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Abstract: Overhead transmission lines are important lifelines in power systems, and the research and
application of their intelligent patrol technology is one of the key technologies for building smart
grids. The main reason for the low detection performance of fittings is the wide range of some fittings’
scale and large geometric changes. In this paper, we propose a fittings detection method based on
multi-scale geometric transformation and attention-masking mechanism. Firstly, we design a multi-
view geometric transformation enhancement strategy, which models geometric transformation as a
combination of multiple homomorphic images to obtain image features from multiple views. Then,
we introduce an efficient multiscale feature fusion method to improve the detection performance of
the model for targets with different scales. Finally, we introduce an attention-masking mechanism to
reduce the computational burden of model-learning multiscale features, thereby further improving
model performance. In this paper, experiments have been conducted on different datasets, and the
experimental results show that the proposed method greatly improves the detection accuracy of
transmission line fittings.

Keywords: geometric transformation; fittings; object detection; transformer

1. Introduction

With the development of the economy, the scale of equipment in the power system
continues to expand. In order to explore the application prospects and directions of cutting-
edge technologies such as artificial intelligence in the field of power, the development of
human-machine interaction intelligent systems with reasoning, perception, self training,
and learning abilities has become increasingly important research in the field of power [1].

Currently, the length of the power system’s overhead transmission lines has reached
992,000 km and still maintains an annual growth rate of about 5%. Overhead transmission
lines are distributed in vast outdoor areas with complex geographical environments, and
the traditional manual inspection mode is inefficient [2,3]. In response to the increasingly
prominent contradiction between the number of transmission professionals and the contin-
uous growth of equipment scale, the power system promoted the application of unmanned
aerial vehicle (UAV) patrol inspection, significantly improving the efficiency of transmis-
sion line patrol inspection [4-6]. Figure 1 shows patrol inspection images of a transmission
line taken by the UAV.

The development of artificial intelligence technology, represented by deep learning, pro-
vides theoretical support for the transformation of the overhead transmission line inspection
mode from manual inspection to intelligent inspection based on UAV [7]. Object detection
is a fundamental task in the field of computer vision. Currently, popular object detection
methods mainly use convolutional neural networks (CNN) and Transformer architecture
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to extract and learn image features. The object detection method based on CNN can be
divided into two-stage detection models [8-11] based on candidate frame generation and
single-stage detection models [12-14] based on regression. In recent years, the Transformer
model for computer vision tasks has been studied by many scholars [15]. Carion et al. [16]
proposed the DETR model which uses an encode-decode structured Transformer. Given a
fixed set of target sequences, the relationship between the targets and the global context of
the image can be inferred, and the final prediction set can be output directly and in parallel,
avoiding the manual design. Zhu et al. [17] proposed Deformable DETR, in which the
attention module only focuses on a portion of key sampling points around the reference
point. With 10x less training epochs, Deformable DETR can achieve better performance than
DETR. Roh et al. [18] propose Sparse DETR, which helps the model effectively detect targets
by selectively updating only some tokens. Experiments have shown that even with only
10% of encoder tokens, the Sparse DETR can achieve better performance. Fang et al. [19]
propose to use only Transformer’s encoder for target detection, further reducing the weight
of the Transformer-based target detection model at the expense of target detection accuracy.
Song et al. [20] introduce a computationally efficient Transformer decoder that utilizes multi-
scale features and auxiliary techniques to improve detection performance without increasing
too much computational load. Wu et al. [21] proposed an image relative position encoding
method for two-dimensional images. This method considers the interaction between direc-
tion, distance, query, and relative position encoding in the self-attention mechanism, further
improving the performance of target detection.

@ (b)

Figure 1. Transmission line images captured by the UAV.

Applying the object detection models that perform well in the field of general object
detection to power component detection has become a hot research topic in the current
power field [22-25]. Zhao et al. [26] use a CNN model with multiple feature extraction
methods to represent the status of insulators, and train support vector machines based
on these features to detect the status of insulators. Zhao et al. [27] designed an intelligent
monitoring system for hazard sources on transmission lines based on deep learning, which
can accurately identify hazard sources and ensure the safe operation of the power system.
Zhang et al. [28] propose a high-resolution real-time network HRM-CenterNet, which
utilizes iterative aggregation of high-resolution feature fusion methods to gradually fuse
high-level and low-level information to improve the detection accuracy of fittings in
transmission lines. Zhang et al. [29] first proposed that there is a visual indivisibility
problem with bolt defects on transmission lines and that the attributes of bolts, such as
whether there are pin holes or gaskets, are visually separable. Therefore, bolt recognition is
considered a multi-attribute classification problem, and a multi-label classification method
is used to obtain accurate bolt multi-attribute information. Lou et al. [30] introduce the
position knowledge and attribute knowledge of bolts into the model for the detection
of visually indivisible bolt defects, further improving the detection accuracy of visually
indivisible bolt defects.

