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Abstract: Nowadays, the industrial Internet of things (IIoT) and smart factories are relying on
intelligence and big data analytics for large-scale decision making. Yet, this method is facing critical
challenges regarding computation and data processing due to the complexity and heterogeneous
nature of big data. Smart factory systems rely primarily on the analysis results to optimize production,
predict future market directions, prevent and manage risks, and so on. However, deploying the
existing classical solutions such as machine learning, cloud, and AI is not effective anymore. Smart
factory systems and industries need novel solutions to sustain their development. On the other hand,
with the fast development of quantum information systems (QISs), multiple sectors are studying
the opportunities and challenges of implementing quantum-based solutions for a more efficient and
exponentially faster processing time. To this end, in this paper, we discuss the implementation of
quantum solutions for reliable and sustainable IIoT-based smart factory development. We depict
various applications where quantum algorithms could improve the scalability and productivity of
IIoT systems. Moreover, we design a universal system model where smart factories would not need
to acquire quantum computers to run quantum algorithms based on their needs; instead, they can
use quantum cloud servers and quantum terminals implemented at the edge layer to help them run
the desired quantum algorithms without the need of an expert. To prove the feasibility of our model,
we implement two real-world case studies and evaluate their performance. The analysis shows the
benefits of quantum solutions in different sectors of smart factories.

Keywords: smart factory; IIoT; quantum algorithms; quantum neural network; quantum approximate
optimization algorithm

1. Introduction

History defines the term industrial revolution as the development from agriculture
and a human-based economy to a machine-based industry. Starting with the deployment
of steel into production, the discovery of new energy sources, such as coal, led to the
innovation of machines and engines. The invention of machines was the major element
that changed the production line by creating the concept of factories. Then, transportation
and communication systems evolved, leading to an evolution in mass production and,
finally, the stage of automation of the manufacturing process that radically changed the
world we live in [1]. Moreover, with the fast development of communication technology,
the concept of the industrial Internet of things (IIoT) became more integrated into our daily
lives, and normal cities became smart cities with interconnected devices, sensors, machines,
and systems. IIoT devices generate enormous amounts of data in different sectors, which
created a new paradigm known as the big-data-based intelligence and analytics system
that studies the impact of big data on smart factory organization [2]. Large companies
are relying primarily on big data analysis for control, optimization, design, supply, and
discovery. The results are mainly organized and visualized for more effective decision

Sensors 2023, 23, 4852. https://doi.org/10.3390/s23104852 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23104852
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9406-8932
https://orcid.org/0000-0003-1831-0309
https://doi.org/10.3390/s23104852
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23104852?type=check_update&version=1


Sensors 2023, 23, 4852 2 of 12

making. Smart factory-driven big data analytics can be divided into three main categories,
as shown in Figure 1.
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It is believed that big data is the fuel for companies and smart factories to improve
production, reduce the cost of manufacturing, and manage risks, which explains why large
companies are spending millions of dollars on big data analysis and hiring experts in
databases, econometrics, visualization, statistics, and machine learning.

Data is important for smart factories; however, too much data can be challenging. In
today’s society, and with the fast and continuous development of the IoT and network
generations, the IIoT is facing a problem of raw enormous and heterogeneous data collected
from different sectors. The large amount of collected data is getting harder and more com-
plicated to classify and analyze, which is slowing down the processing phase. Furthermore,
the security and privacy issues regarding data collection and communication are critical
for an effective analysis. The data can be easily tampered with, manipulated, corrupted,
or collected from the wrong nodes, which directly affects the analyzed results, leading to
inaccurate decision making and costing smart factories huge losses. Moreover, the current
computer power we are relying on is approaching its limits already. Based on Moore’s law,
the number of transistors in each square inch on a microchip is doubling every year, which
means that today’s transistors are reaching their end. Thus, it is inevitable to discover new
forms of transistors and novel solutions for data processing [3].

Another issue with big data analysis for smart factories is digital carbon footprint; the
information and communications technology (ICT) sector is reported to be contributing by
1.4 percent of the overall global carbon emission from unused switched-on base stations
to complex and energy harvesting computations and processing at cloud servers, digital
technologies are powerful tools that can be used either for better or for worse, depending
on societal framing.

