.70 × 10−2

Best 3.94 × 10−2 5.91 × 10−2 6.15 × 10−2 4.10 × 10−2

Worst 9.55 × 10−2 1.16 × 10−1 2.48 × 10−1 1.61 × 10−1

Std 1.54 × 10−2 1.44 × 10−2 5.32 × 10−2 2.59 × 10−2
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Figure 9. Comparison of algorithm alignment effects: (a) Armadillo dataset; (b) Bunny dataset;
(c) Dragon dataset; (d) Happy dataset.

As shown in Figure 10, only the ICP algorithm was used for registration, which was
greatly affected by the initial pose of the point cloud, and the registration effect was not
ideal. The use of the TMCHHO coarse registration algorithm overcame this defect. Table 5
also shows that the combination of TMCHHO and ICP algorithms can significantly improve
registration accuracy.
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Table 5. The statistical data of final registration results.

Method Armadillo Bunny Dragon Happy

ICP 1.49 × 10−02 1.75 × 10−02 9.82 × 10−03 2.99 × 10−02

TMCHHO + ICP 1.34 × 10−06 4.33 × 10−04 6.45 × 10−04 5.52 × 10−04

5.3. Engineering Application

The Lianghekou rockfill dam project was used as the research object. The crest of the
dam is 668.7 m long and 16 m wide. Firstly, information on the complex environment of
the dam surface during the construction period was collected using multiple mapping



Sensors 2023, 23, 4942 18 of 25

systems. Secondly, the TMCHHO algorithm was used to complete the unification of
multimodal point cloud spatial locations. Finally, the Euclidean distance distribution of the
measurement area was used to evaluate the point cloud fusion accuracy.

The construction environment of the dam surface is complex, and vehicles such
as trucks, vibratory rollers, and sprinklers operate continuously, rendering continuous
measurement difficult to implement. Therefore, separate 3D laser scanning processes
cannot collect the complete environmental information of the dam surface and surrounding
terrain. By contrast, UAV tilt photography is less affected by the ground construction
environment and has flexible air-to-ground observation capability, but its limitation is
that some spatial information at the bottom and side of the feature may be missing or
deformed. Figure 11 shows a schematic of the data acquisition strategy, which adopts an
integrated ground-to-air strategy to collect point clouds and images to overcome the blind
area phenomenon and reduce labour costs.
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Figure 11. Schematic diagram of data acquisition strategy.

The equipment used for point cloud data acquisition was a Faro FocusS 350 terrestrial
3D laser scanner. During the field acquisition, we surveyed the measurement area in
advance, adjusted the station location according to the actual scanning situation, ensured
an overlap rate of at least 30% among adjacent stations, and set the scanning range to
360◦ × 300◦. A total of 22 stations were deployed for this scan. Figure 12a shows the
acquisition device, and Figure 12b shows the acquired point cloud data.
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For image collection, DJI Genie UAV was employed. To ensure the safe flight and
high-quality data acquisition of the UAV, the route was planned in advance, the heading
and side overlap rates were set to 80%, and the UAV was manually controlled to take
supplementary shots in local areas. In the postprocessing stage, the supporting software
Context Capture was used to produce the collected multi-view oblique images into a 3D
dense point cloud model and output it in .las format, as shown in Figure 13b. The slope
part was cropped and used as the data source for solving the transformation matrix.
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Figure 13. (a) UAV tilt photography; (b) point cloud from UAV tilt photography.

After entering the data processing stage, downsampling and feature point extraction
were performed for massive multimodal point clouds with disorder characteristics, where
the edge length of the voxel grid was set to 0.1, and the spherical search radius in the
internal shape descriptor algorithm was set to 0.3. Table 6 lists the number of data points
in the point cloud before and after downsampling. In this study, the fusion effect of the
TMCHHO algorithm was verified based on the massive geometric spatial information
provided by multiple mapping systems during the construction session of the rockfill dam.

Table 6. The size of the point cloud dataset.

Survey Area Number of Preprocessing
Points (Local)

Number of Postprocessing
Points (Local)

3D laser scanning 303,919 68,905
UAV tilt photography 503,555 62,300

Using six algorithms to register multimodal point clouds in practical engineering, the
obtained registration accuracy histogram is shown in Figure 14a. It can be seen from the
figure that the TMCHHO algorithm performed best, with an RMS value of 1.01. Figure 14b
shows the RMS value variation curve when applying the six algorithms to multimodal
point clouds. The WOA, PSO, BOA, and DOA algorithms converged at 200 iterations,
while the HHO and TMCHHO algorithms were superior in the second half of the iterative
process. The fitness value obtained using the TMCHHO algorithm was the smallest,
and the rigid transformation matrix obtained with this algorithm was used as the final
application scheme. Figure 15 shows the process of spatial coordinate system matching for
a multimodal point cloud with an unknown orientation pose. It can be seen from the figure
that the use of the TMCHHO registration algorithm enabled the source point cloud to also
obtain a good initial pose. The two point clouds were completely aligned after applying
the ICP fine registration algorithm.
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Figure 15. The process of cross-source point cloud fusion.