Although there have been some related studies on transmission line fittings detection
in the field of electric power, quite difficult problems remain. The main performance is
shown in the following aspects: (1) Due to the variable viewing angles of UAV photography,
the shape of some fittings varies greatly under different shooting visions, resulting in poor
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detection performance of fittings under different viewing angles. As shown in Figure 2, the
blue frame is the bag-type suspension clamp, and the red frame is the weight. As can be
seen from Figure 2, the appearance of the bag-type suspension clamp and the weight has
undergone significant changes under different shooting visions. (2) Figure 3 shows the area
ratio of different fittings tags in different transmission line datasets. It can be seen that the
scale of different fittings in each dataset varies greatly, which is an important factor affecting
detection performance. (3) The UAV edge device is small in size and has limited storage
and computational resources, so the detection model cannot be too complex. To address
the above issues, this paper proposes a transmission line fittings detection method based
on multi-scale geometric transformation and attention-masking mechanism (MGA-DETR).
The main contributions of this article are as follows:

1. We have designed a multi-view geometric transformation enhancement strategy that
models geometric transformations as a combination of multiple homomorphic images
to obtain image features from multiple views. At the same time, this paper introduces
an efficient multi-scale feature fusion method to improve the detection performance
of transmission line fittings from different perspectives and scales.

2. Weintroduced an attention-masking mechanism to reduce the computational burden
of model-learning multiscale features, thereby further improving the detection speed
of the model without affecting its detection accuracy.

3. We conducted experiments on three different sets of transmission line fittings detection
data, and the experimental results show that the method proposed in this paper can effec-
tively improve the detection accuracy of different scale fittings from different perspectives.

(b)

Figure 2. Transmission line images from different shooting angles.
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Figure 3. Scale distribution of fittings in different transmission line datasets.

The rest of the paper is organized as follows: Section 2 describes the method proposed
in this paper, we propose a multi-view geometric enhancement strategy, introduce an
efficient multi-scale feature fusion method, and design an attention-masking mechanism to
improve model performance. Section 3 conducted experiments on different datasets and
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evaluated the methods proposed in this article. Finally, the conclusive remarks are given in
Section 4.

2. Methods

The fittings detection method based on multi-scale geometric transformation and
attention-masking mechanism (MGA-DETR) proposed in this paper is shown in Figure 4.
The method is mainly divided into four parts: backbone, encoder, decoder, and predic-
tion head. The backbone is used to extract image features and convert them into one-
dimensional image sequences. In the encoder, the self-attention mechanism is used to
obtain the relationship between image sequences, and then the trained image sequence
features are output. The decoder initializes the object queries vector and is trained by
the self-attention mechanism to learn the relationship between the object queries vector
and image features. In the prediction header, a binary matching method is used to clas-
sify the category of the object queries vector and locate the position of the boundary box,
completing the detection of transmission line fittings.

encoder : : decoder
|
multiscale feature : : @—v‘-‘i
~~ |
BiFPN H MLP,
y Ll
11l
1|

transformer
decoder

transformer
encoder

AMM

Figure 4. The basic architecture of the MAG-DETR.

Firstly, we designed a multi-view geometric transformation strategy (MVGT) to im-
prove the detection performance of the model for fittings under different visual conditions
in the backbone network part. Then, we introduced an efficient multi-scale feature fusion
method (BiFPN) to improve the detection accuracy of the model for objects with different
scales. Finally, to reduce the computational complexity of the model and achieve effi-
cient transmission line inspection, this paper introduces an attention-masking mechanism
(AMM). This method improves model detection by designing a scoring mechanism to filter
out image regions that are less relevant to model detection.