On the other hand, quantum computers and quantum information science (QIS) are
viewed as the next area and solution for computation and data processing [4]. Quantum
computers rely on the superposition of photons, which is a quantum mechanical phe-
nomenon, and states that the polarization of each photon cannot be known unless it is
measured, which means that the state of a qubit (the version of bits used in quantum
computers) is both 0 and 1 at the same time. Another property of quantum computers is
the entanglement of qubits, where the probability state of each qubit is directly affected by
another entangled qubit. Saying two qubits are entangled, the moment we measure the
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state of one of them, we can immediately know the state of the other qubit even if they
are polar apart. This property mathematically guarantees an exponential growth of qubit
state probabilities with every qubit entangled in this system; given two entangled qubits,
the probability of their state during measurement is four (00,01,10,11), and adding only
one qubit to the system will double the probability range to eight, and so on. Quantum
computers are promising an exponential growth of processing power that goes far beyond
any supercomputer we have today. Google announced that their 53-qubit quantum chip
managed to solve in a few seconds complex mathematical problems that took classical
computers years to solve.

Quantum computing and quantum machine learning offer the potential to enhance
data processing efficiency in various ways. Firstly, quantum computers can perform
certain computations much faster than classical computers by using quantum bits (qubits)
that can represent multiple states simultaneously, allowing for parallel processing and
faster calculations. Secondly, quantum algorithms can optimize problems involving large
amounts of data by efficiently searching through them and finding the best solutions.
Thirdly, quantum computers can simulate complex physical systems that are hard to
model using classical computers, which have applications in fields such as chemistry and
materials science. Fourthly, quantum machine learning algorithms can help process and
analyze unstructured data, which is difficult to process using traditional algorithms. Lastly,
quantum computing has the potential to enhance data security by allowing for the creation
of unbreakable encryption methods, which are currently challenging to implement. Overall,
quantum computing and quantum machine learning have the potential to transform data
processing and improve computational efficiency for a wide range of problems.

The future of smart factory analysis requires high processing power with low car-
bon emissions to create the goal of sustainable development. To this end, in this paper,
we propose the deployment of quantum information technology in IIoT for optimized
decision making, faster and effective data processing, reduced computation time which
leads to an adequate reduction in carbon emission, and to maintain a scalable development
environment in future smart factories.

The rest of our proposed research paper is organized as follows; Section 2 discusses the
related state of the art regarding quantum solutions for smart factory and present our main
key considerations followed in our system. Section 3 depicts the overview of our system
model and explains possible applications of quantum algorithms in several industries. To
prove our designed model, we study two case scenarios in Section 4 and analyze their
performance. Section 5 provides the open research challenges. Finally, we conclude this
paper with Section 6.

2. Related Work

To the best of our knowledge, and until the time of drafting this paper, there is no
comprehensive literature review on possible applications of quantum algorithms in smart
factories and industries. Some research discusses and analyzes a giving algorithm on one
industry sector, yet there is no universal design that can be deployed for every industry
and smart factory case. In this section, we review the existing research and related papers,
analyze their contributions, and depict our key considerations.

2.1. Existing Studies

Luckow et al. [5] discussed in their research paper various possibilities of quantum
implementations for the automotive industry. The authors investigated several issues
within the industry that are, until today, considered complex problems to classical comput-
ers, such as robotic path optimization, vehicle configurations, system verification, route
optimization in logistics, placement and distribution problems, strategic planning, tactical
planning, operational planning, portfolio optimization, nanoscale functional materials de-
velopment, engineering, design, and computer vision. As a solution, the authors depicted
several quantum algorithms, including a quantum approximate optimization algorithm, a
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quantum adiabatic algorithm, Grover’s adoptive search algorithm, differential quantum
circuits, variational quantum classifiers, and quantum neural networks. On the other hand,
EL Azzaoui et al. [4] proposed the deployment of a quantum cloud system to solve the
processing complexity of medical data. Their proposal also includes the usage of delegated
cloud for secure and private data computation where the input, computation, and output
are blindly performed. The paper solves the issue of molecule simulation and drug dis-
covery processes in the healthcare industry. Yarkoni et al. [6] studied the possibilities of
implementing quantum annealing (QA) processors for optimization problems across the
industry. QA is a small processor developed by multiple quantum companies, notably
D-Wave, and it allows the user to run quantum-based optimization algorithms for different
problems. Based on the authors, QA can be implemented in mobility, scheduling and
logistics, simulation, and finance, including portfolio optimization. Moreover, an IBM
research team published a paper on the prospects of quantum computing applied to the
finance industry. In this paper, Egger et al. [7] depicted the applicability and potential
of quantum computers for several problems in the finance sector, including banking, the
financial market, and insurance. According to the research team, quantum computers shall
be beneficial in customer identification, financial products, monitoring transactions, and
customer retention using a quantum AE algorithm. Quantum AE estimates parameters
with a convergence rate of O

