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Abstract: Wind speed prediction is very important in the field of wind power generation technology.
It is helpful for increasing the quantity and quality of generated wind power from wind farms.
By using univariate wind speed time series, this paper proposes a hybrid wind speed prediction
model based on Autoregressive Moving Average-Support Vector Regression (ARMA-SVR) and error
compensation. First, to explore the balance between the computation cost and the sufficiency of
the input features, the characteristics of ARMA are employed to determine the number of historical
wind speeds for the prediction model. According to the selected number of input features, the
original data are divided into multiple groups that can be used to train the SVR-based wind speed
prediction model. Furthermore, in order to compensate for the time lag introduced by the frequent
and sharp fluctuations in natural wind speed, a novel Extreme Learning Machine (ELM)-based error
correction technique is developed to decrease the deviations between the predicted wind speed
and its real values. By this means, more accurate wind speed prediction results can be obtained.
Finally, verification studies are conducted by using real data collected from actual wind farms.
Comparison results demonstrate that the proposed method can achieve better prediction results than
traditional approaches.

Keywords: Autoregressive Moving Average (ARMA); Support Vector Regression (SVR);
Extreme Learning Machine (ELM); time series prediction; error compensation

1. Introduction

Since the beginning of the 21st century, people’s demand for energy has become
stronger and stronger [1]. However, coal, oil, natural gas and other non-renewable resources
still occupy the main part of the world energy market [2]. The burning of these fossil fuels
will release greenhouse gases and threaten the environment. In order to solve the energy
crisis and protect the environment, people are trying to develop new energy sources [3].
Nowadays, as one of the fastest developing new technologies in recent years, wind power
generation technology is attracting widespread attention [4].

Wind power is a clean, renewable and pollution-free energy source [5]. However,
as a natural resource, wind power has the characteristics of instability and uncertainty.
Wind speed changes frequently, which brings great challenges to the stability of the
wind power generation system and increases the operation and maintenance costs of
the power plant [6].

In order to solve the instability problem in wind power generation, one of the most
effective solutions is wind speed prediction [7]. As a cheap and effective method, it also
plays a positive role in reducing operating costs and improving wind power competitive-
ness [8]. Through predicting the wind speed, it can guide the power scheme to adjust the
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power generation plan reasonably [9], change the torque of a wind turbine to maximize
the use of wind power [10], protect the safety of the wind turbines so that the wind farm
can use more advanced materials [11–13], and optimize the layout of wind turbines and
improve the economic benefits of wind farms [14].

Many methods have been proposed for wind speed prediction. These methods can be
divided into two categories: linear strategies and nonlinear approaches. Traditional linear
methods use the linear combination of historical values to predict future wind speeds, such
as with Autoregressive Moving Average (ARMA) [15]. Since these methods assume the
relationship between historical wind speeds and future ones are linear and ignore the non-
linear characteristics, the prediction accuracy is not optimal [16]. With the rise of artificial
intelligence [17], more and more nonlinear methods have been studied, such as Backpropa-
gation Neural Network (BPNN) [18], Convolution Neural Network (CNN) [19], Support
Vector Machine (SVM) [20], Extreme Learning Machine (ELM) [21], Long-short Term
Memory Network (LSTM) [22], and the hybrid model combining multiple methods [23].
These nonlinear methods can accept more input features and can achieve more accurate
predictions by selecting appropriate activation functions and hyperparameters.

However, to reduce the operating costs, some wind farms only collect and save wind
speed information for wind speed forcasting. They ignore other factors affecting wind
speed, such as topographic features, temperature, pressure, humidity and so on [24]. This
causes the original data to be a univariate time series containing historical wind speeds
only. Many nonlinear methods, such as ANN, SVR, ELM, etc., need sufficient inputs to
ensure the accuracy of the prediction results. For univariate time series, if we want to
achieve better prediction accuracy by using machine learning methods with a relatively low
computation cost, we may need to divide the sequence into multiple segments and choose
the appropriate number of data as the input and output for constructing a training set. That
is, an appropriate number of historical wind speed points should be used to predict future
values. Moreover, in the forcast methods based on time series, there is always a time lag
between the predicted wind speed and actual values due to the rapid changes in natural
wind speeds and time delays in the original wind data collection. This prediction lag will
greatly reduce the accuracy of the wind speed forecast results [25].