2.1. Multi-View Geometric Transformation Strategy

When the distribution of test samples and training samples is different, the perfor-
mance of object detection will decrease. There are many reasons for this problem, such as
changes in the surface of objects under different lighting or weather conditions. Most meth-
ods to solve this problem focus on obtaining more data to enrich the feature representation
of the object. In the field of object detection, there are usually two ways to obtain richer
image feature representations. One method uses models to generate virtual images and
add them to the dataset to increase the amount of data [31-33]. The other method uses
methods such as random clipping and horizontal flipping to obtain high-quality feature
representations during data preprocessing [34-36]. However, these methods do not pay
attention to the geometric changes of the object caused by different shooting angles. This
problem is particularly prominent in the inspection of power transmission lines. When the
drone is shooting from different angles of view, the appearance of fittings can signifi-cantly
change, leading to missed inspections and false inspections. Based on the above reasons, as
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shown in Figure 5, we propose the MVGT module that uses homomorphic transformation
to bridge the gap between objects caused by geometric changes, and then fuses image
features to improve the detection performance of fittings at different shooting angles.

C w

Figure 5. The architecture of the module of MVGT.

The homography transformation is a two-dimensional projection transformation that
maps a point in one plane to another plane. Here, a plane refers to a planar surface in a
two-dimensional image. The mapping relationship of corresponding points becomes the
homography matrix. The calculation method is as follows:

(xi,yi,w;)" = Hy x (x,y7,w7)" ¢y

where x;, y; are the horizontal and vertical coordinates of the original image, and x;, y;* are
the horizontal and axial coordinates of the image after the homography transformation.
Set w; = wy = 1 as the normalization point. H; is a 3 x 3 homography matrix, it can be
expressed as follows:
hoo hot hoz
Hi= | hi h11 h2 (2)
hao h1 hao

So the x; and y; can be calculated by the following:

hoox + hory + hoo
o= 3
T gox 1 ho1y + hao ©)
L hiox + hny + hip @)

! hoox + h21y + hyo

Therefore, when the coordinates of the four corresponding points are known, the
homography matrix H; can be obtained. In this paper, we have designed n sets of homog-
raphy matrices to obtain corresponding homography-transformed images. After that, the
homomorphic transformed image features are spliced to obtain features with the size of
H x W x NC. Finally, we use a 1 x 1 convolution pair to reduce the dimension of the fused
feature to the H x W x C dimension. By combining the image features after homography
transformation, the model can learn pixel changes from different perspectives, further
improving the detection performance of fittings in transmission lines.

2.2. Bidirectional Feature Pyramid Network

UAUVs fly high in the sky with a wide field of vision. The transmission line images
captured by UAVs contain multiple categories of fittings. As shown in Figure 2, the range of
fittings scales in different datasets are widely distributed. In the inspection of transmission
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lines, it is often due to the low resolution of small-size fittings, the missing details of the
fittings, and the lack of features that can be extracted, which can easily lead to issues such
as missing inspection. Therefore, the detection of such fittings has become the focus and
difficulty of research.

In object detection methods, feature pyramid networks (FPN) are mainly used to
improve the detection ability of models for objects of different scales [37]. As shown in
Figure 6a, the main idea of the FPN is to fuse the context information of image features,
enhancing the representation ability of shallow feature maps, and improving the detection
ability of small-scale objects. Aiming at the defect of only focusing on one direction of
information flow in FPN, Liu et al. [38] proposed the PAFPN to further fuse image features
of different scales by adding a bottom-up approach, as shown in Figure 6b. In this paper, we
introduce a bidirectional feature pyramid network (BiFPN) to optimize multiscale feature
fusion in a more intuitive and principled manner [39], as shown in Figure 6c.
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(b) PAFPN (c) BiFPN
Figure 6. The architectures of different FPNs.

First, assume that there is a set of image features P; € {P;, P,, ..., P, } with different
scales. Where P; represents the image features of the i level resolution. Effective multiscale
feature extraction can be considered as a process in which P; fuses different resolution fea-
tures through a special spatial transformation function, with the ultimate goal of achieving
feature enhancement. The fusion process is shown in Figure 6a, in which the network uses
image features at levels 3 to 7, with the feature resolution at the level i being 1/2/ times the
input image resolution.