(
1
M

)
, where M refers to the number of quantum samples. This

algorithm quadratically speeds up the processing phase compared to classical algorithms.
These state-of-the-art papers presented the utilities of quantum computers and algo-

rithms as effective solutions for industries and smart factories. However, until the time of
writing this paper, there is no paper or research work that discusses the benefits of quantum
implementation in smart factories at large with different industries. Moreover, these papers
do not include a practical case study or scenario to visualize the results of using quantum
computers. Thus, in this paper, we depict the benefits and applications of quantum com-
puters to various smart factories and industries. Furthermore, we study some real-world
case scenarios where we implement quantum algorithms, and we analyze the obtained
results. Interventional studies involving animals or humans, and other studies that require
ethical approval, must list the authority that provided approval and the corresponding
ethical approval code. Table 1 summarizes the discussed research works.

Table 1. Comparison of related works.

Paper Year Scalability Efficiency Integrity Availability

EL Azzaoui et al. [4] 2022 X O O O

Luckow et al. [5] 2021 O O X X

Yarkoni et al. [6] 2022 O X X O

Egger et al. [7] 2020 O O X X

Our contribution 2023 O O O O

2.2. Key Considerations

The primary considerations of the proposed solutions are depicted as follows:

• Scalability: Smart factories and industries, in general, rely on big data collected from
different sectors. The heterogeneity of the data contributes to the complexity of the
system. The more data there is to be processed, the more time it will take to classify and
the more complex the system will be. Thus, creating a scalable computational system
for smart factories and industries to use is required to maintain the fast-growing needs
of smart factories, and quantum algorithms can surely ensure that.

• Efficiency: The efficiency of the big data processing phase is another condemnatory
demand for developed smart factories. Yet, the large amount of data facing smart
factories is not allowing the system to be efficient enough. Smart factories should
be able to classify the acquired data efficiently in order to process it and extract the
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required information for smart factory development. The current solutions using
classical computers and algorithms are struggling to manage these data, which leads
to more processing time and less effective results. To this end, we believe that quantum
computers and quantum-based algorithms can be a suitable solution for today and
future smart factories.

• Integrity: Currently, data breaches are the most critical problem facing the security of
smart factories around the world. Mostly, data theft and breaches happen during the
processing phase at the server level, where smart factory-related data, such as product
information or personalized customer information, are stored [8,9]. Moreover, data
manipulation can cause severe losses to smart factories. Surprisingly, even tech giants
such as Facebook have been through this issue, and it costs them millions of dollars to
gain the trust of their clients back. In the case of the finance industry, such as banks,
data theft and breaches can be critical as they can lead to the exposure of sensitive
information, such as monetary transactions and credit card information, to the public.
Using quantum-based cryptography, we can enhance the security of smart factories
and ensure the privacy and security of their data during the processing phase.

• Availability: Smart factories should be able to access their data and results anywhere
and at any time; ensuring the availability of information and data is critical to various
smart factories and industries. To this end, securing smart factory servers from
cyberattacks such as DDoS is essential [10,11].

3. Proposed Quantum Approach for Secure Decision Making in IIoT-Based Smart
Factory System

In this paper, we first discuss possible applications of quantum computers and quan-
tum algorithms for several IIoT system models and industries. Moreover, we propose
two real-world case studies: the first one is logistic system optimization using a quantum
approximate optimization algorithm (QAOA) that can be applied in almost all smart fac-
tories that deal with logistics and product shipping, and the second is a quantum neural
network (QNN) implementation for finance sector where the algorithm can be used for fast,
scalable, and more efficient smart factory forecasts, price-related data analysis, and future
opportunity discovery. The proposed system is universal and can be deployed by various
industries for their smart factory modeling and optimization using quantum algorithms.
The system can be divided into four main layers, notably the device layer, edge layer, fog
layer, and cloud layer, as depicted in Figure 2.