Therefore, to find the optimal number of historical input data for a prediction model
and alleviate the forecast time lag phenomenon, this study proposes a novel wind speed
prediciton method to improve the prediction accuracy by combining the ARMA-SVR model
and an error compensation technique. First, the ARMA model of the raw wind speed data
is built, and the Partial Autocorrelation Coefficient (PAC) p of the model is calculated by
using Akaike Information Criterion (AIC). Second, the p value is used as the basis for
dividing the data set to train SVR for the wind speed prediction model. Then, the error set
can be constructed by subtracting the predicted value from the true value. The same data
preprocessing method for raw wind speed is utilized for the error time series to obtain the
training set for the lag compensation model. Finally, the ELM is employed as the time lag
correction model to give the predicted error. By adding the raw wind speed prediction
result and the error prediction result, the final wind speed prediction result can be obtained.
Through a comparison with SVR and BPNN, the ARMA-SVR-ELM model in this paper
has a better prediction effect. The major contributions of this paper can be summarized
as follows:

• For univariate time series forecasting, in order to explore the balance between the
computation cost and the sufficiency of input features, this paper uses the parameters
of the ARMA model which can be employed as the basis from which to select the
optimal division data as the input of the SVR model.

• Through constructing the error dataset, an ELM-based time lag compensation tech-
nique is designed to mine the effective information of the error time series. By this
way, the forecast lag phenomenon can be alleviated effectively.
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• By combining the ARMA-SVR model and the error correction approach, a novel wind
speed prediction approach is proposed to improve the prediction results. Simulation re-
sults show the proposed method can achieve better accuracy than traditional methods.

The rest of this paper is arranged as follows. Section 2 introduces the mathematical
models of ARMA, SVR and ELM. Section 3 introduces the proposed method. Section 4
introduces the experiment and discusses the results. Section 5 draws conclusions.

2. Mathematical Models

This paper mainly uses ARMA, SVR and ELM models, which will be briefly described
in this section.

2.1. The ARMA Model

The ARMA (p, q) model is one of the earliest models used for time series
prediction [26]. It includes two parts: the Autoregressive(AR) model and the Moving
Average(MA) model. The ARMA model can be described as follows

Xt =
p

∑
i=1

αiXt−i +
q

∑
j=1

β jεt−j + εt, (1)

where X = {X1, X2, . . . , Xt} is wind speed time series.
The ARMA model describes the relationship between current value, historical error

and historical value. Equation (1) shows that the current value Xt is composed of a linear
combination of p historical values and q historical errors. The p and q are selected by AIC.
The p value means that if every p data is taken as a group, the internal correlation of this
group is very strong. Therefore, it is very reasonable to select p as the basis for dividing the
univariate series.

2.2. The SVR Model

The SVR model can map low dimensional nonlinear problems to high dimensional
space [27], and transform them into linear problems. The optimal hyperplane can be found
as follows

f (x) = ωTΦ(x) + b. (2)

In this paper, the Radial Basis Function (RBF) is chosen as the kernel function. The
RBF can map samples to a higher dimensional space, which can better handle nonlinear
wind speed prediction problems. The RBF is shown as follows

k(x, x
′
) = e−

||x−x
′
||2

2σ2 , (3)

where ||x− x
′ ||2 is the Euclidean distance (L2 norm) of x and x

′
, and σ controls the range

of influence of the RBF. The larger the σ is, the larger the influence range of the RBF.
To find the the optimal hyperplane f (x), hyper parameter ω and b need to be opti-

mized. Therefore, the SVR model minimizes the following constrained condition

min
ω,b,ξ,ξ∗

1
2
‖ω‖2 + C

N

∑
i=1

(ξ + ξ∗) (4)

s.t.


yi − f (xi) ≤ ε + ξ∗

f (xi)− yi ≤ ε + ξ
ξ, ξ∗ ≥ 0.

(5)

The SVR model can achieve a good prediction effect due to its ability to describe the
nonlinear relationship between an input and an output [28]. Therefore, this paper chooses
the SVR model to predict future wind speed.
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2.3. The ELM Model

The ELM is a single hidden layer network model that uses random input layer weights
and deviations and a generalized inverse matrix theory to calculate the output layer
weights. Its output yi is as follows

yi =
K

∑
j=1

λj · g
(
ωj · xi + bj

)
, i = 1, 2, . . . , N. (6)

ELM is not sensitive to the selection of parameters, and it has a fast training response
and high accuracy [29]. Therefore, this paper uses the ELM model to predict errors.