BiFPN adopts a bidirectional feature fusion idea that combines top-down and bottom-
up. In the top-down process, the seventh level node is deleted, which only has a single
resolution input and has a small contribution to feature multiscale fusion. Deleting this
node can simplify the network structure. At the same time, combining a top-down route
with a bottom-up route increases the hierarchical resolution information required for the
scale fusion process with minimal operational costs. Unlike the FPN, which only performs
one feature fusion operation, the BiFPN regards the fusion process as an independent
network module, connecting multiple feature fusion modules in series to achieve more
possible fusion results.

In the top-down and bottom-up routes, upper and lower sampling methods are used
to adjust the size of the feature map to be consistent, and a fast normalized feature fusion
algorithm is used to fuse the adjusted feature map. The basic idea of a fast normalized
feature fusion algorithm is that each target to be identified has its specificity, such as diverse
scales and complex backgrounds. Therefore, visual features of different scales have different
contributions to the network detection of the object. This paper uses learnable scalar values
to measure the contribution of different levels of resolution features to the final prediction
of the network. Using the softmax function to limit scalar values is a good method, but
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softmax can significantly reduce the GPU processing speed. To achieve acceleration, using
a direct normalization algorithm can solve this problem:

wi

e v

w;’

where ¢ is a minimum value. In order to avoid numerical instability that may occur during
normalization calculations, we set ¢ = 0.0001. The wj; is the learned scalar value. To ensure
w; > 0, we use the ReLU activation function for each generated w;.

The improved network uses three different scale features P53, P; and Ps extracted from
the backbone network as inputs for cross-scale connectivity and weighted feature fusion.
Take node Ps as an example:

w1 - Ps 4+ wy - Resize(Py)
Wy +wy +¢€

P54 = Cono( ) (6)

wy’ - Ps 4+ wy - P5t_d + ZU3’ReSiZ€(P4)
w1+ wy +ws + €

Ps"* = Conv( ) @)
where P5'~? is a top-down intermediate feature and Ps”~* is a bottom-up output feature. Resize
is an up-sampling operation or a down-sampling operation. Conv is a convolution operation.

2.3. Attention-Masking Mechanism

Although the model can obtain multiscale features of images using the BiFPN, there
are still some problems. On the one hand, the self-attention mechanism in DETR can
only process one-dimensional sequence data, and images belong to two-dimensional data.
Therefore, when processing images, it is necessary to first perform dimensionality-reduction
processing on the images. On the other hand, the image for object detection generally has
a high resolution and mostly contains multiple targets at the same time. If the image is
dimensionally reduced directly, the computational complexity of the Transformer codec
will significantly increase. In order to solve this problem, in DETR, CNN is first used
to extract image features and simultaneously reduce image dimensions, to control the
overall calculation amount within an acceptable range. However, after using the BiFPN,
the calculation amount of the model will be multiplied. To solve this problem, this paper
introduces an attention-masking mechanism [40]. Firstly, a scoring network is used to
predict the importance of the image sequence data input to the encoder, and the image
sequence is trimmed hierarchically. Then, an attention-masking mechanism is used to
prevent attention computation between the trimmed sequence data and other sequence
data, thereby improving the computational speed.

The attention-masking mechanism designed in this paper is hierarchical, and as the
calculation progresses, image sequence data with lower scores are gradually discarded.
Specifically, we set a binary decision mask S € {0, l}N to determine whether to discard or
retain relevant data, where N is the length of the image sequence. When S = 0, it means
that the data need to be discarded, but it is reserved anyway. During training, we initialize
all S to 1 and gradually update S as the training progresses. Then, for the image sequence
x in the input encoder, it is first passed into the MLP layer to obtain local features:

floeet = MLP(x) ®)

Then, we interact with S on the local features of the image sequence to obtain the
global features of the current image:

f8lobal — Age(MLP(x),S) )
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where A can be obtained by simple averaging pooling:
g: S f local
iJi
Agg(fer, ) = Sg—— (10)
5i
i=1

Local features contain information about specific data in an image sequence, while
global features contain all contextual information about the image. Therefore, we combine
the two and transmit them to another MLP layer to obtain the probability of discarding or
retaining image sequence data:

s = Softmax {MLP(flOC”l,fgl"h”l)} (11)
Subsequently, in order to maintain the length of the input image sequence during the
training process unchanged while canceling the attention interaction between the trimmed

sequence data and the data therein, we designed an attention-masking mechanism (AMM).
To put it simply, AMM is added to attention calculation:

(xjwg) (xjwk)"

eij = Nz (12)
1t i=g

=0 iz &
ij) Gij

L (14)
k; exp(eix) Gij

where x is the data in the image sequence, wg and wy, are learnable parameter matrix, and
d is used for normalization processing.