3.1. General System Overview

The proposed system is flexible and designed to be able to run different quantum
algorithms based on the needs of each smart factory and industry:

• Device layer: The first layer of our proposed system is the device layer; The first layer
of our proposed system is the device layer; it holds different IoT devices and data
sources that smart factories are using to collect data based on their needs. These data
include personal information and customers, such as name, gender, IP address, and
identification number. The second type of collected data is engagement and behavioral
data. These data help smart factories to understand their clients and personalize
unique products and commercials for them, which is regarded as the most essential
information that almost every smart factory relies on in the era of social platforms.
Another type of data that can be collected is regarding the smart factory itself, such
as data related to production collected from manufacturers or related to products,
logistics, and shipping.

• Edge Layer: The second layer in the proposed system is the edge layer. In this layer, we
implement quantum terminals, which are small quantum processors with a minimum
of one qubit size that are capable of converting classical bits representing data obtained
from the device layer into qubits that are understandable by the quantum cloud server
at the cloud layer. This method eliminates the need for quantum programmers or
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quantum specialists and automatically performs the required quantum computations
at the cloud layer for optimized and efficient smart factory decision making. The
deployed method at this layer has been proved previously in our published paper [4].

• Edge Layer: At the edge layer, we implement a hybrid quantum–classical model,
which is capable of performing hybrid computations; that is, if a certain operation
does not require quantum processing, it can immediately perform using classical
machine learning methods, which contributes to a much faster and more scalable
system. Moreover, the proposed model can be used in quantum machine learning in
order to optimize performance. More details about this model are discussed below
when we discuss the case study of QNN.

• Cloud Layer: The final layer in the proposal is the cloud layer where the quantum
server resides. The quantum server at the cloud layer is powered by quantum ma-
chines to perform all sorts of requested computations from the smart factory client.
The requested analyses are executed exponentially faster, are scalable, and are more
efficient than any classical computer.
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3.2. Quantum Application for Smart Factory Development

In this section, we discuss various implementations of quantum algorithms and quan-
tum solutions that can be applied to smart factories in order to enhance and optimize their
analysis. For instance, quantum optimization algorithms based on gradient descent [12–15],
such as QAOA, can be used in supply chains, logistics optimization, transportation routing,
process planning, pricing and promotion optimization, products portfolio optimization,
fabrication and production optimization, energy distribution optimization, financial mod-
eling, credit organization, insurance optimization, emergency planning, protein folding
prediction and drug discovery in the medical sector, and network optimization [16–20].
Quantum machine learning, such as QNN, can be deployed as well in various sectors such
as material discovery, material research, finance analytics, precision medicine therapies,
and drug structure [21–23]. Quantum search algorithms, such as Grover’s algorithm, can
be used in complex and unstructured databases, which can be very efficient in smart factory
modeling and IIoT analytics. Quantum-based security algorithms such as quantum key
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distribution, quantum one-time pad, and quantum random number generation can be
useful to secure smart factory and their data from cyberattacks and can be deployed for
fraud detection, anomaly analysis, intrusion detection, cyber-risk management in smart
factory, and product risk analysis [24].

Smart factories and industries can profit from quantum applications and algorithms
to secure their data and optimize their processing, analysis, and computation. The future
of smart factories relies on futuristic technologies; thus, we believe that smart factories and
industries should start deploying quantum solutions into their products in order to adapt
to the fast development of the quantum era.

4. Case Study and Evaluation

In this section, we further discuss our proposed system using two real-world case
studies. The first one is based on a quantum neural network for the finance sector, where we
deploy QNN for forecasting, analyzing, and discovering future smart factory opportunities.
The scenario we studied is based on the designed system explained above. The second case
study is regarding the max-cut problem for logistic systems in smart factories, which is
solved using QAOA.

4.1. QNN-Based Financial Forecast in Smart Factory

In the case of finance and IIoT, the input values are raw data continuously collected
from the device layer, such as sale numbers, losses, product prices, and so on. Using the
quantum terminal, we can generate the rotation angle for the quantum rotation gate (QRG).
The output of variational encoding is used as an input for the QNN algorithm. QNN
classifies the data, labels it, and processes it; the output is a real-time analysis result that
can be immediately visualized to understand the future direction of a given market. The
trained model is then sent to the cloud layer. In this phase, future prediction on the market
and pre-planned smart factory model is computed. Note that at this level, only the trained
model is sent as an input and not the data, which increases the security and privacy of
the smart factory as the data is blindly computed, and it reduces the burden on the native
AI-based edge layer since the upcoming possible smart factory models are pre-calculated.
To evaluate the proposed solution, we have used IBM Quantum Lab’s Qiskit Software
version 0.19.0 and Python version 3.8.10 under a Linux operation system with four CPUs
and 7.68 (Gb) memory usage. We consider that the data is continuously fed to the native
intelligent edge layer where the QNN algorithm runs. First, the raw data is collected from
the devices to their respective base station where the quantum terminal is implemented.
The quantum machine terminal (QMT) serves as an intermediary between classical devices
and quantum servers, enabling the compilation of classical bits into qubits that are readable
by the quantum server and vice versa. With at least one qubit, the QMT is a compact
quantum machine.