2.4. Model Evaluation Index

This paper uses Root Mean Square Error (RMSE) and Coefficient of Determination
(R2) to evaluate the prediction effect of the model

RMSE =

√√√√ 1
N

N

∑
i=1

(x̂i − xi)
2 (7)

R2 = 1− ∑N
i=1(xi − x̂i)

2

∑N
i=1(xi − x̄i)2

. (8)

From Equations (7) and (8), N is the number of samples, xi and x̂i represent the ith
real value and the ith estimated value of the wind speed series, respectively, and x̄i is the
average value of the samples.

3. The Proposed Method

In order to better predict univariate time series, this paper proposes an ARMA-SVR
wind speed prediction method based on ELM error compensation (ARMA-SVR-ELM
hybrid model).

The data used in this paper are the univariate series, which means the data only has
wind speed without other features. In order to enable SVR and ELM models to make full
use of the original data with appropriate computational cost, this paper uses the ARMA
model to find the relationship between each data point in the original univariate sequence,
and it takes several data with strong correlation as a new set of sequences. As described
in Section 2, the ARMA model can effectively handle the time univariate series. It can
be seen from Equation (1) that in the ARMA model, the current value is related to the
partial historical value and the historical error value. These values have a relatively strong
correlation. Therefore, it is reasonable to use each group of sequences that has strong
correlation as the training parameters of SVR to predict future wind speed. In this new
set of sequences, the last value is used as the output, and all the previous data are used
as the inputs. By this means, the original data is divided into multiple groups, and all of
them are used to train the SVR and ELM models. Since the ARMA model is often used to
deal with univariate time series, the ARMA model’s PAC reflects the relationship between
the current value and multiple historical values with strong correlation. Therefore, it is
very reasonable to divide the original data into multiple groups of sequences based on the
p value obtained by the ARMA method.

This paper uses the divided data to train the SVR model to predict wind speed directly.
Although the overall effect looks good, the fitting effect is not ideal in some periods when
the wind speed changes rapidly. In order to deal with this and further improve the wind
speed prediction accuracy, the prediction error was collected to develop the error correction
technique in our study. The collected error data is still a univariate time series. Therefore,
the same ARMA processing method as that of the original wind speed data was adopted,
and the divided data was used to train the ELM model for error prediction. By this means,
the error value of the future wind speed was obtained. When getting the wind speed
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prediction value and the error prediction value, the final wind speed prediction value can
be obtained by adding these two prediction values. This process is called the “wind speed
prediction based on error compensation technique” in our study.

The flow chart of the proposed method is shown as Figure 1 and the detailed descrip-
tion is as follows.

• Step 1: Data Processing

The ARMA model is often used for time series prediction, and it requires that the
input data must be a stationary series. The definition of a stationary sequence is as follows

E(Yt) = µ
Var(Yt) = σ2,
γt,t−k = γ0,k

(9)

where γt,t−k represents the autocorrelation coefficients at time t and time t− k.
Equation (9) shows that the expectation and variance of the stationary sequence do not

change with time. Due to the influence of temperature, pressure and many other factors,
there are few stable wind speed time series in nature. This leads to the fact that the data
collected in many cases cannot be used directly and must be preprocessed. In order to
make the sequence stable, this paper uses differential processing, and the Augmented
Dickey-Fuller (ADF) test is used to check whether the differenced sequence is stable. After
that, the Autocorrelation Functions (ACF) and the Partial Autocorrelation Functions (PACF)
diagrams are calculated to determine the value range of the number of input features.

In Step 1, the ADF test is used to test the stationarity of the sequence by checking
whether the characteristic root of the sequence is within the unit circle.

Step 2

Step 1

Step 3

Step 4

Step 7

Step 5

Step 6

Figure 1. The Flow Chart of The Experiment.
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• Step 2: ARMA Modeling

This step uses the differential data to establish the ARMA (p, q) model, and then
AIC criteria are used to find the optimal p and q. In the above-mentioned model, p
represents Partical Autocorrelation Coefficient (PAC) and q represents Autocorrelation
Coefficient (AC).

In Step 2, AIC is often used to evaluate the quality of the regression model. In this
paper, it is used for determining the optimal AC and PAC of the ARMA(p, q) model. The
AIC can be described as follows

AIC = nln(
SSR

n
) + 2k, (10)

where SSR is Sum of Squared Residuals, n is the number of samples, and k is the number of
unknown parameters.