3. Experimental Results and Analysis

We trained the model using AdamW [41], setting the learning rate of the initial
Transformer to 0.0001, the learning rate of the backbone network to 0.00001, the weight
attenuation to 0.001, and the batch size to 8. The training process adopts the cosine
annealing algorithm. When the detection accuracy of the validation set no longer increases,
the learning rate is reduced by 10% until the learning rate accuracy no longer increases
through adjustment. For the hyperparameter in the experiment, we set the number of
object queries vectors to 100, and the number of layers of the Transformer encoder-decoder
to 6. The experimental part was implemented using the Python framework and trained
and tested using an NVIDIA Geforce GTX Titan device with four GPUs.

3.1. The Introduction of Datasets

In recent years, aerial photography technology has grown rapidly. To collect images of
transmission lines, an aerial unmanned aerial vehicle (UAV) is not only simple to operate,
but also can collect information quickly and safely. We used the UAVs aerial photography
technology to obtain a large number of images of power transmission lines. The UAVs
are equipped with a high-definition image transmission system, which can capture high-
definition images of power transmission lines. Due to the different depth of field in the
imaging of transmission line images captured by UAVs, we constructed three datasets in
the experiment to verify the performance of the model.

(1) Fittings Datasets-25 (FD-25): Based on the progress of current UAV shooting
technology, we constructed the fittings dataset of high-definition transmission line images
captured by UAVs at ultra-wide angles. The characteristic of this dataset is that it has a
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wide shooting range and contains a large number of fittings. We annotated the images
according to the MS-COCO 2017 dataset’s annotation specifications. The dataset includes
a total of 4380 images and 50,830 annotation boxes. It includes 25 annotation categories,
namely triangle yoke plate, right angle hanging board, u-type hanging ring, adjusting
board, hanging board, towing board, sub-conductor spacer, shielded ring, grading ring,
shock hammer, pre-twisted suspension class, bird nest, glass insulator without coating,
compression tension class, suspension class, composite insulator, bowl hanging board,
ball hanging ring, yoke plate, weight, extension rod, glass insulator with coating, lc-type
yoke plate, upper-level suspension clamp, and interphase spacer. To our knowledge, the
Fittings Dataset-25 currently contains the largest number of fittings components in the
power industry and has the most detailed classification of fittings categories. An example
image of the dataset is shown in Figure 7a,e.

(e)

Figure 7. Images from different datasets.

(2) Fittings Datasets-12 (FD-12): In addition to the transmission line images captured
by UAVs at ultra-wide angles, we also annotated the relatively close-range transmission
line images captured by UAVs. The datasets included 1,586 images and 10,185 annotation
boxes. This includes 12 categories of fittings, including pre-twisted suspension clamp,
bag-type suspension clamp, shielded ring, grading ring, spacer, wedge-type strain clamp,
shockproof hammer, hanging board, weight, parallel groove clamp, u-type hanging ring,
and yoke plate. Compared to the Fittings Datasets-25, the Fittings Datasets-12 has shorter
shooting distances, fewer types of fittings, and a relatively rough classification of fittings.
The image of the datasets is shown in Figure 7b,f.

(3) Fittings Datasets-9 (FD-9): There are a considerable number of small-scale fittings
in transmission lines. Taking bolts as an example, the proportion of bolts in transmission
line images is very small; usually, only a few pixel sizes; which leads to low accuracy of bolt
recognition in object detection models. In response to the above issues, this paper cropped
the Fittings Datasets-25 and Fittings Datasets-12, saving the areas with more small-scale
fittings as new images and annotating them to increase the proportion of small-scale fittings
in the input images. The dataset includes 1,800 images and 18,034 annotation boxes. This
includes nine types of fittings: bolt, pre-twisted suspension clamp, u-type hanging ring,
hanging board, adjusting board, bowl head hanging board, bag-type suspension clamp,
yoke plate, and weight. An example image of the dataset is shown in Figure 7c,g.
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3.2. Comparative Experiment

To verify the effectiveness of the proposed method in the fittings detection of transmis-
sion lines, we first conducted experiments using different models in the datasets constructed
in this paper. As shown in Table 1, the AP is the average accuracy of the model detecting
all labels in the datasets. GFLOPs are Giga Floating point Operations Per Second, FPS is
the number of frames transmitted per second, and params is the number of parameters for
the model.