The conventional evaluation method is used to lay control points of the same name
under multiple measurement techniques, use a total station to collect geodetic coordi-
nates, and compare the absolute accuracy of model 3D reconstruction [23]. However,
the coordinate acquisition of control points cannot be guaranteed due to the blind area
phenomenon caused by the complex construction environment of the dam face and the
special topographic conditions of the rockfill dam, so we performed a relative comparison
of the dense point cloud models produced using the two measurement techniques. As
shown in Figure 16, the dense point clouds produced using UAV tilt photography and
3D laser scanning were defined as the reference model and the target model, respectively,
and a colour map with the Euclidean distance of the measured area was considered the
index. The closer the colour was to red, the greater the deviation of the corresponding
point cloud. To further evaluate the multimodal point cloud fusion, Table 7 lists the various
indicators of Euclidean distances of the multimodal point cloud in the five measurement
areas. Figure 17 shows the histogram of the Euclidean distance of the point cloud within the
five measurement areas. Among them, the point cloud deviations were most distributed
in the range of [0, 0.06], the average deviation range was 1.8–3.1 cm, and the degree of
agreement between the two models was high. The intercepted point cloud data can be used
to complement the missing parts. For example, the missing point cloud data of UAV tilt
photography in the box shown in Figure 18a,c can be filled by a point cloud derived from
3D laser scanning. Figure 18b,d show the fusion point cloud model in different views.
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Table 7. The statistical data analysis of fusion accuracy.

Survey Area Avg Best Worst Std

1© 0.0311 0 0.3603 0.0644
2© 0.0182 0 0.5154 0.0551
3© 0.0190 0 0.5196 0.0550
4© 0.0186 0 0.2361 0.0525
5© 0.0304 0 0.3881 0.0666
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3D reality modelling of rockfill dams during construction based on multi-source point 

clouds was developed and validated based on actual projects. The following findings were 

observed: 

(1) An air–ground comprehensive perception system based on multiple surveying 

and mapping systems was proposed, which realises the real-time acquisition of point 

clouds and images containing considerable amounts of spatial and texture information of 

rockfill dams during construction. The collected multi-source data were preprocessed us-
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TMCHHO point cloud fusion model was developed for the 3D reconstruction of rockfill 

dams during dam construction. The model integrates the improved Harris hawk coarse 

registration and ICP fine registration algorithms. The former combines the PWLCM sys-

tem in the initialisation stage to reduce the impact of initial values on global exploration. 

In the local development stage, a trigonometric mutation was introduced to perturb the 

population individuals such that falling into local optima can be avoided. (3) The 

TMCHHO algorithm was verified to achieve better accuracy than the BOA, PSO, WOA, 

and HHO using standard point cloud datasets (i.e., Armadillo, Bunny, Dragon, and 

Happy) in point cloud registration experiments. (4) The method proposed in this paper 

was applied to the Lianghekou rockfill dam, and the improvement in model integrity com-

pared with a single surveying and mapping system was verified. 

The results of this study can automatically achieve the fusion of multimodal point 

clouds, saving labour time costs while improving the integrity of the model. Accordingly, 

the study results contribute to advancing the intelligent development of rockfill dam 

Figure 18. (a) Tilt photography point cloud under the top-down view along the dam axis; (b) fusion
point cloud under the top-down view along the dam axis; (c) tilt photography point cloud under the
30-degree overhead view perpendicular to the dam axis; (d) fusion point cloud under the 30-degree
overhead view perpendicular to the dam axis.

6. Conclusions

The accuracy, completeness, and authenticity of the 3D model reconstruction of the
dam during the construction period determine its consistency with the actual project. In
the traditional technology involving the 3D reconstruction of dams, the simultaneous
acquisition of high-precision 3D information and texture features of real ground objects
from multiple angles is difficult to achieve. Accordingly, a TMCHHO fusion model for
the 3D reality modelling of rockfill dams during construction based on multi-source point
clouds was developed and validated based on actual projects. The following findings
were observed:

(1) An air–ground comprehensive perception system based on multiple surveying and
mapping systems was proposed, which realises the real-time acquisition of point clouds
and images containing considerable amounts of spatial and texture information of rockfill
dams during construction. The collected multi-source data were preprocessed using a voxel
filter and ISS descriptors. (2) A high-precision, high-integrity, and high-fidelity TMCHHO
point cloud fusion model was developed for the 3D reconstruction of rockfill dams during
dam construction. The model integrates the improved Harris hawk coarse registration
and ICP fine registration algorithms. The former combines the PWLCM system in the
initialisation stage to reduce the impact of initial values on global exploration. In the local
development stage, a trigonometric mutation was introduced to perturb the population
individuals such that falling into local optima can be avoided. (3) The TMCHHO algorithm
was verified to achieve better accuracy than the BOA, PSO, WOA, and HHO using standard
point cloud datasets (i.e., Armadillo, Bunny, Dragon, and Happy) in point cloud registration
experiments. (4) The method proposed in this paper was applied to the Lianghekou rockfill
dam, and the improvement in model integrity compared with a single surveying and
mapping system was verified.
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The results of this study can automatically achieve the fusion of multimodal point
clouds, saving labour time costs while improving the integrity of the model. Accordingly,
the study results contribute to advancing the intelligent development of rockfill dam
construction management and decision making. This study can be extended and applied to
other hydropower construction projects during their construction period in the realistic 3D
modelling of cross-source data, which have certain universality. In addition, owing to the
multiple data format changes involved in the fusion modelling process, in the future, the
authors intend to conduct research on cross-source point-cloud-integrated data acquisition
and processing, as well as fused big data processing platforms, to achieve highly accurate
and stable engineering application targets.
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