• Step 3: Data Partitioning

After finding the optimal p, we use it to partition the data. With this specific method,
starting from the data at the first moment, each p data is a group, where the first p− 1 data
are the inputs, and the pth data is the output. That is, the first p− 1 data are used as the
features to predict the pth value. Then, we start with the second data set and repeat the
previous step until all the data are divided. This process can be described as follows

x̂p = fp
(
x1, x2, . . . , xp−1

)
x̂p+1 = fp

(
x2, x3, . . . , xp

)
...

x̂end = fp
(
xend −p+1, xend −p, . . . , xend −1

)
.

(11)

The principle for this is that p represents the correlation of the data in the original sequence,
which can maximize the utilization of the data without losing too much machine performance.

• Step 4: Wind Speed Prediction

The partitioned data are used to train the SVR model to predict the wind speed. In this
step, the training data and the test data are from Step 3, and the choice of kernel function
for the SVR model is RBF.

• Step 5: Error Data Processing and Modeling

The trained SVR model obtained in Step 4 is used to predict the training set, and
then the predicted value of the original data can be obtained. The error sequence can be
obtained by subtracting the predicted value from the original data. The processing and
modeling method of the error sequence is the same as that of the raw data in Step 1 and
Step 2. The stationarity of the sequence is detected first. Then, its ACF and PACF images
are drawn, and the ARMA model is built to find the optimal p and q of the error set by
using the AIC criteria.

• Step 6: Error Data Partitioning and Predicting

The method of dividing error data is the same as in Step 3: the data are divided into
multiple groups by using the p value obtained in Step 5. The first p− 1 numbers of each
group are regarded as the inputs, and the pth data is regarded as the output. Then, the
partitioned data are used to train the ELM model to predict the future error.

• Step 7: Get the Final Wind Speed Prediction Result

In Step 4, we get the wind speed prediction result, and the error prediction result
is obtained in Step 6. In this step, we need to add them, and then the final wind speed
prediction result can be obtained.
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4. Experiment

This section mainly introduces the results and discussions of the experiment. The
raw wind speed data from a wind farm in China is shown in Figure 2. Among them, the
data are recorded every 15 min, a total of 1344 data points are selected, the first 1000 data
points are used as the training set, and the remaining data are used as the testing set. The
experiment was tested on a PC with AMD Ryzen 5800H, NVDIA RTX 3070 Laptop and
16 GB memory. The following is the experimental result.
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Figure 2. The Raw Data.

4.1. Experiment Steps of Wind Speed Prediction
4.1.1. Data Processing

By using the ADF test operation, we prove that the raw data shown in Figure 2 are
not a stable sequence. In order to make the sequence stable, this paper uses differential
processing. It is worth noting that the testing set is considered unknown, and therefore,
the training set is used to do the differential processing. The processing result is shown in
Figure 3, and its ACF and PACF are shown in Figure 4. In this paper, the raw data after
using the differential operation are used to obtain the ARMA model.
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Figure 3. The Raw Data After Difference.
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Figure 4. The ACF and PACF of Raw Data (The blue lines are the upper and lower confidence bounds).

The differential wind speed is shown in Figure 3. The ADF test is also used in this
case, and the result also proves that the differential wind speed is a stationary sequence.
Thus, it can be used for ARMA modelling.

4.1.2. ARMA Modeling

This step uses the differential data to establish the ARMA (p, q) model. The selection
of p and q is an important step in the ARMA model. Figure 4 shows the ACF and PACF of
the original data. Note that as ACF and PACF decrease, the relationship between historical
wind speed and the future one becomes weaker and weaker. To guarantee the balance
between the computation cost and the sufficiency of input features, the value range of p and
q are respectively chosen as 3 to 7 and 4 to 7 [30]. Then, the AIC is used to find the relatively
appropriate p and q in the ARMA (p, q) model. The specific method is to set a cycle and
use the iterative method for each combination of p and q. The relatively appropriate values
of p and q can be obtained when the AIC value is the minimum.

As shown in Table 1, the minimum AIC value is obtained when p = 4 and q = 5. This
means that the optimal value in data portioning should be 4.