Table 1. Experimental results of different fittings datasets.

AP AP AP

Model (FD-9) (FD-12) (FD-25) GFLOPs/FPS Params
Faster R-CNN 80.2 75.1 594 246/20 60 M

YOLOX 83.4 78.3 61.3 73.8/81.3 253 M
DETR 85.6 78.6 61.7 86/28 41 M
Deformable DETR 85.9 81.2 62.5 173/19 40 M
Sparse DETR 86.2 81.5 63.2 113/21.2 41 M
MGA-DETR 88.7 83.4 66.8 101/25.7 38 M

From Table 1, it can be seen that in the three types of fittings datasets, the MGA-DETR
proposed in this paper achieves the highest average precision (AP) in fittings-detecting
transmission lines. In the fittings datasets-9, the AP of MGA-DETR reached 88.7%, an
increase of 3.1% compared to the baseline model DETR. In the fittings datasets-12, the AP
value of MGA-DETR reached 83.4%, an increase of 4.8% compared to the baseline model
DETR. In fittings datasets-25, the AP value of MGA-DETR reached 66.8%, an increase of
5.1% compared to the baseline model DETR. Compared to the three types of datasets, the
detection accuracy of the fittings datasets-25 is relatively low because the images in the
dataset are taken at ultra-wide angles, and the same image contains a variety of fittings
types with significant scale changes. Through experiments, it has been proven that the
model proposed in this article is of great help for the fittings detection of transmission
lines. Comparing the params of different models, it can be found that the YOLOX has
the smallest params. YOLOX is a single-stage object detection model. YOLOX introduces
anchor-free, greatly reducing computational complexity while avoiding anchor-parameter
tuning. Therefore, it has relatively large advantages in GFLOPs, FPS, and params. The
method proposed in this paper is based on the transformer, and due to the self-attention
mechanism in the transformer, the computational complexity of the model is relatively
large. Compared to other methods based on transformer, our method introduces AMM,
which successfully accelerates the calculation speed of the model and reduces the number
of parameters in it. The MGA-DETR proposed in this paper has improved the params and
FPS of the Deformable DETR, which also uses FPN, further proving the effectiveness of the
proposed method.

Figure 8 shows the detection performance of the proposed method in different fittings
datasets. Among them, Figure 8a,d show the detection performance of Fittings Datasets-25,
Figure 8b,e show the detection performance of Fit tings Datasets-12, and Figure 8c,f show
the detection performance of Fittings Datasets-9. From the figure, it can be seen that the
method proposed in this article effectively detects the presence of fittings in the image
in all three types of datasets. Taking Figure 8b,e as examples, the shape of the bag-type
suspension clamp in the image has undergone significant changes due to different shooting
angles. However, the method in this paper accurately detects two different shapes of
bag-type suspension clamps. This further proves the effectiveness of the MAGT module
proposed in this paper.
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Figure 8. The architectures of different FPN.

Table 2 shows the detection results of fittings at different scales in three datasets.
Among them, the glass insulator, grading ring, and shielded ring are large-scale fittings; the
adjusting board, yoke plate, and weight are mesoscale fittings; and the hanging board, bowl
hanging board, and u-type hanging ring are small-scale fittings. The x symbols in Table 2
indicate that the dataset does not contain fittings of this category. Through comparison,
it can be seen that our proposed MGA-DETR has better performance in fittings detection
at different scales. Taking the small-scale fittings hanging board as an example, the AP
in three datasets was 86.9%, 80.4%, and 63.1%, respectively. Compared with the baseline
model, the DETR increased by 7.2%, 4.5%, and 9.7%, respectively. The experiment shows
that the introduction of the BiFPN in DETR has better detection performance for different
scales of fittings.

Table 2. Experimental results of DETR/MGA-DETR on different categories in three datasets.