The variational encoding converts the classical data bits into a quantum state. The
QNN algorithm has to classify the data; thus, at this point, there are two different techniques
to use. The first technique involves classification with a circuit QNN, which is used to
classify within a neural network classifier and return the d-dimensional probability vector
as an output (d is the number of outputs), thus resulting in a probability distribution. The
other method that can be used is the variational quantum classifier (VQC). The VQC uses
extensions to multiple classes to map from the bitstring to the classification, resulting in a
probability vector.

VQC is one of the best solutions for quantum neural network (QNN) classification
problems as it is noise-resistant and scores a high success rate in machine learning (ML)
models [10,11]. VQC deploys a classical optimizer model as depicted that continuously
updates the parameters back to the QNN model, reducing the cost, time, and iterations,
thus making it a hybrid (quantum–classical) algorithm. Figure 3 shows the output of
running both circuit QNN and VQC; the results prove the outstanding performance of the
hybrid VQC technique compared to the circuit QNN technique. For the regression, we
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used a variational quantum regressor (VQR) which is similar to VQC. Figure 4 shows the
performance of VQR using the L2Loss function for lesser iterations. The graph depicts a
very minimized mean squared error between the prediction and the target.
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4.2. Quantum Machine Learning for Optimized Route Selection in Smart Logistics

In this case study, we present a feasible solution for implementing quantum machine
learning for a scalable and efficient smart factory financial prediction. Our proposed system
uses a quantum terminal, which is a one-qubit processor that is capable of encoding classic
bits from the collected data into quantum states. Moreover, we used a hybrid QNN model
where the classical layer is used to optimize the output and update the quantum model
to reduce the cost of computation and execution. The results prove the feasibility of the
proposed model as it is capable of providing a real-time forecast based on the provided
data. On top of that, we propose that the trained model using QNN should be sent to
the cloud layer for further computations to predict future finance results, such as share
prices, thus reducing the future complexity on the intelligent edge as the prediction reached
96%. This method can be used as the first step for future research directions on using small
quantum processors at the edge to improve the smart factory’s scalability and the quality
of experience, reduce the cost, and create a total self-learning optimized architecture.

Smart factories around the world rely on their logistic system either for product
delivery, raw material storage, or transportation. The main problem facing smart factories
is reducing the shipping cost by optimizing the route and minimizing the number of nodes
that a delivery person needs to stop at, which is well-known as the traveling salesman
problem. This problem is considered an NP-complete problem where its representative
complexity exponentially increases with the number of nodes. To solve this problem, we
deploy QAOA, where the data is collected from the device layer; in this case, the collected
data represent the GPS location and the address that it should stop by them. We consider
some conditions where the salesman should start and end at the same location (headquarter
of the smart factory, for example), the salesman cannot disappear from the system, and
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they should visit each and every node only once. This state can be represented using the
Hamiltonian problem depicted in the following equation:

Hp =
1
2
(Z0 ⊗ Z1 ⊗ I2 ⊗ I3) +

1
2
(I0 ⊗ Z1 ⊗ Z2 ⊗ I3) +

1
2
(Z0 ⊗ I1 ⊗ I2 ⊗ Z3) +

1
2
(I0 ⊗ I1 ⊗ Z2 ⊗ Z3) (1)

The mixer Hamiltonian HB is represented in (2).

HB = (X0 ⊗ I1 ⊗ I2 ⊗ I3) + (I0 ⊗ X1 ⊗ I2 ⊗ I3) + (I0 ⊗ I1 ⊗ X2 ⊗ I3) + (I0 ⊗ I1 ⊗ I2 ⊗ X3) (2)

At this stage, the unitary gate U corresponding to HB and HP is depicted as follows,
where the product is related to a rotation on each qubit.