Table 1. The AIC Values of ARMA Model.

p q AIC p q AIC p q AIC p q AIC

1 1 −0.939708317 3 5 −0.941061416 6 1 −0.931624951 8 5 −0.933236582
1 2 −0.938949696 3 6 −0.937277647 6 2 −0.930127525 8 6 −0.933216729
1 3 −0.937090829 3 7 −0.930057817 6 3 −0.938491989 8 7 −0.94568503
1 4 −0.935025071 3 8 −0.936440702 6 4 −0.933036538 8 8 −0.944814908
1 5 −0.933116954 4 1 −0.934974836 6 5 −0.938025992 9 1 −0.927770895
1 6 −0.931432686 4 2 −0.936073001 6 6 −0.936211633 9 2 −0.936251062
1 7 −0.929815103 4 3 −0.931061169 6 7 −0.935605297 9 3 −0.93489583
1 8 −0.936929991 4 4 −0.939470353 6 8 −0.931863081 9 4 −0.933116554
2 1 −0.938981997 4 5 −0.946239715 7 1 −0.929987002 9 5 −0.941774164
2 2 −0.936982456 4 6 −0.930322493 7 2 −0.931898552 9 6 −0.93679826
2 3 −0.934982158 4 7 −0.928406952 7 3 −0.926560847 9 7 −0.94487932
2 4 −0.933065546 4 8 −0.935086314 7 4 −0.927954063 9 8 −0.94366315
2 5 −0.931151868 5 1 −0.933156842 7 5 −0.937354724 10 1 −0.926252232
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Table 1. Cont.

p q AIC p q AIC p q AIC p q AIC

2 6 −0.940212875 5 2 −0.942303885 7 6 −0.933872907 10 2 −0.934431651
2 7 −0.931849886 5 3 −0.93629865 7 7 −0.94291323 10 3 −0.936059114
2 8 −0.930386906 5 4 −0.946208256 7 8 −0.941815759 10 4 −0.931216218
3 1 −0.936983426 5 5 −0.934978618 8 1 −0.928777357 10 5 −0.939906908
3 2 −0.934978248 5 6 −0.928315448 8 2 −0.929908894 10 6 −0.938448221
3 3 −0.935676116 5 7 −0.926457981 8 3 −0.936635588 10 7 −0.938985571
3 4 −0.933944129 5 8 −0.935428434 8 4 −0.937461583 10 8 −0.943233736

4.1.3. Data Partitioning

The optimal p is used to partition data. Every four data are divided into a group.
The first three data are regarded as inputs, and the fourth data point is regarded as a target.
The same processing is employed to all the wind speed data until all of them are portioned.
This process is described by the following equation

x4 = fp(x1, x2, x3)
x5 = fp(x2, x3, x4)

...
xend = fp(xend−3, xend−2, xend−1).

(12)

4.1.4. Wind Speed Prediction

The SVR model can be trained by the partitioned data in Section 4.1.3, and then we can
use the trained model to predict the wind speed. In this experiment, the choice of kernel
function of the SVR model is RBF. The parameter of RBF σ is 0.0039, and the value of the
penalty factor C is 6.285409. Both of them are selected by the trial and error method. The
predicting result is shown in Figure 5.
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Figure 5. Wind Speed Prediction of SVR.
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It can be seen from Figure 5 that the SVR model can effectively predict the change in
wind speed on the whole. The prediction error is shown in Figure 6.
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Figure 6. The Prediction Error.

4.2. Experiment Steps of Error Prediction

In order to further improve the prediction accuracy, an error compensation prediction
based on ELM is used in this paper. In this method, the ELM is used to predict the error.
Then, a more accurate wind speed prediction result can be obtained by adding the the error
prediction result and the wind speed prediction result.

4.2.1. Error Data Processing and Modeling

The trained SVR model is used to predict the original data, which is shown in Figure 7.
Then, the error sequence can be obtained by subtracting the predicted value from the
original data, which is shown in Figure 8.
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Figure 7. The Result of Raw Data Prediction.



Sensors 2023, 23, 4905 11 of 20

0 200 400 600 800 1000

Time(15 minutes)

-5

-4

-3

-2

-1

0

1

2

3

W
in

d
 S

p
e

e
d

 E
rr

o
r(

m
/s

)

Figure 8. The Raw Error Data.

Like the original data, the error data are also a univariate time series. Therefore, the
data processing method is the same as that of the original data.

As shown in Figure 8, the sequence looks stable, but it does not pass the ADF
test. Therefore, the sequence needs to be differentiated. The differential result is shown
in Figure 9, and the ACF and PACF are shown in Figure 10.