Fittings AP AP AP
(FD-9) (FD-12) (FD-25)
glass insulator X X X

grading ring X 83.1/89.7 72.6/80.4
shielded ring X 83.2/90.2 69.8/79.5
adjusting board 87.3/90.7 78.8/85.1 57.9/68.7
yoke plate 87.9/91.2 79.3/84.4 58.3/69.1
weight 88.2/91.3 78.2/85.2 57.5/68.2
hanging board 79.7/86.9 75.9/80.4 53.4/63.1
bowl hanging board 81.3/86.6 76.1/80.5 52.7/62.9
u-type hanging ring 82.6/86.9 75.4/80.1 53.5/62.3

3.3. Ablation Experiment

In this section, we designed a series of ablation experiments to demonstrate the effec-
tiveness of each module used in this paper. We used the Fittings Datasets-12 with moderate
shooting distance and relatively rich fittings categories to verify the AP of the model.

As shown in Table 3, we analyzed the impact of different module combinations on
the experimental results. When all three models are not used, the AP at this time is 78.6%.
When only the MVGT module is used, the AP of the model increases by 1.5%, indicating
that the feature combination after image homography transformation is beneficial for
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detecting fittings under different visual conditions. When only the BiFPN is used, the AP
of the model increases by 1.8%, indicating that multi-scale feature fusion is more effective
in transmission line images with significant scale changes. When only using the AMM
module, the AP of the model increases by 1.1%, indicating that the model can improve
detection accuracy by filtering out irrelevant background information. When three modules
are added simultaneously, the AP reaches its maximum.

Table 3. The impact of different modules on experimental results.

. AP AP AP

X X X 85.6 78.6 61.7

Vv x X 85.9 80.1 63.2

x J x 86.3 80.4 63.9

X X Vv 85.8 79.7 62.9

MGA-DETR J v > 87.6 82.9 65.4
Vv X v 87.3 81.6 64.7

X Vv Vv 87.4 81.7 64.9

v Vv Vv 88.7 83.4 66.8

In Table 4, we analyzed in detail the impact of different numbers of homography
transformations on model performance. When the number is 0, the AP of the model is
only 81.7%. With the fusion of image features after homography transformation, the model
performance reaches its optimal level at the number of 4, with an AP of 83.4%. When
the number of homomorphic transformations further increases, the model performance
decreases, indicating that the model has fully learned the geometric transformations in
different views at this time. Our analysis concludes that the reason is that with the increase
in the number, the model overfitting will lead to a decrease in AP.

Table 4. The influence of different numbers of homography transformations on experimental results.

AP AP AP
Model Number (FD-9) (FD-12) (FD-25)
0 87.4 81.7 64.9
1 87.8 82.5 65.3
2 88.0 82.9 65.9
MVGT 3 88.3 83.1 66.5
4 88.7 83.4 66.8
5 88.6 83.3 66.6
6 88.1 82.7 66.1

As shown in Table 5, we analyzed the impact of different FPNs on model performance.
When FPN is not used, the model’s AP is only 81.6%. When using FPN, the AP increased
by 0.6%, indicating that learning multi-scale image features helps the model detect trans-
mission line fittings at different scales. However, FPN only considers the top-down feature
fusion, while PAFPN considers the bottom-up feature fusion on this basis. However, the
efficiency of the two feature-fusion methods did not reach the optimal level. In this article,
we introduced the BiFPN, which further improved the AP of the model, demonstrating the
effectiveness of our method.
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Table 5. The Influence of Different FPNs on Experimental Results.

. AP AP AP
Model FPN PAFPN  BiFPN (FD-9) (FD-12) (FD-25)
x x x 85.1 81.6 60.7
v x x 86.7 82.3 62.1
MGA-DETR x v x 87.2 82.8 64.3
x x V 88.7 83.4 66.8

4. Conclusions

In order to improve the accuracy of transmission line fittings detection, this paper
proposes a fittings detection method based on multi-scale geometric transformation and
attention-masking mechanism. Firstly, we designed an MVGT module to utilize homogra-
phy transformation to obtain image features from different views. Then, the BiFPN was
introduced to efficiently fuse multi-scale features of images. Finally, we used an AMM
module to improve model speed by masking the attention interaction between image se-
quence data with lower scores and other data. This paper constructs three different datasets
of transmission line fittings and conducts experiments on them. The experimental results
show that the proposed method effectively improves the performance of transmission line
fittings detection. In the next step of our work, we will study the deployment of the model
to obtain its application in the industry.
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