U(HB) = e−iβHB = e−iβX0 e−iβX1 e−iβX2 e−iβX3 (3)

U(HP) = e−iγHP = e−iγZ0Z1 e−iγZ1Z2 e−iγZ2Z3 e−iγZ0Z3 (4)

In order to start the QAOA, we must initialize the quantum states using unitary gate
U(HP) = e−iγHP and operations such as deploying the mixing unitary U(HB) = e−iβHB .
Finally, we measure the Z-basis gate in order to obtain the optimal route selection for the
salesman as follows:

< ψ
(

βopt, γopt
)
|HP|ψ

(
βopt, γopt

)
> (5)
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Figure 5 depicts the probability of finding the optimal route results obtained by
deploying this method on IBM Quantum Cloud. The results show a high probability at
the 0101 and 1010 qubits of 0.258. Based on the highest probability, the most optimal route
shall be selected. The results obtained are depicted in Table 2.
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Table 2. Performance of quantum machine learning for smart logistics.

Task Performance

Route Optimization Computing Latency 8.6 (s)

Route Optimization Decision Latency 5 (ms)

Successful Optimized Route Probability 91%

System Scalability Improvement 23%
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5. Open Research Challenges

The implementation of quantum information science into smart factories and IIoT
will indeed exponentially speed up the development of smart factories by increasing the
processing time and efficacy [25]. However, quantum solutions are currently in the earliest
implementation stages, which lead to various challenges that urge to be addressed. These
challenges include quantum error correction caused by various factors, such as noise
and decoherence. Developing efficient quantum error correction algorithms is crucial to
mitigate these errors and ensure the reliability of quantum solutions in smart factories.
Another challenge is quantum sensors, where developing efficient and reliable sensors
can be challenging. Moreover, quantum solutions for smart factories may require the
development of a new quantum network infrastructure to enable communication between
quantum devices. Developing efficient quantum network infrastructure that can scale to
large numbers of devices is an open research challenge. These open research challenges
require significant investment in research and development to build the necessary skills and
expertise to enable the deployment of quantum solutions in smart factories. However, we
believe that our proposed solution using a hybrid approach rather than a direct quantum
approach is the most feasible solution as it requires less quantum hardware. Moreover,
using the quantum terminal represented by the quantum one-qubit chip reduces the need
to have a quantum computer at the device layer, which reduces the cost of implementation
and makes the proposed solution much more sustainable, efficient, and possible.

Quantum machine learning (QML) has the potential to revolutionize certain areas
of machine learning, but there are currently several limitations that need to be addressed
before it can be widely adopted. Some of these limitations include the current limitations
of quantum hardware, the limited availability of quantum resources, the lack of standard-
ization of QML algorithms, the challenges associated with accessing large amounts of
data, and the shortage of experts with the skills and knowledge required for QML. Despite
these challenges, researchers and industry experts are actively working to overcome these
limitations, and it is expected that QML will continue to advance and become more widely
adopted in the near future.
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6. Conclusions

The fast development of the quantum era is growing exponentially, with companies
such as D-Wave announcing their quantum Annealing into the market that allows compa-
nies to run quantum algorithms for their needs. Moreover, the large and heterogenous data
collected from various IoT devices is increasing the complexity of computation for smart
factories. Industries are developing at a fast rate around the world, with technologies such
as machine learning and AI being enhanced; however, the complexity of computation is
standing against smart factory development. To this end, in this paper, we discuss the im-
plementation of quantum solutions for sustainable smart factory development. We depict
various applications where quantum algorithms could improve smart factory scalability
and productivity. Moreover, we design a universal system model where smart factories
would not need to acquire quantum computers to run quantum algorithms based on their
needs; instead, they can use quantum cloud servers and quantum terminals implemented
at the edge layer to help them run the desired quantum algorithms without the need of an
expert. To prove the feasibility of our model, we implement two real-world case studies
and evaluate their performance. The analysis shows the benefits of quantum solutions in
different smart factories. We hope this paper will be a stepping stone for further research
and application of quantum solutions for smart factories around the world. The results
show promising performance for quantum machine learning approaches to optimize and
enhance the efficiency of IIoT systems.
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Abbreviations

Symbols Description
QIS Quantum Information System
QA Quantum Annealing
AE Amplitude Estimation
QAE Quantum Amplitude Estimation
M Number of Quantum samples
QAOA Quantum Approximate Optimization Algorithm
QNN Quantum Neural Network
QRG Quantum Rotation Gate
VQC Variational Quantum Classifier
QMT Quantum Machine Terminal
Hp Hamiltonian problem
HB Mixer Hamiltonian
U Unitary Gate
Z Pauli-Z Gate
I Identity Matrix
X Pauli-X Gate
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