It can be estimated from Figure 10 that the optimal values of p and q in ARMA
(p, q) should be both around 5 to 7. Therefore, the AIC criterion is used to find the most
reasonable values of p and q. The result of AIC is shown in Table 2.

As Table 2 shows, the minimum AIC value is obtained when p = 5, q = 3. Therefore,
the theoretical optimal ARMA model is ARMA(5, 3).

Table 2. The AIC Values of Error ARMA Model.

p q AIC p q AIC p q AIC p q AIC

1 1 −0.917157036 3 5 −0.913248754 6 1 −0.915371665 8 5 −0.910804917
1 2 −0.918237417 3 6 −0.914624364 6 2 −0.911872347 8 6 −0.907870931
1 3 −0.917806459 3 7 −0.919656616 6 3 −0.915797823 8 7 −0.917843557
1 4 −0.919608918 3 8 −0.911261485 6 4 −0.914817412 8 8 −0.919087666
1 5 −0.917585799 4 1 −0.916886099 6 5 −0.912784914 9 1 −0.91017278
1 6 −0.915559577 4 2 −0.917403694 6 6 −0.908763361 9 2 −0.908661079
1 7 −0.911957637 4 3 −0.918582861 6 7 −0.920249027 9 3 −0.912515236
1 8 −0.911492457 4 4 −0.913309095 6 8 −0.917784858 9 4 −0.908129994
2 1 −0.919090626 4 5 −0.920639364 7 1 −0.914013316 9 5 −0.915859181
2 2 −0.917948222 4 6 −0.92012195 7 2 −0.912221398 9 6 −0.90542256
2 3 −0.916349042 4 7 −0.912692359 7 3 −0.913419954 9 7 −0.9146417
2 4 −0.914395162 4 8 −0.912323987 7 4 −0.911743622 9 8 −0.915471508
2 5 −0.915599578 5 1 −0.915574726 7 5 −0.910158108 10 1 −0.909411234
2 6 −0.917955537 5 2 −0.915642376 7 6 −0.918849939 10 2 −0.907795459
2 7 −0.910156087 5 3 −0.920895364 7 7 −0.916877493 10 3 −0.906402831
2 8 −0.913209174 5 4 −0.916511787 7 8 −0.918561658 10 4 −0.906187391
3 1 −0.918491847 5 5 −0.91495742 8 1 −0.912181595 10 5 −0.909218128
3 2 −0.919431816 5 6 −0.913918875 8 2 −0.910342013 10 6 −0.908371191
3 3 −0.914373558 5 7 −0.908787598 8 3 −0.914344249 10 7 −0.917539225
3 4 −0.915595298 5 8 −0.91541658 8 4 −0.910003375 10 8 −0.915065366
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Figure 9. The Differential Error Data.
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Figure 10. The ACF and PACF of Error Series (The blue lines are the upper and lower confidence bounds).

4.2.2. Error Data Partitioning and Predicting

The method of dividing data is the same as before: the p value is used to divide the
data into multiple groups. The first p− 1 numbers of each group are regarded as the input,
and the pth data is regarded as the target. Then, the partitioned data are used to train
the ELM model to predict the future error. In this step, the activation function of the ELM
model is the Sigmoid Function, and the number of hidden layer neurons is 10. The result of
the error prediction is shown in Figure 11.
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Figure 11. Error Prediction of ELM.

From Figure 11, one may see that the deviations between the real error and the
predicted one is relatively big. However, for error compensation, as long as the changing
trend is predicted correctly, the accuracy of the final predicted result will also be improved.
As shown in Figure 11, the changing trend of wind speed error is accurately predicted by
using the proposed error correction technique. Thus, more accurate wind prediction results
can be achieved after error compensation in our study.

4.2.3. Add Error Prediction and Wind Speed Prediction

After the results of wind speed prediction and error prediction are obtained, the final
wind speed prediction result can be obtained by adding them up.

It is worth noting that due to the use of error compensation, the first few values
in Figure 5 will be used as inputs to predict future values, which results in different images
in Figures 5 and 12 at the beginning, but this does not affect the experimental results.

Compared with the direct prediction of wind speed (shown as Figure 5), Figure 12
shows that the RMSE of the prediction result is 0.89609, which is smaller than the 0.91226
of the prediction result from Figure 5. Figure 13 is the error comparison of Figures 5 and 12,
the result shows the prediction error has decreased, and the overall prediction result after
ELM error compensation has been improved. Although the error compensation value is
very small, it can also further narrow the gap between the predicted value and the true
value. Therefore, the overall prediction effect can be improved.
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4.3. Comparison Studies of Error Compensation

In order to prove the better effect of error prediction using ELM, this section compares
the error prediction of SVR and BPNN. The training set of SVR and BPNN is the same as
that of ELM. The results are shown in Figures 14–17.

In this paper, the kernel function of SVR is RBF, σ is 0.0039, and the penalty factor is
3.8855. The neural nodes and hidden layers of the BPNN are 10 and 2, respectively.
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It can be seen from the above figure that neither the SVR nor the BPNN method can
predict the error very well. In Figure 15, the accuracy of the final prediction result after
SVR error compensation is also improved compared to Figure 5, with the RMSE being
0.89776, but it is still slightly higher than the result of the ELM error compensation of
0.89609 in Figure 12. For the BPNN error compensation technique, there are always some
sharp changes in the predicted wind speed, such as at time 25 and 29. This obviously will
reduce the wind speed prediction accuracy.

From Figure 18, the mean values of the error prediction results of ELM, SVR and
BPNN models are −0.0108, −0.0112 and −0.0170, respectively, which indicates that the
volatility of the BPNN prediction result is the highest, and the ELM prediction result is
the smallest. In other words, the prediction result of the ELM error compensation is more
accurate than that of the other two models. The final prediction result of ELM, SVR and
BPNN after error compensation are shown in Figure 19.
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Figure 14. Error Prediction of SVR.
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Figure 15. The Final Prediction Result of SVR.
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Figure 17. The Final Prediction Result of BPNN.

Table 3 shows the evaluation indicators of prediction performance through ELM, SVR
and BPNN error compensation, and whether RMSE, R2 or ELM is better than the other two
methods. Therefore, it is reasonable to use ELM for error compensation prediction.

Table 3. The RMSE and R2 of ELM, SVR and BPNN.

Evaluation Index ELM SVR BPNN

RMSE 0.8961 0.8978 0.9318
R2 0.9021 0.9017 0.8941
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Figure 19. The Final Prediction Result of ELM, SVR and BPNN.

5. Conclusions

In order to predict the univariate wind speed time series more accurately, this paper
proposes a hybrid model based on ARMA-SVR to predict wind speed. ARMA is used to
model the univariate series, and its PACF is obtained to guide the data division. Then, the
divided data are used to train the SVR model to predict wind speed. This way can make
full use of the original data without wasting machine performance, and it can improve
the prediction effect. Then, in order to further improve the prediction accuracy, the error
compensation method is adopted in this paper. Through a comparison of ELM, SVR and
BPNN, it is proven that ELM is more suitable for error compensation prediction.
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With the verification of real data, the ARMA-SVR-ELM hybrid model proposed in
this paper can improve the accuracy of wind speed prediction compared to the direct
forecasting method, and thus it can be applied in practice.

Meanwhile, there are still some areas worth improving in this study. For example, this
study only uses historical wind speed time series to conduct the prediction task. How to
use multi spatio-temporal scale features to achieve more accurate prediction results is a
promising research direction.
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Nomenclature
The following nomenclatures are used in this manuscript:

X Wind speed time series
Xt Current value of wind speed time series
αi Autoregressive parameter
β j Moving average parameter
p Partial Autocorrelation Coefficient
q Autocorrelation Coefficient
εt White nose of time t
Φ(x) RBF kernel function
ω Coefficient vector of SVR model
b Bias of SVR model
x
′

Center of kernel function
C Penalty factor of SVR
N Number of Samples
xi Input data of SVR
yi Output targets of SVR
ξ∗, ξ Slack variables of SVR
ε Loss coefficient of SVR
K Number of neurons of ELM
ωj Random weights of ELM
bj Deviation of ELM
λj Output Layer Weights of ELM
g(.) Sigmoid activation function
xi The ith value of wind speed time series
x̂i The ith estimate value of wind speed time series
x̄i Average value of samples
AC Autocorrelation Functions
ACF Autocorrelation Coefficient
ADF Augmented Dickey-Fuller
AIC Akaike Information Criterion
ARMA Autoregressive Moving Average
BPNN Backpropagation Neural Network
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ELM Extreme Learning Machine
PAC Partial Autocorrelation Coefficient
PACF Partial Autocorrelation Functions
RBF Radical Basis Functions
SVR Support Vector Regression
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